• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coorperativity between Metals,Ligands and Solvent:a DFT Study on the Mechanism of a Dizinc Complex-Mediated Phosphodiester Cleavage

    2011-12-12 02:41:30FANYuBoGAOYiQin
    物理化學學報 2011年12期

    FAN Yu-Bo GAO Yi-Qin,2,*

    (1Department of Chemistry,Texas A&M University,College Station,TX 77843-3255,USA; 2College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

    Metals in phosphate ester hydrolases play an essential role in the efficient and proficient hydrolyzation of DNA,RNA and/or other phosphate esters in cells[1-6]by catalyzing the cleavage of the exceptionally stable phosphodiester linkages[7-8].These enzymes,especially zinc-containing ones,accelerate phosphodiester hydrolysis by up to 1016-fold under neutral conditions[4-6].Zinc clusters were found at the active site in many enzymes,such as P1 nuclease[9-11]and phospholipase C[12-14],in which three Zn ions were found in the active site,and alkaline phosphatase[15-16],in which two Zn ions and one Mg ion were found.A catalytic mechanism was proposed for these enzymes,in which the two closely spaced Zn ions deprotonated the attacking water while the third one(Mg2+in alkaline phosphatase)stabilized the leaving alkoxide group.The metals are coordinated and stabilized by histidines,carboxylates(in aspartate,glutamate,or carbamate produced by CO2and lysine)and waters/hydroxides.In general, water or the 3′-OH of RNA can be deprotonated to become better nucleophiles by coordinating to Zn(II)ion(s),and therefore is able to attack phosphorus atom in the linkage to break the DNA/RNA chains.On the other hand,Zn(II)ions also play a role in binding of the phosphodiester linkages so that hydroxide/ alkoxide is oriented to attack the phosphorus atom easily.

    Based on the structures and functions of the metalloenzymes, many N,O-ligands have been designed and the associated metal complexes have been synthesized to simulate the active site for phosphodiester cleavage in enzymes.Interesting catalytic activities and kinetics were reported on these metal complexes although none has nearly approached the ultimate effectiveness of the enzymes mentioned above[17-36].Among these complexes,dinuclear Zn(II)complexes have been shown to significantly accelerate the hydrolysis of phosphodiesters.

    In particular,the dinuclear Zn(II)complex,shown in Scheme 1,has been reported to be an efficient catalyst for the cleavage of HPNP(HA),a model for RNA linkage(and other RNA analogues),which produces propylene phosphate(B)via transesterification in neutral or slightly basic solutions(see Scheme 1)[37-38]. This catalyst reaches its maximum catalytic activity at pH≈8.5, which is consistent with the pKa(8.0)of a Zn-bound water[37-39]. The X-ray crystal structure indicates that two zinc ions are bound together by the pendent hydroxyl on the linkage of the bis (1,4,7-triazacyclononane)ligand and,the potentiometric titrations show that the bridging hydroxyl has been deprotonated in the complex even at pH as low as 6[38].Compared to the uncatalyzed reaction(see Scheme 1),the reaction barrier for the cleavage of HA is reduced by 38.9 kJ·mol-1at pH 7.6 when this catalyst is employed[37-38].

    Scheme 1 Catalytic reaction and structure of dinuclear Zn(II)complex

    Furthermore,the absence of a primary kinetic solvent deuterium isotope effects(SDIE)on cleavage of the substrate indicates thatproton transferisnotinvolved in the rate-determiningstep[40].

    Although a large amount of thermodynamic,kinetic and X-ray crystal data have been accumulated for the phosphodiester cleavage catalyzed by dizinc complexes[37-40],the corresponding reaction mechanism at the molecular level has not been revealed.For instance,how the phosphodiester binds to the complex?Do five-coordinated phosphorus intermediates or transition states exist in the P—O forming and/or breaking processes? Are those amino protons involved in the catalysis?How many water molecules are directly involved?In this paper,these questions were tried to be answered with an extensive atomic-level investigation preformed using density functional theory(DFT).

    1 Computational details

    All calculations were performed using the Gaussian 03[41]implementation of Tao-Perdew-Staroverov-Scuseria(TPSS)densityfunctional theory[42].As a third generation of density functional, TPSS is generally superior to previously developed nonempirical functionals,and virtually matches in accuracy the most popular functional-B3LYP[43-46].

    The basis sets for zinc and phosphorus were Stuttgart/Dresden (SDD)with the effective core potential(ECP)[47]and LANL2DZ plus a d-polarization and a p-diffuse function[48]with ECP[49-50], respectively.Basis set 6-31++G(d′,p′)was used for N,O,aromatic C,and all H atoms bound to N and O[51-53],while 6-31G was used for alkyl C and the rest of all H atoms[51].In addition, density fitting functions were included to accelerate the computation with DFT[54-55].Density fitting functions can be included for this pure DFT,and only pure DFT,to save tremendously computational expense by expanding the density in a set of atomcentered functions when computing the Coulombic interaction instead of computing all of the two-electron integrals[54-55].A comparison of TPSS with or without density fitting functions included for an organometallic reaction shows only marginal difference for both relative energies and structural parameters[56]. TPSS reproduces their properties at least as precisely as B3LYP. Especially,TPSS can recognize relatively weak interactions (such as agostic interactions)very well.Furthermore,using smaller basis sets for the atoms far from the reaction center does not degrade the computational precision and accuracy significantly but can accelerate the calculations considerably[56].

    All structures were fully optimized and frequency analyses were performed to ensure that a minimum or transition state was achieved.Furthermore,transition states were confirmed with the intrinsic reaction coordinate(IRC)method[57-58]for the correct connection between the corresponding reactant and product.The thermodynamic functions,including enthalpies, entropies,and free energies,were calculated at 298.15 K and 101.325 kPa.The solvation energies for all species in aqueous solution were estimated with the polarizable conductor calculation model(CPCM)[59-60].All thermodynamic functions used for comparison and discussion as follows are from the solvation model simulations if not described with other models.

    2 Results and discussion

    As shown in Scheme 2,the discussion on which are the active forms of the catalyst and the substrate,is complicated by four possible combinations of these two pairs of conjugate acid-base. On the other hand,all four combinations can lead to the same binding form.For example,via a proton transfer,HA and Catform the same adduct as A-and CatH do;so do HA and CatH, if they bind first and then deprotonate.Namely,they can yield identical pH-rate profiles.A similar situation was discussed in detail in our previous published paper[61].In order to focus the investigation on the catalysis after binding,the hydroxo dizinc complex(Cat-)and the hydroxyl form of the substrate(HA) were calculated for the catalytic mechanism as they are dominating species under the optimal conditions(pH 8.5-10).

    To identify the coordinating situation of the phosphate unit in the substrate,which can be a monodentate,bidentate or even tridentate ligand,the X-ray crystal structures for dizinc-phosphate complexes including a Zn-O-Zn core were thoroughly searched. The available data indicate that the phosphate bridges the zinc ions utilizing two terminal phosphate oxygens[62-67].Thus,in our calculation the phosphodiester was positioned as a bidentate ligand bridging the two zinc ions in the initial binding structure for optimizations while the hydroxyl or alkoxide on the side chain is loosely hydrogen-bonded to the Zn-bound water or hydroxide (see 1ta/1′ta:HA+Cat-and 1tb/1′tb:A-+CatH in Scheme 3).Interestingly,two amino protons are only 0.4 nm apart in the crystal structure[38]and this characteristics allows a water to be perfectly bound to the ligand by forming two hydrogen-bonds to these two amino protons.Furthermore,this water hydrogenbonds to the phenoxyl oxygen not only to orient the phosphodiester for nucleophilic attack but also to weaken the bond between the phosphorus and the phenolate for completing the reactions(see the structures in Scheme 3 and discussion below).In the case of 1′ta,the hydroxyl in substrate is spontaneously deprotonated by the Zn-bound hydroxide and exchanges with the newly-generated water to coordinate to Zn and then 1′a forms in a fully geometric optimization.This hydrogen-bonded water in 1′a can be released into the solvent to form 1a.On the other hand,in 1′tb the alkoxide can exchange with a Zn-bound water to form 1′a although 1′tb is far less stable than 1′ta because both deprotonating of the hydroxyl in substrate and protonating of the Zn-bound hydroxide are disfavored in energy in the pH range of 8.5-10.Else,with one less Zn-bound water,hydroxyl in 1ta or alkoxide in 1tb can easily coordinate to Zn and hydrogen-bond to the Zn-bound water(spontaneous proton transfer from the hydroxyl to the Zn-bound hydroxide in 1ta)to form 1a.Therefore,1a and 1′a,as monocations,were used as the starting point of the catalysis after binding.

    Scheme 3 Starting structures of the catalyses after binding of the catalyst to the substrate

    2.1 Equilibrium between 1′a and 1a

    As shown in Scheme 3,the water molecule,connecting the alkoxide on the side chain of the substrate and the Zn-bound water in 1′a,is missing and solvated into the bulky solution in 1a. 1a+H2O are 42.5 kJ·mol-1(in enthalpy)less stable than 1′a in gas phase,but when the solvation of these species and the entropy change in this equilibrium are considered,1a+H2O becomes even more stable by 55.2 kJ·mol-1than 1′a.In 1a,the hydroxyl on the side chain has been deprotonated and coordinates to Zn with a bond length of 0.2025 nm.The proton has been transferred to the original hydroxide bound to Zn to form a water molecule, which is still hydrogen-bonded to the alkoxide.The water clamped by the two amino protons with two hydrogen-bonds (O7—H1:0.2156 nm;and O7—H2:0.2169 nm)on the back (see 1a in Scheme 3 and Fig.1)has a third hydrogen-bond to one phosphate oxygen with a distance(O5—H6)of 0.1755 nm. Thus,the reaction path from 1a is more than 42 kJ·mol-1favored at the starting point than that from 1′a.

    2.2 Reaction path starting with 1a

    All structures involved in this path are depicted in Scheme 4 and Fig.1 and,the corresponding relative free energies are listed in Table 1.1b was also located as an isomer of 1a.Although 1b is similar to 1a,the hydrogen-bonding situation of the ligandbound water is different.Namely,the hydrogen-bond between O7 and H1 is broken with a long distance of 0.4547 nm and another hydrogen-bond from H6 to O5 has been switched to O3 with a distance of 0.1993 nm while the one between O7 and H2 has been enhanced(O—H distance of 0.1999 nm relative to 0.2169 nm in 1a).Surprisingly,these two isomers are almost isoenergetic with 1b being slightly less stable than 1a by 1.05 kJ·mol-1in free energy.The transition state between them is shown in Fig.1 as TS1,where the hydrogen-bond O7—H1 is already broken with a distance of 0.3344 nm while H6 of the ligandbound water is switching its hydrogen-bond from O5 to O3 with distances of 0.2748 and 0.2469 nm,respectively.The free energy barrier for this transition is 17.0 kJ·mol-1.

    TS2 in Fig.1 is the transition state between 1b and the intermediate 2 with a five-coordinated phosphorus(trigonal bipyramidal PO5).Shown in its structure(see Fig.1),the oxyanion O6 is attacking the phosphorus and they are 0.1975 nm away while the distance between Zn1 and O6 elongates to 0.2679 nm relative to 0.2024 nm in 1b.Apparently,the Zn-bound water stabilizes the oxyanion providing a strong hydrogen-bond with a distance(O6—H5)of 0.1596 nm.On the other side,the bondlength of P—O3 increases to 0.1827 nm from 0.1688 nm in 1b. When a covalent bond is formed between O6 and P with a distance of 0.1811 nm in 2,the ligand-bound water forms a hydrogen-bond with the amino proton H1.The water,using the hydrogen-bond between O3 and H6,pulls the PO5unit to rotate.This rotation leaves Zn1 five-coordinated while Zn2 is still six-coordinated.The activation free energy for this P—O bond formation is 50.1 kJ·mol-1in gas phase but only 1.2 kJ·mol-1when solvent effect is considered(see Table 1).A charge redistribution,occurred on TS2 vs 1b,indicates that the partial positive charges on P and O2 increases by 0.2 and 0.1 unit in TS2,respectively,relative to 1b.This accumulated positive charge makes TS2 a more polarized system and as a consequence the solvation energy increases significantly(by more than 42 kJ· mol-1)in water.It is important to point out that this barrier is not expected to be lowered as significantly in enzymes because the dielectric constant for the medium in enzymes is 1-4 against 80 for water.

    TS3 is the transition state for the collapse of the five-coordinated phosphorus as a result of the breaking of the bond between the phosphorus and the phenolate(see Fig.1),the length of which is 0.2063 nm(it is 0.1961 nm in 2).Because of the short distances of O3—H6 and Zn1—O3,which are 0.1771 and 0.2663 nm, respectively,not only the hydrogen-bond between the ligandbound water and the phenolate but also the five-coordinated Zn assists the bond breaking and stabilizes the transition state.In 3, two products are formed as p-nitrophenolate and propylene phosphate although they are still bound to the dizinc complex. The relative free energies of TS3 and 3 in water solution are 16.95 and-24.14 kJ·mol-1,respectively.

    To further ensure validity of the results,B3LYP was also employed[68-70],combined with the same basis sets for TPSS,to calculate the single point energy(SPE)and solvation free energy upon the TPSS-optimized geometries in the path shown in Scheme 4.As listed in Table 1,the relative free energies are identical in gas phase and those in water solution are also very close for these two different density functionals.Namely,there is no method-dependent deviation in the calculations.

    2.3 Reaction path starting with 1′a or 1′c

    All structures involved in this reaction path are shown in Scheme 5 and the corresponding relative free energies are listed in Table 2.The reaction path from 1′a to 3′is quite similar to that from 1a to 3 except that one more water is involved(the geometries are not shown in Fig.1,but available in the Supporting Information).1′a and 1′b are two isomers for the binding of the substrate and 1′a is more stable than 1′b by 12.5 kJ·mol-1.The transition state,TS1′,connects 1′a and 1′b,is less stable than 1′a in free energy by 22.0 kJ·mol-1when solvation energy is included.The Zn-bound alkoxide,via TS2′a,with a free energy barrier of 4.7 kJ·mol-1,attacks the phosphorus to form 2′,a fivecoordinated phosphorus intermediate which is more stable than 1′b by 12.7 kJ·mol-1.At last,with the help of a Zn ion and the ligand-clamped water(on the back in 2′in Scheme 5),the bond between the phosphorus and the phenolate oxygen breaks,and the phenolate transfers to the Zn ion to form 3′.This step is almost barrierless(see Table 2)and 3′is more stable than 2′by 36.6 kJ·mol-1.

    Fig.1 Optimized structures for the mechanisms shown in Schemes 4 and 5Hydrogen atoms attached to carbons are omitted for clarity.The distances are in nm.

    1′c,another isomer of the substrate-binding species,the hydroxyl of which on the side chain is not deprotonated,is also lo-cated(see Scheme 5 and Fig.1).The hydroxyl forms two hydrogen-bonds with the Zn-bound water and hydroxide and 1′c is even more stable than 1′a by 5.5 kJ·mol-1(see Table 2).In 1′c, the hydroxyl is in an excellent position ready to attack the phosphorus:The hydroxyl oxygen is 0.2881 nm away from the phosphorus;the Zn-bound hydroxide tends to deprotonate the hydroxyl by forming a very strong hydrogen-bond(O9—H5: 0.1490 nm)with it;and the hydroxyl,phosphorus and the phenolate are nearly linear(O6—P—O3:166.9°)so that the formation of a five-coordinated phosphorus does not need a large conformational change.Indeed,the transition state,TS2′c,is very similar to 1′c but P—O6 is shortened to 0.2510 nm while the proton is transferring from O6 to O9(O6—H5:0.1264 nm and O9—H5:0.1180 nm in Fig.1).After the trigonal bipyramidal PO5forms,one Zn-bound water dissociates and forms hydrogenbonds with another Zn-bound water and one phosphate oxygen, leaving one Zn ion five-coordinated.The activation free energy for this step is only 4.8 kJ·mol-1.As a consequence,since the formation of 2′from 1′c is much easier than from 1′a,TS1′corresponds to the highest barrier in this reaction path.

    Scheme 4 Reaction mechanism starting with 1a

    Table 1 Relative free energies in gas phase,ΔG,and in water solution,ΔGs,for the structures shown in Fig.1 involved in the reaction path in Scheme 4

    2.4 Comparison of the two paths

    Scheme 5 Reaction mechanism starting with 1′a or 1′c

    Table 2 Relative free energies in gas phase,ΔG,and in water solution,ΔGs(kJ·mol-1),for the structures shown in Fig.1 involved in the reaction path in Scheme 5

    As shown in Fig.2,although the overall free energy barriers, 17.0 kJ·mol-1from 1a to 3 and 22.0 kJ·mol-1from 1′c to 3′,for the two paths shown above are similar,the fewer-water pathway(1a to 3)is favored by 55.5 kJ·mol-1when the entropy of dissociation of a water and the solvation of it into the bulky solvent are considered.Furthermore,in the path from 1′c to 3′most of the species have two six-coordinated Zn ions while in that from 1a to 3 most of them have one five-and one six-coordinated Zn ions,which is suggested by the crystal structure to be stable[38].

    2.5 Rate-limiting step

    The calculations show that the overall free energy barrier for the cleavage of the bound substrate is only 17.0 kJ·mol-1.The reaction rate would be too fast compared to the experiments if either the formation or the collapse of the trigonal bipyramidal PO5intermediate is the rate-determining step.The results indicate that as long as HPNP binds to the dizinc complex,it breaks down quickly to two bound products.Therefore,it is very likely that the dissociation of one product,p-nitrophenolate,is the ratedetermining step,given the increase of 1.1×107-fold(overall free energy barrier decreases by 38.9 kJ·mol-1)for the catalyzed reaction at pH 7.6 relative to the uncatalyzed reaction(actually catalyzed by OH-)[37-38],while the rate acceleration could be as large as 1016-fold in enzyme-mediated reactions.This slow release of products is likely due to its requirement of breaking a coordination bond and a hydrogen-bond simultaneously.The observation that the cleavage is faster when the leaving group is p-nitrophenolate than alkoxides is also consistent with product release being rate-determining[37].The coordination bond between Zn and p-nitrophenolate is certainly weaker than that between Zn and alkoxides.Furthermore,p-nitrophenolate can be easily solvated as an anion in neutral conditions but alkoxides are protonated[71-73].

    As implied by a monozinc complex[61,74],although the PO5intermediate cannot be stabilized in the catalysis as much as by the dizinc complex,the p-nitrophenolate is loosely bound by hydrogenbonds to the Zn-coordinating water and ligand and can be easily released by exchange with the solvent or substrate.Feng et al.[75]further reported that increasing the acidity of the Zn-bound water by introducing hydrogen-bond donors could be a more effective strategy to design and to synthesize Zn catalysts than making a dinuclear analogue.It is likely that the extra hydrogenbonds not only stabilize the Zn-bound hydroxide/alkoxide as a better nucleophile but also hinder the interactions between Zn and the leaving phenolates or alkoxides.

    Fig.2 Relative free energies(including solvation energy)of the species for the mechanism shown in Schemes 4 and 5

    In the hydrolases mentioned earlier,the strong bonding between the alkoxide and metals should be largely weakened by inhibiting the strong coordination between alkoxides and the dizinc core,which is buried relatively deep from the protein surface for DNA-binding so that the substrates are unable to interact with it directly,and forming either hydrogen-bonds or π-π stacking from the amino acid residues,which assists to pull the alkoxide(likely to be protonated to alcohol first)away,around the active site.For example,in P1 nuclease(PDB ID:1AK0)the substrate(inhibitor in the crystal)binds to the remote Zn and Arg48 and thus is unable to directly interact with the closely spaced dizinc core that is not on the surface of the enzyme.It is proposed that the dizinc center is responsible for deprotonating of the bridging water to hydroxide,which attacks the phosphate linkage and cleave it[9].The releasing of products is perfectly optimized by pulling the 3′-strand(alkoxide)away from the active center with the Phe61 stacking(π-π interaction)on the aromatic base ring in the nucleotide and Asp63 hydrogen-bonding to this base[9].

    In the small dizinc complexes,weakening of the coordination bond from phenolate/alkoxide to Zn is much inferior to enzymes although the formation and collapse of the trigonal pyramidal PO5intermediate are nearly perfectly optimized.Thus,the introduction of more hydrogen-bond donors,such as amino,could lead to a better design in the developing of new catalysts,which might accelerate the releasing of phenolate/alkoxides as efficiently as enzymes.Recently,a dizinc complex,analogous to the one we calculated(see Scheme 1)but without the pendelant hydroxyl,was shown to accelerate the cleavage of HPNP by 4× 1014-fold in alcohols at pH 9.5[76-77].As reported,the weaker solvent effect of alcohols,relative to water,enhance the binding between the complex and the substrate so that the concentration of the substrate-bound catalyst increases.But consequently,the binding between the complex and the products will also be tighter to the similar extent and these two effects very likely cancel out.A more reasonable explanation might be that the entropy effect(C2H5O-or CH3O-as incoming anion)prevents the formation of a strong Zn-O-Zn core so that one Zn ion tends to bind the phosphate and the other one assists the nucleophilic attack of the hydroxyl in the substrate during the binding situation.Namely,two Zn ions act relatively independently and this flexibility increases the catalytic activity significantly.

    3 Conclusions

    Based on our DFT calculations,the details of the coordinations of Zn ions,the protonation and deprotonation processes, hydrogen-bonds between ligands and substrate,and collaboration between ligands,were revealed for the mechanism of the phosphodiester cleavage catalyzed by the dizinc complex.The results indicate a general base catalysis mechanism,which is consistent to the corresponding kinetics in the experiment[40].Upon binding,the substrate bridges two Zn ions by forming two coordination bonds between two terminal phosphate oxygens and two zinc ions.The hydroxyl on the side chain is flexible to coordinate to the Zn ion and can be easily deprotonated by the Znbound hydroxide.A finding on the delicacy of the catalyst is that two amino protons are close to perfectly bind a water molecule, which is able to position the substrate in a good orientation not onlyforthe nucleophilic attack(to formthe five-coordinated phosphorus intermediate)but also for the collapse of the intermedi-ate to the products.The flexibility of Zn ion′s coordination(5 or 6)assists the formation and breaking of P—O bonds and significantly stabilizes the corresponding transition states.The Znbound water stabilizes the oxyanion in the nucleophilic attack by forming a strong hydrogen-bond while the ligand-bond water lowers the energy for the breaking the P—O bond between the phosphorus and the phenolate.

    The overall activation free energy,during the binding situation,is only about 17.0 kJ·mol-1,which is too low to be the ratedetermining step comparable to the experiments.Based on these results,we conclude that the slowest step in the complete catalytic cycle very likely is the releasing of one product,p-nitrophenolate because it is quite difficult to break the strong coordination bond between Zn and the phenolate and related hydrogenbonds simultaneously.

    Supporting Information Available: Cartesian coordinates,electronic energies,zero-point energies,enthalpies,free energies,and solvation free energies for all species included in Figs.(1,2)and complete Ref.[41]have been included.This information is available free of charge via the internet at http:// www.whxb.pku.edu.cn.

    1 Weston,J.Chem.Rev.,2005,105:2151

    2 Jedrzejas,M.J.;Setlow,P.Chem.Rev.,2001,101:607

    3 Cowan,J.A.Chem.Rev.,1998,98:1067

    4 Wilcox,D.E.Chem.Rev.,1996,96:2435

    5 Strater,N.;Lipscomb,W.N.;Klabunde,T.;Krebs,B.Angew. Chem.Int.Edit.,1996,35:2024

    6 Lipscomb,W.N.;Strater,N.Chem.Rev.,1996,96:2375

    7 Schroeder,G.K.;Lad,C.;Wyman,P.;Williams,N.H.; Wolfenden,R.Proc.Natl.Acad.Sci.U.S.A.,2006,103:4052

    8 Williams,N.H.;Wyman,P.Chem.Commun.,2001:1268

    9 Romier,C.;Dominguez,R.;Lahm,A.;Dahl,O.;Suck,D.Proteins, 1998,32:414

    10 Volbeda,A.;Lahm,A.;Sakiyama,F.;Suck,D.EMBO J.,1991, 10:1607

    11 Lahm,A.;Volbeda,A.;Suck,D.J.Mol.Biol.,1990,215:207

    12 Hansen,S.;Hansen,L.K.;Hough,E.J.Mol.Biol.,1993,231:870

    13 Hansen,S.;Kristian,L.;Hough,H.;Hough,E.J.Mol.Biol.,1992, 225:543

    14 Hough,E.;Hansen,L.K.;Birknes,B.;Jynge,K.;Hansen,S.; Hordvik,A.;Little,C.;Dodson,E.;Derewenda,Z.Nature,1989, 338:357

    15 Holtz,K.M.;Kantrowitz,E.R.FEBS Lett.,1999,462:7

    16 Kim,E.E.;Wyckoff,H.W.J.Mol.Biol.,1991,218:449

    17 Fritsky,I.O.;Ott,R.;Pritzkow,H.;Kramer,R.Inorg.Chim.Acta, 2003,346:111

    18 Bonora,G.M.;Drioli,S.;Felluga,F.;Mancin,F.;Rossi,P.; Scrimin,P.;Tecilla,P.Tetrahedron Lett.,2003,44:535

    19 Gajda,T.;Jancso,A.;Mikkola,S.;Lonnberg,H.;Sirges,H. J.Chem.Soc.Dalton Trans.,2002:1757

    20 Albedyhl,S.;Schnieders,D.;Jancso,A.;Gajda,T.;Krebs,B.Eur. J.Inorg.Chem.,2002:1400

    21 Fritsky,I.O.;Ott,R.;Pritzkow,H.;Kramer,R.Chem.-Eur.J., 2001,7:1221

    22 Albedyhl,S.;Averbuch-Pouchot,M.T.;Belle,C.;Krebs,B.; Pierre,J.L.;Saint-Aman,E.;Torelli,S.Eur.J.Inorg.Chem., 2001:1457

    23 Rossi,P.;Felluga,F.;Tecilla,P.;Formaggio,F.;Crisma,M.; Toniolo,C.;Scrimin,P.Biopolymers,2000,55:496

    24 Gajda,T.;Kramer,R.;Jancso,A.Eur.J.Inorg.Chem.,2000:1635

    25 Williams,N.H.;Takasaki,B.;Wall,M.;Chin,J.Acc.Chem.Res., 1999,32:485

    26 Rossi,P.;Felluga,F.;Tecilla,P.;Formaggio,F.;Crisma,M.; Toniolo,C.;Scrimin,P.J.Am.Chem.Soc.,1999,121:6948

    27 Blasko,A.;Bruice,T.C.Acc.Chem.Res.,1999,32:475

    28 Williams,N.H.;Cheung,W.;Chin,J.J.Am.Chem.Soc.,1998, 120:8079

    29 Yashiro,M.;Ishikubo,A.;Komiyama,M.Chem.Commun.,1997: 83

    30 Liu,S.H.;Hamilton,A.D.Tetrahedron Lett.,1997,38:1107

    31 Liu,S.H.;Hamilton,A.D.Bioorg.Med.Chem.Lett.,1997,7: 1779

    32 Young,M.J.;Wahnon,D.;Hynes,R.C.;Chin,J.J.Am.Chem. Soc.,1995,117:9441

    33 Young,M.J.;Chin,J.J.Am.Chem.Soc.,1995,117:10577

    34 Yashiro,M.;Ishikubo,A.;Komiyama,M.J.Chem.Soc.Chem. Commun.,1995:1793

    35 Chapman,W.H.;Breslow,R.J.Am.Chem.Soc.,1995,117:5462

    36 Wall,M.;Hynes,R.C.;Chin,J.Angew.Chem.Int.Edit.,1993, 32:1633

    37 O′Donoghue,A.;Pyun,S.Y.;Yang,M.Y.;Morrow,J.R.; Richard,J.P.J.Am.Chem.Soc.,2006,128:1615

    38 Iranzo,O.;Kovalevsky,A.Y.;Morrow,J.R.;Richard,J.P.J.Am. Chem.Soc.,2003,125:1988

    39 Iranzo,O.;Elmer,T.;Richard,J.P.;Morrow,J.R.Inorg.Chem., 2003,42:7737

    40 Yang,M.Y.;Iranzo,O.;Richard,J.P.;Morrow,J.R.J.Am.Chem. Soc.,2005,127:1064

    41 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision C.02.Wallingford,CT:Gaussian Inc.,2004

    42 Tao,J.M.;Perdew,J.P.;Staroverov,V.N.;Scuseria,G.E.Phys. Rev.Lett.,2003,91:146401/1

    43 Staroverov,V.N.;Scuseria,G.E.;Tao,J.M.;Perdew,J.P. J.Chem.Phys.,2003,119:12129

    44 Csonka,G.I.;Ruzsinszky,A.;Tao,J.M.;Perdew,J.P.Int.J. Quantum Chem.,2005,101:506

    45 Perdew,J.P.;Ruzsinszky,A.;Tao,J.M.;Staroverov,V.N.; Scuseria,G.E.;Csonka,G.I.J.Chem.Phys.,2005,123:062201/1

    46 Furche,F.;Perdew,J.P.J.Chem.Phys.,2006,124:044103/1

    47 Dolg,M.;Wedig,U.;Stoll,H.;Preuss,H.J.Chem.Phys.,1987, 86:866

    48 Check,C.E.;Faust,T.O.;Bailey,J.M.;Wright,B.J.;Gilbert,T. M.;Sunderlin,L.S.J.Phys.Chem.A,2001,105:8111

    49 Hay,P.J.;Wadt,W.R.J.Chem.Phys.,1985,82:270

    50 Hay,P.J.;Wadt,W.R.J.Chem.Phys.,1985,82:299

    51 Hehre,W.J.;Ditchfie,R.;Pople,J.A.J.Chem.Phys.,1972,56: 2257

    52 Krishnan,R.;Binkley,J.S.;Seeger,R.;Pople,J.A.J.Chem.Phys., 1980,72:650

    53 Clark,T.;Chandrasekhar,J.;Spitznagel,G.W.;Schleyer,P.V. J.Comput.Chem.,1983,4:294

    54 Dunlap,B.I.J.Chem.Phys.,1983,78:3140

    55 Dunlap,B.I.J.Mol.Struct.-Theochem,2000,529:37

    56 Fan,Y.B.;Hall,M.B.Organometallics,2005,24:3827

    57 Gonzalez,C.;Schlegel,H.B.J.Chem.Phys.,1989,90:2154

    58 Gonzalez,C.;Schlegel,H.B.J.Phys.Chem.,1990,94:5523

    59 Barone,V.;Cossi,M.J.Phys.Chem.A,1998,102:1995

    60 Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem., 2003,24:669

    61 Fan,Y.B.;Gao,Y.Q.J.Am.Chem.Soc.,2007,129:905

    62 Feng,G.Q.;Natale,D.;Prabaharan,R.;Mareque-Rivas,J.C.; Williams,N.H.Angew.Chem.Int.Edit.,2006,45:7056

    63 Fan,H.;Slebodnick,C.;Hanson,B.E.Inorg.Chem.Commun., 2006,9:103

    64 Venegas-Yazigi,D.;Cubillos,M.;Le Fur,E.;Pivan,J.Y.;Garland, M.T.;Baggio,R.;Spodine,E.Cryst.Growth Des.,2005,5:1695

    65 Kinoshita,E.;Takahashi,M.;Takeda,H.;Shiro,M.;Koike,T. Dalton Trans.,2004:1189

    66 He,C.;Lippard,S.J.J.Am.Chem.Soc.,2000,122:184

    67 Lugmair,C.G.;Tilley,T.D.;Rheingold,A.L.Chem.Mater., 1997,9:339

    68 Becke,A.D.Phys.Rev.A,1988,38:3098

    69 Lee,C.T.;Yang,W.T.;Parr,R.G.Phys.Rev.B,1988,37:785

    70 Becke,A.D.J.Chem.Phys.,1993,98:1372

    71 Lonnberg,H.;Stromberg,R.;Williams,A.Org.Biomol.Chem., 2004,2:2165

    72 Mikkola,S.;Stenman,E.;Nurmi,K.;Yousefi-Salakdeh,E.; Stromberg,R.;Lonnberg,H.J.Chem.Soc.Perkin Trans.2,1999: 1619

    73 Komiyama,M.;Matsumoto,Y.;Takahashi,H.;Shiiba,T.;Tsuzuki, H.;Yajima,H.;Yashiro,M.;Sumaoka,J.J.Chem.Soc.Perkin Trans.2,1998:691

    74 Feng,G.Q.;Mareque-Rivas,J.C.;de Rosales,R.T.M.;Williams, N.H.J.Am.Chem.Soc.,2005,127:13470

    75 Feng,G.Q.;Mareque-Rivas,J.C.;Williams,N.H.Chem. Commun.,2006:1845

    76 Wang,Q.;Lonnberg,H.J.Am.Chem.Soc.,2006,128:10716

    77 Liu,C.T.;Neverov,A.A.;Brown,R.S.Inorg.Chem.,2007,46: 1778

    97超碰精品成人国产| 精品人妻熟女av久视频| 国产老妇伦熟女老妇高清| 最近的中文字幕免费完整| 久久人人爽人人片av| 啦啦啦啦在线视频资源| 久久99热6这里只有精品| 成年免费大片在线观看| 免费看av在线观看网站| 亚洲久久久久久中文字幕| 天堂√8在线中文| 九九久久精品国产亚洲av麻豆| 亚洲精品久久久久久婷婷小说 | 人体艺术视频欧美日本| 成人毛片60女人毛片免费| 不卡一级毛片| 国产真实伦视频高清在线观看| 国产一级毛片七仙女欲春2| 性插视频无遮挡在线免费观看| 国产黄色小视频在线观看| 久久精品影院6| 长腿黑丝高跟| 亚洲av.av天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产高清视频在线观看网站| 日日撸夜夜添| 久久99热这里只有精品18| 亚洲精品成人久久久久久| 国产精品一及| 国产成人福利小说| 国产黄色小视频在线观看| 久久久久九九精品影院| 简卡轻食公司| 成人二区视频| 国产亚洲av片在线观看秒播厂 | 国产精品无大码| 深夜精品福利| 国产精品精品国产色婷婷| 春色校园在线视频观看| 卡戴珊不雅视频在线播放| 亚洲aⅴ乱码一区二区在线播放| 最后的刺客免费高清国语| 嘟嘟电影网在线观看| 亚洲性久久影院| 国产精品久久久久久亚洲av鲁大| 久久久久久大精品| 免费看av在线观看网站| 国产精品.久久久| 五月伊人婷婷丁香| 97热精品久久久久久| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 丰满的人妻完整版| 99riav亚洲国产免费| 久久精品国产亚洲av天美| 国产白丝娇喘喷水9色精品| 久久久久久九九精品二区国产| 在线天堂最新版资源| 亚洲va在线va天堂va国产| 欧美成人精品欧美一级黄| 久久久国产成人免费| 日本一二三区视频观看| 久久精品夜色国产| 99久国产av精品国产电影| 日韩一区二区三区影片| 亚洲久久久久久中文字幕| 国产日韩欧美在线精品| 啦啦啦观看免费观看视频高清| 国产成人freesex在线| 91午夜精品亚洲一区二区三区| 在线观看一区二区三区| 综合色av麻豆| 日韩欧美精品免费久久| 久久久久性生活片| 日本一本二区三区精品| 97超碰精品成人国产| 寂寞人妻少妇视频99o| 91aial.com中文字幕在线观看| 久久久精品94久久精品| 国产真实乱freesex| 婷婷色av中文字幕| 极品教师在线视频| 日日摸夜夜添夜夜添av毛片| 亚洲一区二区三区色噜噜| 亚洲成人精品中文字幕电影| 热99在线观看视频| 丝袜美腿在线中文| 色综合站精品国产| 国产淫片久久久久久久久| 精品久久久久久久久久免费视频| 高清午夜精品一区二区三区 | 麻豆国产av国片精品| 亚洲不卡免费看| 亚洲国产精品合色在线| 亚洲成人中文字幕在线播放| 国产一区二区三区在线臀色熟女| 久久精品夜色国产| 日韩欧美国产在线观看| 免费av不卡在线播放| 日韩人妻高清精品专区| 国国产精品蜜臀av免费| 国产真实乱freesex| 成人一区二区视频在线观看| 插逼视频在线观看| 3wmmmm亚洲av在线观看| 免费观看a级毛片全部| 天堂√8在线中文| 美女内射精品一级片tv| 精品久久久久久成人av| 亚洲精华国产精华液的使用体验 | 日韩欧美精品免费久久| 久久精品国产鲁丝片午夜精品| 99久久精品一区二区三区| 一个人看视频在线观看www免费| 九九在线视频观看精品| avwww免费| 狠狠狠狠99中文字幕| 亚洲欧美精品综合久久99| 看免费成人av毛片| 久久国产乱子免费精品| 日韩欧美三级三区| 少妇猛男粗大的猛烈进出视频 | 国产大屁股一区二区在线视频| av在线亚洲专区| 高清午夜精品一区二区三区 | 99久久成人亚洲精品观看| 国产伦理片在线播放av一区 | 嫩草影院新地址| 熟女人妻精品中文字幕| 免费搜索国产男女视频| 干丝袜人妻中文字幕| 国内精品久久久久精免费| 精品久久久久久久久久免费视频| 免费av观看视频| 国产黄片美女视频| 国产av在哪里看| 婷婷六月久久综合丁香| 欧美日韩乱码在线| 中国美女看黄片| 欧美3d第一页| 看片在线看免费视频| 三级男女做爰猛烈吃奶摸视频| 村上凉子中文字幕在线| 男女边吃奶边做爰视频| 亚洲aⅴ乱码一区二区在线播放| 国产美女午夜福利| 亚洲久久久久久中文字幕| 亚洲无线观看免费| av在线蜜桃| 久久久久久伊人网av| 一区二区三区四区激情视频 | h日本视频在线播放| av免费观看日本| 亚洲最大成人av| 国产淫片久久久久久久久| 男女那种视频在线观看| 99久久九九国产精品国产免费| 中文字幕av成人在线电影| 黑人高潮一二区| 亚洲四区av| 亚洲图色成人| 老熟妇乱子伦视频在线观看| 国产三级在线视频| 99九九线精品视频在线观看视频| 国产91av在线免费观看| 天堂中文最新版在线下载 | 丝袜喷水一区| 亚洲精品自拍成人| 一级毛片我不卡| 亚洲在线自拍视频| 日本成人三级电影网站| 又黄又爽又刺激的免费视频.| kizo精华| 日韩人妻高清精品专区| 国产精品人妻久久久影院| 夜夜爽天天搞| 最近的中文字幕免费完整| 真实男女啪啪啪动态图| 在线a可以看的网站| 少妇被粗大猛烈的视频| 听说在线观看完整版免费高清| 非洲黑人性xxxx精品又粗又长| 成人欧美大片| 色哟哟哟哟哟哟| 色吧在线观看| 久久午夜福利片| 精品人妻一区二区三区麻豆| 黄色日韩在线| 精品久久久久久久久亚洲| 欧美激情在线99| 亚洲欧美日韩高清在线视频| 最新中文字幕久久久久| 简卡轻食公司| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 最近最新中文字幕大全电影3| 中文字幕av成人在线电影| 久久韩国三级中文字幕| 国产精品不卡视频一区二区| 五月玫瑰六月丁香| 亚洲美女搞黄在线观看| 亚洲欧美精品专区久久| 午夜爱爱视频在线播放| 国产精品久久久久久久电影| 69人妻影院| 亚洲在线观看片| 村上凉子中文字幕在线| 成人性生交大片免费视频hd| 人人妻人人澡人人爽人人夜夜 | 两个人的视频大全免费| 女人十人毛片免费观看3o分钟| 国产日韩欧美在线精品| 99久久精品热视频| 中文字幕精品亚洲无线码一区| 免费av不卡在线播放| 九九热线精品视视频播放| 国产91av在线免费观看| 91aial.com中文字幕在线观看| 国产精华一区二区三区| 久久鲁丝午夜福利片| 国产高清视频在线观看网站| 别揉我奶头 嗯啊视频| 男女啪啪激烈高潮av片| 一级毛片我不卡| 色5月婷婷丁香| 色吧在线观看| 青春草国产在线视频 | 卡戴珊不雅视频在线播放| 国产伦精品一区二区三区四那| 久久这里只有精品中国| 欧美成人精品欧美一级黄| 成人毛片60女人毛片免费| 久久6这里有精品| 国内精品久久久久精免费| 婷婷色综合大香蕉| 久久久久性生活片| 22中文网久久字幕| 午夜福利视频1000在线观看| 精品少妇黑人巨大在线播放 | 男人和女人高潮做爰伦理| 精品少妇黑人巨大在线播放 | 在线免费十八禁| 精品少妇黑人巨大在线播放 | 亚洲成人久久爱视频| 久久久久久久久久久免费av| 亚洲av一区综合| 国产色爽女视频免费观看| 精品人妻视频免费看| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 偷拍熟女少妇极品色| 日本一本二区三区精品| 亚洲乱码一区二区免费版| 18禁在线播放成人免费| 午夜激情欧美在线| 日韩大尺度精品在线看网址| 亚洲第一区二区三区不卡| 久久久久久久久久黄片| 高清毛片免费观看视频网站| 国产色爽女视频免费观看| 三级国产精品欧美在线观看| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 啦啦啦观看免费观看视频高清| 人妻夜夜爽99麻豆av| 亚洲国产欧洲综合997久久,| 春色校园在线视频观看| 中文在线观看免费www的网站| 女同久久另类99精品国产91| 久久中文看片网| 老司机影院成人| 99久久精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 变态另类丝袜制服| 少妇人妻精品综合一区二区 | 亚洲精品成人久久久久久| 麻豆国产av国片精品| 国产伦理片在线播放av一区 | 卡戴珊不雅视频在线播放| 99久国产av精品| 人人妻人人澡人人爽人人夜夜 | 美女脱内裤让男人舔精品视频 | 国产精品精品国产色婷婷| 99热这里只有是精品在线观看| 免费看光身美女| 五月玫瑰六月丁香| 麻豆av噜噜一区二区三区| 九草在线视频观看| 美女大奶头视频| 少妇裸体淫交视频免费看高清| 成人亚洲精品av一区二区| 亚洲精品乱码久久久久久按摩| 美女内射精品一级片tv| 婷婷亚洲欧美| 亚洲av熟女| 国产精品人妻久久久久久| 国产成人91sexporn| 成人二区视频| 深夜a级毛片| 国产黄色视频一区二区在线观看 | 美女黄网站色视频| 直男gayav资源| 国产真实伦视频高清在线观看| 国产片特级美女逼逼视频| 人人妻人人澡人人爽人人夜夜 | 亚洲成人中文字幕在线播放| 国产69精品久久久久777片| 亚洲最大成人中文| 国产一区二区在线av高清观看| av黄色大香蕉| 色噜噜av男人的天堂激情| 99热这里只有是精品在线观看| 12—13女人毛片做爰片一| 最后的刺客免费高清国语| 黄色一级大片看看| 国产成人福利小说| 青春草视频在线免费观看| 丰满的人妻完整版| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 久久久久网色| 久久精品91蜜桃| 嫩草影院入口| 国产精品乱码一区二三区的特点| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 欧美日本亚洲视频在线播放| 久久精品综合一区二区三区| 日韩中字成人| 男女视频在线观看网站免费| 国产在视频线在精品| 高清午夜精品一区二区三区 | 精品无人区乱码1区二区| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 别揉我奶头 嗯啊视频| 国产亚洲精品久久久久久毛片| 国产不卡一卡二| 18禁在线无遮挡免费观看视频| 亚洲天堂国产精品一区在线| 亚洲欧美精品自产自拍| 久久久精品94久久精品| 欧美成人精品欧美一级黄| 亚洲人成网站在线播放欧美日韩| 国产一区二区亚洲精品在线观看| 亚洲av电影不卡..在线观看| 国产成人精品久久久久久| 淫秽高清视频在线观看| 欧美3d第一页| 美女脱内裤让男人舔精品视频 | 青春草国产在线视频 | 色吧在线观看| 日本黄色片子视频| 精品不卡国产一区二区三区| 91久久精品国产一区二区成人| 欧美+日韩+精品| 黄色视频,在线免费观看| 99久久精品一区二区三区| 亚洲精品粉嫩美女一区| 久久这里有精品视频免费| 国产精品一区二区三区四区久久| 青春草视频在线免费观看| 天堂√8在线中文| 国产成人a区在线观看| 亚洲av男天堂| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人综合另类久久久 | 亚洲色图av天堂| 两个人视频免费观看高清| 内射极品少妇av片p| 欧美日韩乱码在线| 亚洲国产日韩欧美精品在线观看| 18禁在线播放成人免费| 久久精品国产亚洲av涩爱 | 亚洲成人av在线免费| 性插视频无遮挡在线免费观看| 国产精品乱码一区二三区的特点| 久久6这里有精品| 久久鲁丝午夜福利片| 日本爱情动作片www.在线观看| 国产免费男女视频| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看| 狠狠狠狠99中文字幕| 国产精品99久久久久久久久| 欧美在线一区亚洲| 日本成人三级电影网站| 日韩亚洲欧美综合| 99久久久亚洲精品蜜臀av| 欧美色视频一区免费| 两个人的视频大全免费| 亚洲人与动物交配视频| 日本与韩国留学比较| 免费看av在线观看网站| 最新中文字幕久久久久| 中文在线观看免费www的网站| 国产精品国产三级国产av玫瑰| 亚洲在线自拍视频| 色综合站精品国产| 熟妇人妻久久中文字幕3abv| 免费人成视频x8x8入口观看| 欧美日本视频| www.色视频.com| 美女高潮的动态| 插逼视频在线观看| 一级毛片久久久久久久久女| 国产高清三级在线| 97人妻精品一区二区三区麻豆| 日韩亚洲欧美综合| 免费看光身美女| 亚洲熟妇中文字幕五十中出| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 欧美成人a在线观看| 国产亚洲精品av在线| 久久久久久久久久黄片| 免费看av在线观看网站| 国产高潮美女av| 精品免费久久久久久久清纯| 欧美一级a爱片免费观看看| 欧美bdsm另类| 少妇熟女欧美另类| 小说图片视频综合网站| 天美传媒精品一区二区| 中文字幕久久专区| avwww免费| 国产老妇伦熟女老妇高清| 婷婷精品国产亚洲av| 一区二区三区免费毛片| 亚洲电影在线观看av| 国产亚洲av嫩草精品影院| 国产午夜福利久久久久久| 亚洲国产精品成人久久小说 | 中文字幕制服av| 少妇被粗大猛烈的视频| 真实男女啪啪啪动态图| 国产一区二区激情短视频| 午夜免费男女啪啪视频观看| 校园人妻丝袜中文字幕| 国产精品一区二区在线观看99 | 亚州av有码| 国产日韩欧美在线精品| 女人十人毛片免费观看3o分钟| 精品国内亚洲2022精品成人| 欧美性猛交╳xxx乱大交人| 不卡视频在线观看欧美| 在线观看午夜福利视频| 1000部很黄的大片| 成人鲁丝片一二三区免费| 国产不卡一卡二| 国产亚洲av片在线观看秒播厂 | 久久久久久九九精品二区国产| 麻豆精品久久久久久蜜桃| 精品久久久久久久久亚洲| 级片在线观看| 色综合站精品国产| 少妇熟女aⅴ在线视频| 亚洲高清免费不卡视频| 悠悠久久av| 欧美高清性xxxxhd video| 国内揄拍国产精品人妻在线| 日韩视频在线欧美| 欧美一区二区亚洲| 精品不卡国产一区二区三区| 国产精品美女特级片免费视频播放器| 日韩一本色道免费dvd| 久久精品国产99精品国产亚洲性色| 男女下面进入的视频免费午夜| 级片在线观看| 亚洲无线在线观看| 99久久九九国产精品国产免费| 午夜福利视频1000在线观看| 欧美又色又爽又黄视频| 高清毛片免费看| 国产精品一区二区三区四区久久| 国产午夜精品论理片| 嫩草影院新地址| 变态另类成人亚洲欧美熟女| 一进一出抽搐动态| 精华霜和精华液先用哪个| 国产又黄又爽又无遮挡在线| 久久精品综合一区二区三区| 国产探花极品一区二区| 99riav亚洲国产免费| 国内少妇人妻偷人精品xxx网站| 美女高潮的动态| www.色视频.com| 国产激情偷乱视频一区二区| 免费观看人在逋| 国产老妇女一区| 最近2019中文字幕mv第一页| 国产精品福利在线免费观看| 在线播放国产精品三级| 一级毛片电影观看 | 人人妻人人澡人人爽人人夜夜 | 色综合站精品国产| 免费无遮挡裸体视频| 亚洲最大成人手机在线| 人人妻人人澡欧美一区二区| 校园春色视频在线观看| 少妇的逼好多水| 亚洲欧美日韩东京热| 亚洲欧美清纯卡通| 欧美+亚洲+日韩+国产| 女的被弄到高潮叫床怎么办| 爱豆传媒免费全集在线观看| 国产精品野战在线观看| 久久综合国产亚洲精品| 亚洲中文字幕日韩| 麻豆av噜噜一区二区三区| 丰满的人妻完整版| 免费av观看视频| 免费搜索国产男女视频| 久久久久久九九精品二区国产| 欧美成人免费av一区二区三区| 在线免费观看的www视频| 97超碰精品成人国产| 国产精品久久视频播放| 91午夜精品亚洲一区二区三区| 久久99热6这里只有精品| 日本五十路高清| 可以在线观看的亚洲视频| 22中文网久久字幕| 成年免费大片在线观看| eeuss影院久久| 日韩大尺度精品在线看网址| 国产高清有码在线观看视频| 国产成人精品久久久久久| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出| 久久久久国产网址| 亚洲国产精品成人久久小说 | 国内精品久久久久精免费| 日本免费a在线| 亚洲成人av在线免费| 免费在线观看成人毛片| 免费av毛片视频| 欧美高清成人免费视频www| 性插视频无遮挡在线免费观看| 大型黄色视频在线免费观看| 国产久久久一区二区三区| 男女边吃奶边做爰视频| 波野结衣二区三区在线| 久久精品国产亚洲网站| 国产精品久久久久久精品电影| 日韩在线高清观看一区二区三区| 日日摸夜夜添夜夜爱| ponron亚洲| 亚洲不卡免费看| 日韩强制内射视频| 高清午夜精品一区二区三区 | 久久中文看片网| 欧美日本视频| 亚洲最大成人手机在线| 欧美日韩精品成人综合77777| 啦啦啦韩国在线观看视频| 两个人视频免费观看高清| 欧美精品一区二区大全| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品94久久精品| 在线观看免费视频日本深夜| 美女高潮的动态| 国产男人的电影天堂91| 99久久九九国产精品国产免费| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久精品电影| 亚洲无线观看免费| 日本欧美国产在线视频| 久久精品国产自在天天线| 久久这里有精品视频免费| 国产精品久久视频播放| 中文欧美无线码| 亚洲三级黄色毛片| 性插视频无遮挡在线免费观看| 神马国产精品三级电影在线观看| 尤物成人国产欧美一区二区三区| 免费大片18禁| av在线蜜桃| 国产精品久久电影中文字幕| or卡值多少钱| 国产极品精品免费视频能看的| 精品日产1卡2卡| 麻豆国产97在线/欧美| 久久久久久久久久久免费av| 秋霞在线观看毛片| 在线免费观看的www视频| 看免费成人av毛片| 非洲黑人性xxxx精品又粗又长| 在线观看一区二区三区| 一级毛片aaaaaa免费看小| 久久韩国三级中文字幕| 边亲边吃奶的免费视频| 久久精品国产亚洲av天美| 男女边吃奶边做爰视频| 人体艺术视频欧美日本| 久久草成人影院| 男女边吃奶边做爰视频| 中文亚洲av片在线观看爽| 晚上一个人看的免费电影| 91久久精品国产一区二区三区| 国产老妇女一区| 日本黄色片子视频| 波多野结衣高清作品| 人人妻人人澡人人爽人人夜夜 | av在线播放精品| 22中文网久久字幕| 国产 一区 欧美 日韩| 舔av片在线| 国内精品美女久久久久久| 国产久久久一区二区三区| 一级毛片久久久久久久久女| 久久久久久九九精品二区国产| 一本精品99久久精品77| 一区二区三区四区激情视频 | 国内久久婷婷六月综合欲色啪|