• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    生物質(zhì)炭和富二氧化碳合成氣制取二甲醚

    2011-11-30 10:51:00顏世志葉同奇李全新
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:二甲醚物理化學(xué)合成氣

    徐 勇 顏世志 葉同奇 張 釗 李全新

    (中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,生物質(zhì)潔凈能源實(shí)驗(yàn)室,合肥230026)

    生物質(zhì)炭和富二氧化碳合成氣制取二甲醚

    徐 勇 顏世志 葉同奇 張 釗 李全新*

    (中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,生物質(zhì)潔凈能源實(shí)驗(yàn)室,合肥230026)

    研究了一種利用富二氧化碳合成氣和生物質(zhì)炭聯(lián)合制取二甲醚的方法,其過程包括兩個(gè)步驟:富二氧化碳合成氣調(diào)整以及調(diào)整后合成氣合成二甲醚.在合成氣調(diào)整過程中,利用生物質(zhì)炭為原料在Ni/Al2O3催化劑上將富二氧化碳合成氣調(diào)整為富一氧化碳合成氣.經(jīng)過800°C合成氣調(diào)整后,合成氣中CO2含量大幅降低而CO含量大幅提高,CO2/CO的摩爾比從原始合成氣的6.33降至0.21.然后,分別用調(diào)整前后的合成氣合成二甲醚,結(jié)果表明,經(jīng)過調(diào)整后,C轉(zhuǎn)化率得到很大的提高,二甲醚產(chǎn)率比調(diào)整前高4倍.本工作提供了一種可利用富二氧化碳生物質(zhì)合成氣制取燃料的途徑,并且提供了一種新的利用生物質(zhì)炭的方法.

    生物質(zhì)炭;二甲醚;生物質(zhì)合成氣調(diào)整;Ni/Al2O3催化劑;Cu-ZnO-Al2O3/HZSM-5催化劑

    1 Introduction

    Increasing concerns about the increasing energy demand, global climate changes,depletion of fossil fuel resources,and rise of oil price have pushed the renewable energy such as biomass energy to the hotspot topics in recent years.1,2Biomass is a rich,environmentally friendly and renewable resource which is globally available,and can be used as an alternative feedstock for energy source or chemicals.3,4As an only renewable carbon resource,biomass can be converted from solid phase into a wide range of liquid fuels(called as bio-fuels)or chemi-cals based on the thermochemical and biochemical processes, including bio-oil,bio-methanol,bio-ethanol,bio-diesel,liquid hydrocarbons(e.g.,gasoline,diesel,waxes),mixed alcohols, DME,acetic acid,and formaldehyde.5,6

    To produce biofuels or chemicals from bio-syngas,the main procedures generally include the production of bio-syngas,syngas conditioning,and fuel synthesis.Bio-syngas can be produced from biomass gasification and bio-oil reforming.7,8However,these bio-syngases,generally,are rich in CO2.9In principle,the CO2-rich bio-syngas is possible for bio-fuels through CO2hydrogenation,but the fuel yield is much lower than that from CO-rich syngas.To obtain a higher fuel yield,the CO2-rich bio-syngas should be adjusted to meet the conventional fuel synthesis processes by decreasing CO2content and increasing CO content.

    DME is a useful chemical intermediate for the production of many important chemicals such as dimethyl sulfate,methyl acetate,and light olefins.10As the oil resources are expected to deplete in near future,alternative fuels,such as biomass-derived DME and methanol,have been getting greater attention to minimize the emissions of global warming gases and hazardous components such as SOx,NOx,and particulate matter,and the application of DME as an alternative diesel fuel has been proposed recently.11In our previous work,attention has been paid to producing hydrogen,bio-syngas,and bio-fuels such as methanol and Fischer-Tropsch synthesis fuels from bio-oil.8,12-15Present work aims to convert the CO2-rich bio-syngas into CO-rich bio-syngas using biomass char and to efficiently produce DME from the bio-syngas.

    2 Experimental

    2.1 Catalyst preparation and characterization

    Biomass chars were produced by fast pyrolysis of biomass in a fixed-bed reactor at a final pyrolysis temperature of 500°C. Some properties are listed in Table 1.The activated carbon(analytical reagent)was purchased from Sinopharm Chemical Reagent Co.,Ltd.in China.HZSM-5(with a SiO2/Al2O3molar ratio of 25)was provided by Nankai University.The Cu-ZnOAl2O3catalyst was purchased from Jingjiang Company in China.

    Table 1 Main characteristic of the used husk char and the sawdust char

    The NiO-Al2O3catalyst for the bio-syngas conditioning was prepared by the coprecipitation of the metallic nitrate mixture (Ni and Al)with K2CO3.The prepared process details were described elsewhere.16Cu-ZnO-Al2O3/HZSM-5 was prepared by physically mixing the powders(under150 meshes)of HZSM-5 and Cu-ZnO-Al2O3catalyst with a mass ratio of 1:2.17The contents of metallic oxide in the resulting samples were measured by inductively coupled plasma and atomic emission spectroscopy(ICP/AES,Atom scan Advantage of Thermo Jarrell Ash Corporation,USA).The Brunauer-Emmett-Teller (BET)surface area,pore volume,and average pore size were evaluated from the N2adsorption-desorption isotherms obtained at 77 K using a COULTER SA 3100 analyzer.X-ray diffraction(XRD)was performed to determine the bulk crystalline phases of catalyst.It was measured on an X?pert Pro Philips diffractrometer with a Cu Kαradiation(λ=0.15418 nm).

    2.2 Reaction systems

    The conditioning of CO2-rich bio-syngas was evaluated in a fixed-bed continuous-flowing quartz tube reactor at atmospheric pressure.The mixture of NiO-Al2O3catalyst and biomass char with a certain mass ratio was installed in the center of the reactor.Before reaction,the catalysts were reduced by hydrogen at 500°C for 2 h.The gases were fed into the reactor and controlled by a mass flow controller,and the effluent gases from the reactors were measured by flow display.Temperature was measured by the thermocouples inserted into the catalyst bed.DME synthesis was carried out in a fixed-bed continuousflowing stainless steel reactor.Generally,1.0 g catalyst diluted with a 2.0 mL Pyrex beads,was used for each test.Before reaction,the catalysts were reduced by hydrogen(10%(φ)in Ar)at 260°C for 6 h.Then,bio-syngas was conducted to the reactor for DME synthesis under a setup synthesis condition.H2,N2, CO,and CO2were detected by a gas chromatograph(Model: SP6890,column:TDX-01)with a thermal conductivity detector.DME,CH3OH,and hydrocarbons were detected by another gas chromatograph(Model:SP6890,column:PorapakQ-S, USA)with a flame ionization detector.Ultra-high-purity argon (99.999%)was used as the carrier gas.The performance of the bio-syngas conditioning and DME synthesis was evaluated by the following Eqs.(1-5):

    where X represents DME,CH3OH,hydrocarbons,CO,CO2;m represents the carbon numbers of X;C,Y,and S represent conversion,yield,and selectivity,respectively.

    3 Results and discussion

    3.1 Catalyst characterizations

    The nickel loading in the resulting NiO-Al2O3sample was about 18.6%(w)NiO,and CuO and ZnO loading in Cu-ZnOAl2O3sample were 63.1% and 27.3% respectively from ICP-AES results.The BET surface area,pore volume,and average pore size of the catalysts are listed in Table 2.

    XRD patterns of different catalysts are shown in Fig.1.The diffraction peaks of NiO,Al2O3,and NiAl2O4were observed from the fresh catalyst.Three characteristic peaks at 2θ of 44.4°,51.9°,and 76.4°were identified from the used catalyst, corresponding to the diffractions of Ni.This indicates that NiO is reduced to the metallic Ni by H2.XRD patterns of the Cu-ZnOAl2O3catalyst are shown in Fig.1b.Phase due to CuO and its reflections at 2θ of 35.5°,38.6°,and 48.8°were observed in the fresh Cu-ZnO-Al2O3catalyst,the characteristic peaks of ZnO and Al2O3were also identified.After reduction,the characteristic peaks of Cu were identified at 2θ of 50.6°and 74.1°.In ad-dition,the typical XRD patterns from the fresh HZSM-5 and the reduced HZSM-5 suggested that the HZSM-5 structure was retained after reaction.

    Table 2 BET surface area,pore volume,and average pore size of the catalysts

    3.2 Effect of the mass ratio of catalyst to carbon (RC/C)on the CO2-rich bio-syngas conditioning

    To further understand the effects of RC/Con the conditioning of CO2-rich bio-syngas over Ni/Al2O3,the present conditioning was carried out at various RC/Cvalues from 0 to 2.0,the reaction temperature and flow rate were kept constant at 700°C and 1200 L·kg-1·h-1,respectively.As shown in Fig.2,a further increase in RC/Cfrom 0 to 1.0 resulted in a significant increase in the CO2conversion and CO yield,but tended towards saturation when RC/Cwas over 1.0.The CO2conversion increased from about 25.4%to 58.4%when RC/Cincreased from 0 to 1.0. In particular,a slight increase in CO2conversion and CO yield was observed when RC/Cincreased from 1.0 to 2.0.The above results suggest that the performance of Ni/Al2O3catalyst for the CO2-rich bio-syngas conditioning can remarkably enhanced.The observed effects of Ni/Al2O3catalyst should be attributed to the dissociation of CO2on the surface of Ni.Ni/ Al2O3catalyst was widely used for the reforming of CH4with CO2to syngas.18-20Previous work21,22has proved the dissociation of CO2on surface of Ni(CO2(a)→CO(a)+O(a)).

    3.3 Effect of temperature on the CO2-rich biosyngas conditioning

    To investigate the effect of temperature on catalytic perfor-mance,the conditioning of CO2-rich syngas was carried out over Ni/Al2O3at various temperature(400-800°C),with a flow rate of 1200 L·kg-1·h-1and RC/Cof 1.Fig.3 presents the effects of temperature on the performance of the bio-syngas conditioning.It was observed that,by increasing the reaction temperature from 500 to 800°C at a constant RC/Cof 1.0,there was a sharp increase in the CO2conversion and CO yield.The CO2conversion remarkably increased from 36.2%at 500°C to 71.6%at 800°C,and CO yield increased from 23%to 90%. The main composition of the crude bio-syngas changed from V(H2)/V(CO)/V(CO2)=68.6/4.1/26.0 in the crude bio-syngas to V(H2)/V(CO)/V(CO2)=59.3/30.9/6.8 after the conditioning at 800 °C.In particular,the concentration of CH4decreases with increasing the temperature,and can not be detected over 700°C. The above results showed that the CO2conversion and CO yield were significantly enhanced by increasing temperature. The reasons are summarized as follows:firstly,both the Boudouard reaction(CO2+C=2CO)and reverse water gas shift(RWGS)reaction(CO2+H2=CO+H2O)involved in the bio-syngas conditioning are endothermic in thermodynamics.A recent work on the kinetics of char gasification with CO2claims that the increasing temperature shows a positive influence on the apparent activation energy,accompanied with an increase of gasification rate.23Accordingly,a higher temperature will accelerate the rates of Boudouard reaction and RWGS reaction,leading to an increase of converting CO2into CO in the bio-syngas conditioning.Secondly,high temperature may promote the dissociation of CO2on Ni,leading a further conversion of CO2to CO.

    3.4 Effect of flow rate on the CO2-rich bio-syngas conditioning

    To further understand the effect of flow rate on catalytic performance of NiO-Al2O3catalyst,the conditioning of CO2-rich bio-syngas was carried out at various flow rate(300-1500 L· kg-1·h-1),at 700°C and RC/Cof 1.0.As shown in Fig.4,at a flow rate of 300 L·kg-1·h-1),CO2conversion and CO yield were about 76.7%and 107%.With increasing the flow rate to 1500 L·kg-1·h-1,CO2conversion and CO yield decreased to 61%and 61%,respectively.The results suggest that an increase in flow rate leads to a decrease in CO2conversion and CO yield in the bio-syngas conditioning,which can be attributed to the residence time of biomass char and the CO2-rich bio-syngas in the catalyst bed is shortened by increasing flow rate.

    3.5 DME synthesis

    Fig.4 Effect of flow rate on CO2conversion(a),CO yield(b),gas composition(c),and n(CO2)/n(CO)(d)in the CO2-rich bio-syngas conditioningT=700°C,RC/C=1.0

    For a comparison,the crude CO2-rich bio-syngas(V(H2)/ V(CO)/V(CO2)=68.6/4.1/26)and the conditioned bio-syngas V(H2)/V(CO)/V(CO2)=59.3/30.9/6.8)were tested for DME synthesis.The gas composition of the conditioned syngas was close to coal derived syngas,previous works have reported DME synthesis from coal syngas.24,25For DME synthesis from the crude CO2-rich bio-syngas,as shown in Table 3,CO2conversion increased from 5%to 15.1%with the increasing temperature from 240 to 320°C.An increase in the DME selectivity was observed when temperature increased from 240 to 280°C, but decreased with a further increasing temperature over 280°C. Table 4 presents the performance of the DME synthesis from the conditioned bio-syngas,CO conversion increased from 72.5%to 84.8%as temperature increased from 240 to 280°C, but a decreasing CO conversion was observed when temperature was higher than 280°C.The maximum conversion and DME yield were 84.8%and 65.5%respectively at 280°C.The above results indicated that the performance of the DME synthesis was significantly enhanced via the bio-syngas conditioning.

    A generic accepted mechanism of DME synthesis from syngas over Cu-ZnO-Al2O3/HZSM-5 includes two sequential steps:methanol synthesis from syngas and the dehydration of methanol to DME,and the methanol synthesis reaction is the rate-limiting step in the direct DME synthesis from syngas.26Consequently,the different results of DME synthesis should be attributed to the different mechanism of methanol formation through CO hydrogenation and CO2hydrogenation.For CO hydrogenation,the mechanism of methanol formation over the Cu-based catalyst is“the formyl intermediate formation mechanism”,and the Cu crystallites in the catalyst have been identi-fied as the active catalytic sites.27Alternatively,the formation and hydrogenation of the formate intermediate are thought to be the key steps to produce methanol from CO2hydrogenation.28-30Another reason is water produced via the RWGS reaction in CO2hydrogenation may block the active sites on the catalyst surface.

    Table 3 Effect of temperature on DME synthesis from the crude CO2-rich bio-syngas over the Cu-ZnO-Al2O3/HZSM-5 catalyst

    Table 4 Effect of temperature on DME synthesis from the conditioned bio-syngas over the Cu-ZnO-Al2O3/HZSM-5 catalyst

    Fig.5 (a)Catalysts stability during the bio-syngas conditioning,(b)catalysts stability during the DME synthesis from the conditioned syngas

    3.6 Stability of catalysts

    The stability of the Ni/Al2O3catalyst in bio-syngas conditioning process was tested by measuring the CO2conversion and CO yield as a function of the time on stream.As shown in

    Fig.5a,no obvious changes are observed for about 50 h under the reaction conditions(T=800°C,RC/C=1.0,flow rate=1200 L· kg-1·h-1)in the conditioning process.It clearly shows that both the CO2conversion and CO yield remained essentially constant for the whole test period,which indicates that no noticeable deactivation of the catalyst is occurring.On the other hand,no noticeable deactivation of the Cu-ZnO-Al2O3/HZSM-5 catalyst was observed in DME synthesis process(Fig.5b).

    4 Conclusions

    This work reported a novel approach of DME synthesis from the CO2-rich bio-syngas,including two steps:the CO2-rich bio-syngas conditioning using biomass char and DME synthesis from the conditioned bio-syngas.For the bio-syngas conditioning,the CO2conversion and CO yield reached a level as high as 71.1%and 89%at 800°C,respectively,CO2/CO molar ratio significantly dropped from 6.33 to 0.21.For the DME synthesis,the maximal CO conversion and DME yield were 84.8%and 65.5%,which were much higher than those from the CO2-rich bio-syngas.Present work may provide a useful method for DME synthesis from the CO2-rich bio-syngas,and a novel utilization of biomass char.

    (1) Chen,L.;Xing,L.;Han,L.Renew.Sust.Energ.Rev.2009,13, 2689.

    (2) Navarro,R.M.;Pena,M.A.;Fierro,J.L.G.Chem.Rev.2007, 107,3952.

    (3) Cortright,R.D.;Davda,R.R.;Dumesic,J.A.Nature 2002, 418,964.

    (4) Chornet,E.;Czernik,S.Nature 2002,418,928.

    (5) Lin,Y.;Tanaka,S.Appl.Microbiol.Biotechnol.2006,69,627.

    (6) Metzger,J.O.Angew.Chem.,Int.Edit.2006,45,696.

    (7)Wang,Z.X.;Pan,Y.;Dong,T.;Zhu,X.F.;Kan,T.;Yuan,L.X.; Torimoto,Y.;Sadakata,M.;Li,Q.X.Appl.Catal.A 2007,320, 24.

    (8)Wang,Z.X.;Dong,T.;Yuan,L.X.;Kan,T.;Zhu,X.F.; Torimoto,Y.;Sadakata,M.;Li,Q.X.Energy Fuels 2007,21, 2421.

    (9) Ruggiero,M.;Manfrida,G.Renew.Energ.1999,16,1106.

    (10) Khandan,N.;Kazemeini,M.;Aghaziarati,M.Catal.Lett.2009, 129,111.

    (11) Bae,J.W.;Kang,S.H.;Lee,Y.J.;Jun,K.W.Appl.Catal.B 2009,90,426.

    (12) Xu,Y.;Ye,T.Q.;Qiu,S.B.;Ning,S.;Gong,F.Y.;Liu,Y.;Li, Q.X.Bioresour.Technol.2011,102,6239.

    (13)Yuan,L.X.;Chen,Y.Q.;Song,C.F.;Ye,T.Q.;Guo,Q.X.; Zhu,Q.S.;Torimoto,Y.;Li,Q.X.Chem.Commun.2008,5215.

    (14) Kan,T.;Xiong,J.X.;Li,X.L.;Ye,T.Q.;Yuan,L.X.; Torimoto,Y.;Yamamoto,M.;Li,Q.X.Int.J.Hydrog.Energy 2010,35,518.

    (15) Gong,F.Y.;Ye,T.Q.;Yuan,L.X.;Kan,T.;Torimoto,Y.; Yamamoto,M.;Li,Q.X.Green Chem.2009,11,2001.

    (16) Villacampa,J.I.;Royo,C.;Romeo,E.;Montoya,J.A.;Angel, P.D.;Monzón,A.Appl.Catal.A 2003,252,363.

    (17)Mao,D.S.;Yang,W.M.;Xia,J.C.;Zhang,B.;Song,Q.Y; Chen,Q.L.J.Catal.2005,230,140.

    (18) Li,C.Y.;Yu,C.C.;Shen,S.K.Acta.Phys.-Chim.Sin.1999, 15,1098.[李春義,余長春,沈師孔.物理化學(xué)學(xué)報(bào),1999, 15,1098.]

    (19)Jin,R.C.;Chen,Y.X.;Cui,W.;Li,W.Z.;Yu,C.Y.;Jiang,Y. Acta.Phys.-Chim.Sin.1999,15,313.[金榮超,陳燕馨,崔 巍,李文釗,于春英,江 義.物理化學(xué)學(xué)報(bào),1999,15, 313.]

    (20) Li,C.Y.;Yu,C.C.;Shen,S.K.Acta.Phys.-Chim.Sin.2000, 16,97.[李春義,余長春,沈師孔.物理化學(xué)學(xué)報(bào),2000,16, 97.]

    (21) Cao,D.B.;Li,Y.W.;Wang,J.;Jiao,H.Surf.Sci.2009,603, 2991.

    (22) Osaki,T.;Mori,T.React.Kinet.Catal.Lett.2005,87,149.

    (23) Roberts,D.G.;Hodge,E.M.;Harris,D.J.;Stubington,J.F. Energy Fuels 2010,24,5300.

    (24)Yoo,Y.D.;Lee,S.J.;Yun,Y.Korean J.Chem.Eng.2007,24, 350.

    (25) Larson,E.D.;Yang,H.Energy Sustain.Dev.2004,8,115.

    (26) Matsuhashi,D.S.H.;Arata,K.React.Kinet.Catal.Lett.2004, 81,183.

    (27)Gunter,M.M.;Ressler,T.;Bems,B.;Buscher,C.;Genger,T.; Hinrichsen,O.;Muhler,M.;Schlogl,R.Catal.Lett.2001,71, 37.

    (28) Edwards,J.F.;Schrader,G.L.J.Phys.Chem.1984,88,5620.

    (29) Borodko,Y.;Somorjai,G.A.Appl.Catal.A 1999,186,355.

    (30)Yang,C.;Ma,Z.;Zhao,N.;Wei,W.;Hu,T.;Sun,Y.Catal. Today 2006,115,222.

    April 25,2011;Revised:May 31,2011;Published on Web:June 13,2011.

    Dimethyl Ether Production from Biomass Char and CO2-Rich Bio-Syngas

    XU Yong YAN Shi-Zhi YE Tong-Qi ZHANG Zhao LI Quan-Xin*
    (Department of Chemical Physics,Anhui Key Laboratory of Biomass Clean Energy,University of Science and Technology of China,Hefei 230026,P.R.China)

    We report on a novel approach toward dimethyl ether(DME)synthesis using crude CO2-rich bio-syngas and biomass char.The crude bio-syngas was derived from bio-oil reforming and was initially conditioned by catalytic conversion into CO-rich bio-syngas using biomass char over the Ni/Al2O3catalyst. The molar ratio of CO2to CO significantly decreased from 6.33 in the CO2-rich bio-syngas to 0.21 after bio-syngas conditioning at 800°C.The yield of dimethyl ether from the conditioned bio-syngas was about four times higher than that from the CO2-rich bio-syngas over the Cu-ZnO-Al2O3/HZSM-5 catalyst.This work potentially provides a useful approach toward producing biofuels and chemicals from bio-syngas and a novel utilization of biomass char.

    Biomass char;Dimethyl ether;Bio-syngas conditioning;NiO-Al2O3catalyst; Cu-ZnO-Al2O3/HZSM-5 catalyst

    O643

    *Corresponding author.Email:liqx@ustc.edu.cn;Tel:+86-551-3601118.

    The project was supported by the National Natural Science Foundation of China(50772107),National Key Basic Research Program of China(973) (2007CB210206),and National High-Tech Research and Development Program of China(863)(2009AA05Z435).

    國家自然科學(xué)基金(50772107),國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2007CB210206)及國家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(863)(2009AA05Z435)資助

    猜你喜歡
    二甲醚物理化學(xué)合成氣
    BiZrOx/ZSM-5催化合成氣直接芳構(gòu)化的研究
    分子催化(2022年1期)2022-11-02 07:10:44
    摻氫對二甲醚層流燃燒特性的影響
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    合成氣余熱回收器泄漏原因分析及維修方案
    Chemical Concepts from Density Functional Theory
    醋酸甲酯與合成氣一步合成醋酸乙烯
    氣相法二甲醚生產(chǎn)腐蝕問題探討
    雙金屬改性的Ni/SiO2催化劑甘油催化重整制合成氣
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    91国产中文字幕| 亚洲av电影不卡..在线观看| 成人国语在线视频| 日韩大尺度精品在线看网址| 精品国产超薄肉色丝袜足j| 美女免费视频网站| 极品教师在线免费播放| 桃色一区二区三区在线观看| 窝窝影院91人妻| 日本成人三级电影网站| 日本五十路高清| 亚洲精品美女久久久久99蜜臀| 一级片免费观看大全| 免费在线观看亚洲国产| 亚洲av成人一区二区三| 亚洲真实伦在线观看| 在线天堂中文资源库| 久久亚洲真实| 正在播放国产对白刺激| 日韩中文字幕欧美一区二区| 欧美黑人欧美精品刺激| 国产成人影院久久av| 99热6这里只有精品| 成熟少妇高潮喷水视频| 丝袜美腿诱惑在线| www.自偷自拍.com| 国产精品久久久久久亚洲av鲁大| 国产精品亚洲一级av第二区| 12—13女人毛片做爰片一| 美女午夜性视频免费| 亚洲中文av在线| 91国产中文字幕| 午夜激情福利司机影院| 最近最新中文字幕大全免费视频| 又大又爽又粗| 在线看三级毛片| 在线播放国产精品三级| 欧美日本视频| 久久香蕉精品热| 国产三级在线视频| 亚洲成人精品中文字幕电影| 亚洲全国av大片| 亚洲国产精品合色在线| 熟女电影av网| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品在线观看二区| 人人妻人人澡欧美一区二区| 日本 av在线| 精品乱码久久久久久99久播| 久久久久久久午夜电影| 69av精品久久久久久| 制服诱惑二区| 性欧美人与动物交配| 精品久久久久久久久久久久久 | 天天一区二区日本电影三级| 久久亚洲精品不卡| 午夜免费激情av| 91大片在线观看| 国产精品98久久久久久宅男小说| 欧美黑人欧美精品刺激| 免费在线观看亚洲国产| 日韩精品中文字幕看吧| 中文字幕人成人乱码亚洲影| 1024视频免费在线观看| 淫妇啪啪啪对白视频| 亚洲精品在线美女| 久久久久久久午夜电影| 老司机午夜福利在线观看视频| 欧美 亚洲 国产 日韩一| 人人妻人人澡欧美一区二区| 免费观看人在逋| 99久久综合精品五月天人人| 精品福利观看| 久久久久久久久久黄片| 国产成人一区二区三区免费视频网站| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 成人免费观看视频高清| 国产亚洲欧美98| 一本综合久久免费| 国产主播在线观看一区二区| 午夜精品在线福利| 亚洲午夜理论影院| 一区福利在线观看| 一本一本综合久久| 亚洲 欧美一区二区三区| 国内少妇人妻偷人精品xxx网站 | 亚洲成人国产一区在线观看| 麻豆国产av国片精品| 成人一区二区视频在线观看| 日本五十路高清| 欧美日韩亚洲综合一区二区三区_| 久久久久久亚洲精品国产蜜桃av| 99久久99久久久精品蜜桃| 无限看片的www在线观看| 国产黄片美女视频| 亚洲国产日韩欧美精品在线观看 | tocl精华| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 久久香蕉精品热| 国产高清视频在线播放一区| 国产成人欧美| 手机成人av网站| 亚洲 欧美一区二区三区| 欧美绝顶高潮抽搐喷水| 老熟妇乱子伦视频在线观看| 女同久久另类99精品国产91| 久久久久久人人人人人| 人人妻人人澡欧美一区二区| 午夜福利一区二区在线看| 久久久国产精品麻豆| 性色av乱码一区二区三区2| 国产色视频综合| 欧美黄色淫秽网站| 欧美中文综合在线视频| 色老头精品视频在线观看| 久久久国产欧美日韩av| 国产亚洲精品久久久久5区| 久久久久久亚洲精品国产蜜桃av| 精品福利观看| 一二三四社区在线视频社区8| 日韩大码丰满熟妇| xxx96com| www.自偷自拍.com| 叶爱在线成人免费视频播放| 可以免费在线观看a视频的电影网站| 久久久久免费精品人妻一区二区 | 亚洲精品美女久久av网站| www.www免费av| 制服人妻中文乱码| 日本黄色视频三级网站网址| 国产黄a三级三级三级人| 欧美乱妇无乱码| 久久国产精品人妻蜜桃| 国产爱豆传媒在线观看 | 久久中文字幕人妻熟女| 久久精品国产99精品国产亚洲性色| 99精品在免费线老司机午夜| 国产高清videossex| 国产精品香港三级国产av潘金莲| av在线播放免费不卡| 久久欧美精品欧美久久欧美| 亚洲国产精品sss在线观看| 久久狼人影院| 免费高清视频大片| 免费搜索国产男女视频| 桃色一区二区三区在线观看| 中文字幕av电影在线播放| 在线观看www视频免费| 午夜福利欧美成人| 亚洲九九香蕉| 国产极品粉嫩免费观看在线| 91大片在线观看| 免费无遮挡裸体视频| 国产三级在线视频| 亚洲中文av在线| 国产色视频综合| 老司机福利观看| 国产精品一区二区精品视频观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成a人片在线一区二区| 手机成人av网站| 国产精品二区激情视频| 特大巨黑吊av在线直播 | 亚洲欧美一区二区三区黑人| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人成人乱码亚洲影| 国产国语露脸激情在线看| 国产免费男女视频| 久久中文看片网| 精品久久久久久久人妻蜜臀av| 日韩免费av在线播放| 免费女性裸体啪啪无遮挡网站| 色av中文字幕| 天天躁夜夜躁狠狠躁躁| 午夜福利在线观看吧| 午夜免费鲁丝| 男女下面进入的视频免费午夜 | 成年版毛片免费区| or卡值多少钱| 两个人看的免费小视频| 久久国产精品男人的天堂亚洲| 又大又爽又粗| 免费在线观看视频国产中文字幕亚洲| 免费高清视频大片| 亚洲国产精品久久男人天堂| 最好的美女福利视频网| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 久久久久久免费高清国产稀缺| 亚洲性夜色夜夜综合| 亚洲第一电影网av| 国产精品久久久av美女十八| 亚洲人成77777在线视频| 久久这里只有精品19| www.精华液| 美女国产高潮福利片在线看| 国产野战对白在线观看| 19禁男女啪啪无遮挡网站| 桃红色精品国产亚洲av| 国产片内射在线| 国产乱人伦免费视频| 国内揄拍国产精品人妻在线 | 久久伊人香网站| 国产精品98久久久久久宅男小说| 男女做爰动态图高潮gif福利片| 亚洲国产欧美一区二区综合| 99热这里只有精品一区 | 国产亚洲欧美在线一区二区| 日本在线视频免费播放| 欧美av亚洲av综合av国产av| 欧美成狂野欧美在线观看| 国产伦一二天堂av在线观看| 国产一区二区在线av高清观看| 亚洲avbb在线观看| 午夜免费成人在线视频| 亚洲色图 男人天堂 中文字幕| 超碰成人久久| 精品久久久久久久毛片微露脸| 亚洲人成电影免费在线| 欧美成人午夜精品| 满18在线观看网站| 精品国内亚洲2022精品成人| 伊人久久大香线蕉亚洲五| 男人舔奶头视频| 欧美日韩瑟瑟在线播放| 亚洲成人久久性| 在线观看一区二区三区| 亚洲七黄色美女视频| 国产视频内射| netflix在线观看网站| 色哟哟哟哟哟哟| 一区二区日韩欧美中文字幕| 亚洲精品中文字幕一二三四区| 国产v大片淫在线免费观看| 国产免费男女视频| 午夜福利欧美成人| 亚洲国产精品成人综合色| 成人亚洲精品av一区二区| 曰老女人黄片| 91麻豆精品激情在线观看国产| 国产成人影院久久av| 国产又黄又爽又无遮挡在线| 午夜两性在线视频| 深夜精品福利| av福利片在线| 男男h啪啪无遮挡| 欧美黑人精品巨大| 很黄的视频免费| 亚洲成人免费电影在线观看| 免费搜索国产男女视频| 搞女人的毛片| 久久中文字幕一级| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 欧洲精品卡2卡3卡4卡5卡区| 国产在线观看jvid| 免费在线观看亚洲国产| 999久久久国产精品视频| 在线观看午夜福利视频| 美女国产高潮福利片在线看| 免费女性裸体啪啪无遮挡网站| 成人欧美大片| 国产精品一区二区三区四区久久 | 国产精品1区2区在线观看.| 色综合站精品国产| 高潮久久久久久久久久久不卡| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站| 午夜视频精品福利| 国产色视频综合| 手机成人av网站| 极品教师在线免费播放| 看黄色毛片网站| 亚洲av美国av| 一本精品99久久精品77| 日韩欧美一区视频在线观看| 精品熟女少妇八av免费久了| 国产伦一二天堂av在线观看| 韩国精品一区二区三区| 国产激情偷乱视频一区二区| 亚洲国产高清在线一区二区三 | 免费高清视频大片| 午夜老司机福利片| 国产亚洲精品一区二区www| 男女下面进入的视频免费午夜 | 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 亚洲性夜色夜夜综合| 精品日产1卡2卡| 日本黄色视频三级网站网址| 岛国视频午夜一区免费看| 欧美中文日本在线观看视频| 欧美日本亚洲视频在线播放| 日本撒尿小便嘘嘘汇集6| 熟女电影av网| 99riav亚洲国产免费| 欧美激情久久久久久爽电影| 久久精品国产亚洲av高清一级| 黑人操中国人逼视频| 亚洲熟妇中文字幕五十中出| 观看免费一级毛片| 国产一卡二卡三卡精品| 久久久久精品国产欧美久久久| 亚洲第一av免费看| 成人国语在线视频| 久久国产乱子伦精品免费另类| 国产麻豆成人av免费视频| 精品国产亚洲在线| 亚洲成av人片免费观看| 精品国产亚洲在线| 欧美乱妇无乱码| 亚洲五月色婷婷综合| 欧美在线一区亚洲| 老司机在亚洲福利影院| 人成视频在线观看免费观看| 老熟妇乱子伦视频在线观看| 男女之事视频高清在线观看| 日本熟妇午夜| 18禁美女被吸乳视频| 亚洲av成人一区二区三| 久久久精品欧美日韩精品| 欧美最黄视频在线播放免费| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 国产高清激情床上av| 欧美一级毛片孕妇| 国产又色又爽无遮挡免费看| 欧美成人免费av一区二区三区| 亚洲 国产 在线| 后天国语完整版免费观看| 精品不卡国产一区二区三区| 十八禁人妻一区二区| 亚洲欧美精品综合一区二区三区| 亚洲精华国产精华精| 久久久久国产精品人妻aⅴ院| 久久中文字幕一级| 老司机深夜福利视频在线观看| av在线天堂中文字幕| 热re99久久国产66热| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 日韩欧美一区二区三区在线观看| 国产人伦9x9x在线观看| 少妇被粗大的猛进出69影院| 国产av一区在线观看免费| 亚洲片人在线观看| svipshipincom国产片| 国产真人三级小视频在线观看| 久久精品国产99精品国产亚洲性色| 2021天堂中文幕一二区在线观 | 亚洲片人在线观看| 国内久久婷婷六月综合欲色啪| 欧美在线黄色| 一卡2卡三卡四卡精品乱码亚洲| 久久国产精品男人的天堂亚洲| 国产成人欧美在线观看| 国产又色又爽无遮挡免费看| 欧美国产日韩亚洲一区| 亚洲成人国产一区在线观看| 淫妇啪啪啪对白视频| 国产精品二区激情视频| 日日夜夜操网爽| 长腿黑丝高跟| 久久 成人 亚洲| 国产三级黄色录像| 亚洲中文日韩欧美视频| 天天添夜夜摸| 不卡av一区二区三区| 亚洲精品中文字幕一二三四区| 不卡av一区二区三区| а√天堂www在线а√下载| 国产精品乱码一区二三区的特点| 亚洲aⅴ乱码一区二区在线播放 | 国产高清激情床上av| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩一区二区三| 亚洲avbb在线观看| 亚洲激情在线av| 最近最新中文字幕大全电影3 | 一卡2卡三卡四卡精品乱码亚洲| 久久狼人影院| 日本在线视频免费播放| 99热只有精品国产| 黄色成人免费大全| 精品国产乱码久久久久久男人| 色尼玛亚洲综合影院| 麻豆成人av在线观看| 亚洲专区字幕在线| 男女床上黄色一级片免费看| 99久久综合精品五月天人人| 午夜福利在线在线| 久久久国产成人免费| 亚洲五月色婷婷综合| av视频在线观看入口| 国产伦一二天堂av在线观看| 亚洲男人天堂网一区| 人妻久久中文字幕网| 亚洲 国产 在线| 香蕉国产在线看| 在线观看66精品国产| 国产精品久久久久久人妻精品电影| 欧美精品啪啪一区二区三区| 国产精品精品国产色婷婷| 欧美最黄视频在线播放免费| 99精品欧美一区二区三区四区| 黄色丝袜av网址大全| 久久精品aⅴ一区二区三区四区| 亚洲欧美精品综合久久99| 欧美日本亚洲视频在线播放| 1024手机看黄色片| 亚洲熟女毛片儿| 国产精品 国内视频| 一本综合久久免费| 两个人免费观看高清视频| 99精品久久久久人妻精品| 日韩精品中文字幕看吧| 天堂√8在线中文| 国产av一区在线观看免费| 色在线成人网| 麻豆成人午夜福利视频| 一级黄色大片毛片| 国产伦人伦偷精品视频| 成人精品一区二区免费| 美女高潮喷水抽搐中文字幕| 99热这里只有精品一区 | 欧美zozozo另类| 中文字幕av电影在线播放| 国产精品免费一区二区三区在线| 久久久久国产一级毛片高清牌| 男人舔女人的私密视频| 在线观看免费日韩欧美大片| 亚洲色图av天堂| 免费搜索国产男女视频| 熟女电影av网| 女警被强在线播放| 97人妻精品一区二区三区麻豆 | 亚洲自拍偷在线| 美女扒开内裤让男人捅视频| 国产免费av片在线观看野外av| 观看免费一级毛片| 美女高潮到喷水免费观看| 免费一级毛片在线播放高清视频| 搡老妇女老女人老熟妇| 国产精品98久久久久久宅男小说| 午夜精品在线福利| 99国产极品粉嫩在线观看| 精品国产超薄肉色丝袜足j| 最近最新中文字幕大全电影3 | 美女免费视频网站| 精品熟女少妇八av免费久了| 亚洲一区二区三区不卡视频| 亚洲精品粉嫩美女一区| 色av中文字幕| 国产av在哪里看| 十八禁人妻一区二区| 久久久久国产精品人妻aⅴ院| 极品教师在线免费播放| 色综合婷婷激情| 搡老妇女老女人老熟妇| 亚洲成人免费电影在线观看| 操出白浆在线播放| 欧美日本亚洲视频在线播放| 亚洲国产精品久久男人天堂| 亚洲av成人av| 中文字幕高清在线视频| 亚洲欧美一区二区三区黑人| 亚洲电影在线观看av| 久久香蕉激情| 一级a爱片免费观看的视频| 亚洲欧洲精品一区二区精品久久久| 亚洲av美国av| 亚洲午夜理论影院| 亚洲精华国产精华精| 黄色 视频免费看| 国产视频内射| 久久婷婷人人爽人人干人人爱| 91老司机精品| av在线天堂中文字幕| 欧美精品亚洲一区二区| av福利片在线| 国产真人三级小视频在线观看| 九色国产91popny在线| 视频区欧美日本亚洲| 女性被躁到高潮视频| 禁无遮挡网站| 久久人人精品亚洲av| www.精华液| 亚洲精品美女久久av网站| 欧美乱色亚洲激情| 国产成人影院久久av| 精品电影一区二区在线| 精品午夜福利视频在线观看一区| 色综合亚洲欧美另类图片| 国产激情偷乱视频一区二区| 久久精品国产亚洲av高清一级| 国产亚洲av高清不卡| 国产成人一区二区三区免费视频网站| 亚洲第一av免费看| 夜夜躁狠狠躁天天躁| 黄色视频,在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 99精品久久久久人妻精品| 丁香欧美五月| 人妻丰满熟妇av一区二区三区| 制服丝袜大香蕉在线| 亚洲三区欧美一区| 99久久精品国产亚洲精品| 久久99热这里只有精品18| 麻豆一二三区av精品| 久久中文字幕人妻熟女| 国产精品亚洲一级av第二区| 老司机午夜十八禁免费视频| 亚洲精品久久成人aⅴ小说| 黑人欧美特级aaaaaa片| 欧美激情高清一区二区三区| 麻豆成人av在线观看| 精品一区二区三区四区五区乱码| 男女做爰动态图高潮gif福利片| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 国产精品综合久久久久久久免费| 校园春色视频在线观看| 亚洲精品国产精品久久久不卡| 亚洲一区中文字幕在线| 国产真实乱freesex| 精品国产一区二区三区四区第35| 高潮久久久久久久久久久不卡| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美日韩在线播放| 人妻久久中文字幕网| 一二三四社区在线视频社区8| 又黄又粗又硬又大视频| 嫁个100分男人电影在线观看| 男女午夜视频在线观看| 观看免费一级毛片| 国产亚洲精品久久久久5区| 动漫黄色视频在线观看| 精品久久蜜臀av无| 黄片小视频在线播放| 亚洲国产日韩欧美精品在线观看 | 午夜视频精品福利| 欧美成人免费av一区二区三区| 国产成年人精品一区二区| 免费在线观看视频国产中文字幕亚洲| 久久九九热精品免费| 男人舔奶头视频| 亚洲欧洲精品一区二区精品久久久| 国产精品自产拍在线观看55亚洲| 亚洲三区欧美一区| 可以免费在线观看a视频的电影网站| 波多野结衣高清作品| 日本熟妇午夜| av福利片在线| 久久精品国产亚洲av香蕉五月| 亚洲av中文字字幕乱码综合 | 国内少妇人妻偷人精品xxx网站 | 久久精品国产99精品国产亚洲性色| 日本精品一区二区三区蜜桃| 免费一级毛片在线播放高清视频| 极品教师在线免费播放| 欧美性长视频在线观看| 成人三级黄色视频| 男人操女人黄网站| 亚洲av成人不卡在线观看播放网| 女人被狂操c到高潮| 久久人人精品亚洲av| 亚洲欧美激情综合另类| 18禁观看日本| 国产97色在线日韩免费| 午夜福利18| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 午夜成年电影在线免费观看| 亚洲成av片中文字幕在线观看| 好看av亚洲va欧美ⅴa在| 最近最新免费中文字幕在线| 动漫黄色视频在线观看| 国产亚洲欧美98| 91麻豆精品激情在线观看国产| 黄色丝袜av网址大全| 成人免费观看视频高清| 757午夜福利合集在线观看| 嫁个100分男人电影在线观看| 亚洲 国产 在线| 亚洲av电影不卡..在线观看| 久久久久久久久久黄片| 黑人操中国人逼视频| 亚洲国产欧美一区二区综合| 亚洲成人久久性| 老司机午夜福利在线观看视频| 宅男免费午夜| 韩国av一区二区三区四区| 中亚洲国语对白在线视频| 午夜视频精品福利| 婷婷丁香在线五月| 免费在线观看完整版高清| 黑人操中国人逼视频| 夜夜爽天天搞| 亚洲成人久久性| 国产精品亚洲av一区麻豆| 久久精品国产亚洲av香蕉五月| 免费观看精品视频网站| 叶爱在线成人免费视频播放| 麻豆成人av在线观看| 一进一出抽搐动态| 天天躁狠狠躁夜夜躁狠狠躁| 久久伊人香网站| 亚洲久久久国产精品| 在线观看舔阴道视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一区中文字幕在线|