• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型高耐熱性環(huán)氧樹脂的合成和表征

    2011-11-26 01:10:16許元花蘇勝培
    關(guān)鍵詞:湖南大學(xué)化工學(xué)院耐熱性

    許元花, 羅 夢, 彭 樺, 王 曦, 蘇勝培*

    (1. 湖南省資源精細化與先進材料重點實驗室,湖南師范大學(xué),中國 長沙 410081;2. 湖南大學(xué)化學(xué)化工學(xué)院,中國 長沙 410081)

    Epoxy resins have been extensively used in many applications, such as coatings, adhesives, composite materials and semiconductor encapsulation, because of their excellent electrical and chemical resistance, good mechanical properties, low shrinkage during curing, and great adhesion properties[1]. It is well acknowledged that diglycidyl ether of bisphenol A(DGEBA) is a kind of important versatile epoxy resin, which is accounted for 80% of the total thermosetting resins[2]. However, the conventional DGEBA was seriously confined in the applications such as integrated circuit packaging and advanced materials where high thermal and moisture resistance are required[3]. Therefore, the development of high thermal resistant and low moisture absorption epoxy resins for these applications has attracted a lot of interest from many researchers.

    Many scientific efforts have been reported for improving the thermal resistance of epoxy resins by changing the structures of the backbone of resins, including increasing the crosslinking density of cured epoxy resin[4-7], introducing bulky and rigid structures such as biphenyl or naphthalene[8-9]and forming imide epoxy resin[10-11]. Panetal[12]have synthesized multifunctional epoxy resin from p-hydroxybenzaldehyde and bisphenol A, which showed higher glass transition temperature (Tg) and thermal stability than those of epoxy resin formed from benzaldehyde and bisphenol A. Duannetal[13]described that the thermal stability orTgof naphthalene-based epoxy resins with stronger rigid structure was higher than that of phenyl-based epoxy resins. Chinetal[14]have synthesized a novel curing agent bearing diimide-diacid structure; the cured epoxy resin has higherTgand thermal stability due to the introduction of imide structure compared with the products cured by phthalic anhydride. In general, to improve moisture resistance, hydrophobic groups were introduced to epoxy structure to decrease the hydrophilic sites such as polar groups. Renetal[15]have synthesized a novel novolac epoxy curing agent containing both naphthalene and dicyclopentadiene (DCPD) moiety; and the water absorption of obtained cured products could decrease to 0.66 % due to the introduction of hydrophobic aliphatic DCPD and naphthyl structure. Taoetal[16]proposed that a siloxane-containing cycloaliphatic epoxy compound, which has low polarity and hydrophobic nature, has low water absorption down to 0.48 %.

    1,1-Bis(4-hydroxy-3-methylphenyl)cyclohexane (DMBPC) is a bisphenol-type compound. It has been applied in the synthesis of polycarbonate with improved water vapor transmission barrier properties[17], however, there is no report on its application in the epoxy resin. In this study, DMBPC will be used to replace bisphenol A in the synthesis of epoxy resin. It is expected that the rigid cyclic moieties and benzene rings in DMBPC would afford the novel epoxy resin with higher thermal properties and better water resistance due to the presence of the hydrophobic cyclohexyl moiety in the epoxy structure. The cure behaviors, thermal and water resistant properties of this novel epoxy resin will be explored and comparison experiments between this novel epoxy and the conventional DGEBA will be also performed.

    1 Experimental

    1.1 Materials

    1, 1-Bis(4-hydroxy-3-methylphenyl)cyclohexane (DMBPC) was commercial grade and provided by Hunan Hongyue manufactory Co., Ltd. (Yueyang, China). Epichlorohydrin (ECH) and DGEBA with an epoxy value of 0.44 mol/100 g were purchased from Baling Petrochemical Co., Ltd. (Yueyang, China). The hardener, 4,4′-diaminodiphenylmethane (DDM), was purchased from Honghu BMI Resin Factory (Hubei, China). Sodium hydroxide was purchased from Huihong Chemical Reagent Co., Ltd (Changsha, China). Trimethyl benzyl ammonium chloride (TMBAC) was prepared from timethyl amine and benzyl chloride. All the agents were used without further purification.

    1.2 Synthesis of 1, 1-bis(4-hydroxy-3-methylphenyl)cyclohexane epoxy resin[18-19]

    88.8 g DMBPC (0.3 mol), 555 g ECH (6 mol) and 1.48 g TMBAC (7.5 mmol) was added to 1000 mL four-neck round-bottom flask, equipped with mechanical stirrer, thermometer, and a reflux condense 8. The mixture was stirred at 80 ℃ for 6 h, followed by adding 120 g sodium hydroxide aqueous solution (30 wt%) dropwise within 2 h at 70 ℃, and then the temperature of the system was maintained at 70 ℃ for an additional 3 h allowing the reaction to complete. After the completion of reaction, sodium chloride generated during the reaction was filtrated and the brine layer was removed. Finally, the product in the flask was washed with deionized water until no chloride ion could be detected by acidic AgNO3aqueous solution. After the excess epichlorohydrin was evaporated, a white solid product was obtained in 93.6% yield, epoxy value: 0.47 mol/100 g. The 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane epoxy resin (DMBPCEP) was prepared as shown in Scheme 1.

    Scheme 1 Preparation of DMBPCEP

    1.3 Instrumentation

    FT-IR spectra were obtained using a WQF-200 instrument (Beijing, China) using conventional KBr pellets. A mixture of 1 mg of sample powder with 100 mg of dried KBr crystals was pressed into a pellet of 13 mm in diameter.1H NMR spectra were collected using a Varian INOVA-300FT-NMR spectrometer (Pola Alto, America) operating at 500 MHz using CD3COCD3as solvent. The epoxy value of obtained epoxy resin was determined by HCl/acetone titration method[20]. Curing behaviors of epoxy resin were performed on a Netzsch DSC200F3 at heating rate of 2.5, 5.0, 10, and 15 ℃/min.Tgof cured products were also characterized on the DSC fitted with a liquid nitrogen cooling system. Samples (8~12 mg) were ground to be powders, and then encapsulated in the aluminum pans. Two consecutive heating and cooling runs were performed using 10 ℃/min heating and cooling rates respectively. TGA experiments were conducted from 30 to 800 ℃ and 20 ℃/min scan rate on a Netzsch STA409PC instrument under nitrogen atmosphere with a 20 mL/min flow speed. TGA results are averages of a minimum of three determinations; temperatures are reproducible to ±1 ℃, while the error bars on the non-volatile material are ±1 %. Moisture absorption was determined as follows: the samples (50 mm × 15 mm × 6 mm) were dried under vacuum at 100 ℃ for 12 h, and then cooled to room temperature. The samples were weighed and placed in 100 ℃ water for certain hours and weighed again until the equilibrium water uptake was reached. The moisture absorption was calculated as follows: Moisture absorbance % = ((m-m0)/m0) × 100%, wheremis the weight of the sample after dipping in 100 ℃ water for certain hours,m0is the weight of the sample after placing in vacuum oven for 12 h.

    2 Results and Discussions

    2.1 Structure analysis of DMBPCEP

    Figure 1 FT-IR spectrum of DMBPCEP

    The FT-IR spectrum of DMBPCEP was shown in Fig. 1. As shown in Fig. 1, the bands at 912 cm-1and 1 130 cm-1were attributed to the stretching vibration of the oxirane ring and cyclohexyl respectively, which were the characteristic groups in the structure of DMBPCEP[21]. Besides, the absorption bands at 2 970~2 810 cm-1, which were attributed to the symmetric and asymmetric stretching vibration of methyl and methlene, the bands at 1 604 cm-1, 1 503 cm-1, and 1 455 cm-1, which were attributed to the stretching vibration of benzene rings, the bands at 1 245 cm-1and 1 036 cm-1, which were attributed to the symmetric and asymmetric stretching vibration of phenyloxyl, were all observed. It is surprisingly noted that no bands of hydroxyl were observed in the FT-IR spectrum. This can be explained from the average molecular weight and the value ofn. It is well known that the relationship betweennand epoxy value of DMBPCEP could be described as follows in theory: Epoxy value = 2×100/[407+352n]. The value ofncalculated was 0.05. This demonstrated that the amount of hydroxyl group was low, which could be ignorable and no bands near 3 500 cm-1in FT-IR spectrum were observed.1H NMR data of DMBPCEP was also used to characterize the chemical structure of the synthesized resin. The data was as follows (CD3COCD3;δ, ppm): 7.04~7.01 (m, 4H), 6.79 (d,J=8.5 Hz, 2H), 4.81~4.77 (m, 2H), 4.26~4.23 (m, 2H), 3.32~3.29 (m, 2H), 2.82 (d,J= 4.5 Hz, 2H), 2.71~2.69 (m, 2H), 2.16 (s, 4H), 2.07 (s, 6H), 1.43 (s, 6H). The FT-IR analysis and1H NMR results indicated that DMBPCEP was obtained.

    2.2 Calculation of curing kinetics parameters of DMPCEP/DDM system

    Figure 2 DSC curves of DMBPCEP/DDM at different heating rates

    The cure of epoxy resins in which monomers or prepolymers with low molecular weight are incorporated into three-dimensional networks is a complex mechanism including many reactions. The kinetics of the curing reaction plays a crucial role in the formation of network structure, which dictates the physical and mechanical properties of the cured product[22]. In this work, DSC was chosen to monitor the curing behaviors of epoxy resin through the direct measurement of the heat flow which was considered to be proportional to the consumption extent of the reactive groups. For the DMBPCEP/DDM system, DSC curves at different heating rates were shown in the Fig. 2. The information obtained directly from the DSC curves such as the onset temperature (Ti), the peak temperature (TP), the terminal temperature (Tf), and reaction enthalpy (ΔH) were summarized in Table 1. It can be noted that DSC scans showed a wide exothermic peak at all heating rates. The curing temperature is shifted to the higher temperature with the increasing of heating rate due to thermal hysteresis[23].

    Table 1 Characteristic temperature and total reaction enthalpy at different heating rates

    To evaluate the kinetic parameters of DMPCEP/DDM system, Kissinger[24]and Crane methods[25]were applied to calculate activation energy and curing reaction order without the need of any assumption about conversion-dependent equation. Kissinger’s equation can be expressed as follows

    (1)

    Crane’s equation is depicted as Equation (2)

    d (lnβ)/d (1/Tp)= -[ΔEa/nR+ 2Tp]

    (2)

    In the case of ΔEa/nR?2Tp, Equation (2) could be presented as Equation (3)

    d (lnβ)/d (1/Tp)= -ΔEa/nR

    (3)

    Figure 3 Plot of ln versus ( 1/Tp)

    Figure 4 Plot of ln β versus (1/Tp)

    2.3 Determination of the optimal curing process

    An optimal curing process is determined by the curing kinetics and the curing mechanism. Generally, extrapolation method[28]based onT-βwas commonly employed to determine the manufacturing process. The line relationship betweenTandβwas descried as follows:T=A + Bβ. The fitting lines ofT(Ti,Tp,Tf) versusβwere shown in the Fig.5. If the value ofβwas equal to zero, the curing reaction would occur at isothermal temperature theoretically and the curing temperature of the pre-curing, curing, post-curing could be obtained for the curing process. They were 115.5, 142.1, and 174.4 ℃ respectively with corresponding linear correlations of 0.955, 0.965, and 0.975 which could be confirmed that the data were reasonable to the manufacturing process. Considering DSC experimental results, the curing reaction started in the range of 120~140 ℃ at different heating rates. Once the polymerization was initiated, the curing would be completed quickly at high temperatures. To prevent the occurrence of explosive polymerization, the curing process should be designed as slow heating rate or isothermal process for hours. Therefore, in this study, after DMBPCEP and melted DDM were mixed at 95 ℃ and degassed under vacuum, samples were cured following the sequence below: (a) 115 ℃ for 1 h; (b) 140 ℃ for 1 h; and (c) a post-cure temperature of 180 ℃ for 3 h.

    2.3 Thermal and water resistance properties of cured DMBPCEP/DDM

    2.3.1Tgand HDT

    Tgwas generally used as a parameter of heat-resistance for polymer[29]. Fig. 6 showedTgtraces obtained from cured DMBPCEP/DDM and DGEBA/DDM. It can be seen thatTgof DMBPCEP/DDM was 171.9 ℃, significantly higher than 150.1 ℃ of the DGEBA/DDM. This improvement could be attributed to the rigidity increase and their ability to hinder the motion of the molecular chains and network junctions due to the introduction of cyclohexane structure in the cross-linking network. For the heat distort temperature (HDT), another important heat-resistant parameter, the difference between DMBPCEP and DGEBA were consistent with the change trend of the glass transition temperature. HDT of cured DMBPCEP and DGEBA was 160.7 ℃ and 147.0 ℃, respectively.

    Figure 5 Relationship between β and Ti, Tp, Tf in the curing process of DMBPCEP/DDM

    Figure 6 DSC traces obtained from the cured DMBPCEP/DDM and DGEBA/DDM

    2.3.2 Thermal stability

    The weight loss of the cured DMBPCEP resins at high temperature was shown in Fig. 7 and thus was compared with that of conventional DGEBA. TGA curves of both cured DMBPCEP and DGEBA products displayed one-step degradation. It can be seen that the 10 % weight loss temperature (T10) of cured DMBPCEP, a measure of the onset degradation, and the 50 % weight loss temperature (T50), the midpoint of the degradation process, was 377.6 ℃ and 410.6 ℃, respectively, which is comparable to DGEBA.

    2.3.3 Water Resistance

    It is well known that absorbed moisture has a detrimental effect, especially at elevated temperature, on the mechanical properties and electrical insulating performance of epoxy resins[30]. Therefore, moisture absorption is an important parameter to evaluate whether epoxy resin has high performance or not. Fig. 8 showed the moisture uptake of the cured products with the varying of time. It is noted that the moisture uptake of both cured DMBPCEP/DDM and DGEBA/DDM increased sharply in the initial stage of the absorption process, and then the increasing rate slowed down after 10 h, and finally lead to a plateau, corresponding to the water uptake at equilibrium. However, about 0.33 wt% of water uptake at equilibrium of the cured DMBPCEP/DDM was observed, which was 3 times lower than that of DGEBA/DDM. This improved moisture resistance of DMBPCEP/DDM was due to the hydrophobic nature of the cyclohexane rings compared with that of DGEBA/DDM. Meanwhile, cyclohexane rings in the network could be fused strain-free chair-form structure and essentially has no configuration strain. This could be effectively protected from the formation of cracking in the products, which hindered the diffusion of water[31].

    Figure 7 TGA traces obtained from the cured DMBPCEP/DDM and DGEBA/DDM

    Figure 8 Water absorption curves of cured epoxy resin at 100 ℃

    3 Conclusions

    A novel bisphenol epoxy resin prepolymer containing cyclohexyl group was synthesized from DMBPC and ECH. The reactivity and curing behaviors of this resin with DDM as curing agent was comparable with that of conventional DGEBA.Tg, HDT, high-temperature stability, and water resistance for DMBPCEP/DDM resin system were all superior to conventional DGEBA/DDM system, which are attributed to the introduction of cyclohexyl units in the bisphenol structure. Evidences from experiments indicated that DMBPCEP could be a potential candidate of high heat-resistant and low water absorption resins.

    [1] ZHANG X H, ZHANG Z H, XIA X N,etal. Synthesis and characterization of a novel cycloaliphatic epoxy resin starting from dicyclopentadiene [J]. Eur Polym J, 2007, 43(5): 2149-2154.

    [2] WU L Y, SUN M L. Principle, technology and applications for epoxy resin [M].Beijing:China Machine Press, 2002.

    [3] LEE J R, PARK S J, LEE S B. Method for preparing a high heat resistant epoxy resin composition comprising quinoxalinium salt containing benzyl group:US Patent, 6133383[P]. 2000-10-07.

    [4] MUSTATA F, BICU I. Synthesis, characterization, and properties of multifunctional epoxy maleimide resins[J]. Macromol Mater Eng, 2006, 291(6): 732-741.

    [5] MUSTATA F, BICU I. Multifunctional formaldehyde resins as curing agent for epoxy resins [J]. J Appl Polym Sci, 2010, 115(3): 1787-1796.

    [6] WANG C S, LEE M C. Synthesis, Characterization, and properties of multifunctional naphthalene-containing epoxy resins cured with cyanate ester [J]. J Appl Polym Sci, 1999, 73(9): 1611-1622.

    [7] MAO J, WANG J, DUAN H J. Effects of multi functional epoxy resin on thermal resistance of mixed epoxy resin system [J]. Thermosetting Resin, 2006, 21(1): 16-20.

    [8] PAN G Y, DU Z J, ZHANG C,etal. Synthesis, characterization, and properties of novel novolac epoxy resin containing naphthalene moiety [J]. Polymer, 2007, 48(13): 3686-3693.

    [9] REN H, SUN J Z, WU B J,etal. Synthesis and characterization of a novel epoxy resin containing naphthyl/dicyclopentadiene moieties and its cured polymer [J].Polymer, 2006, 47(25): 8309-8316.

    [10] TANG H Y, SONG N H, GAO Z H,etal. Synthesis and properties of 1,3,4-oxadiazole-containing high-performance bismaleimide resins [J]. Polymer, 2007, 48(1): 129-138.

    [11] DINAKARAN K, ALAGAR M. Studies on thermal and morphological properties of 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane-epoxy-bismaleimide matrices [J]. Polym Adv Technol, 2003, 14(8): 544-556.

    [12] PAN G Y, LIU H P, DU Z J,etal. Synthesis, characterization and properties of multifunctional novolac epoxy resins [J]. Polym Mater Sci Eng, 2008, 24(10): 41-44.

    [13] DUANN Y E, LIU T M, CHENG K C,etal. Thermal stability of some naphthalene-and phenyl-based epoxy resins [J]. Polym Degrad Stab, 2004, 84(2): 305-310.

    [14] CHIN W K, HWU J J, SHAU M D. Curing behaviour and thermal properties of Epon 828 resin cured with diimide-diacid and phthalic anhydride [J]. Polymer, 1998, 39(20): 4923-4934.

    [15] REN H, SUN J Z, WU B J,etal. Synthesis and curing properties of a novel novolac suring agent containing naphthyl and dicyclopentadiene moieties [J]. Chin J Chem Eng, 2007, 15(1):127-131.

    [16] TAO Z Q, YANG S Y, CHEN J S,etal. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins [J]. Eur Polym J, 2007, 43(4): 1470-1479.

    [17] MARK V, HEDGES C V. Polycarbonate compositions having improved barrier properties:US Patent,4304899[P].1981-12-08.

    [18] LIN C H, YANG K Z, LEU T S,etal. Synthesis, characterization, and properties of novel epoxy resins and cyanate esters [J]. J Polym Sci Part A: Polym Chem, 2006, 44(11): 3487-3502.

    [19] BHUVANA S, SAROJADEVI M. Synthesis and characterization of epoxy/amine terminated amide-imide-imide blends [J]. J Appl Polym Sci, 2008, 108(3): 2001-2009.

    [20] YUAN H W, RAO Q H. Preparation of resorcinol diglycidyl ether and its application [J]. Thermosetting Resin, 2007, 22(5): 1-4.

    [21] YAN H Q, CHEN S, QI G R. Synthesis, cure kinetics and thermal properties of the 2,7-dihydroxynaphthalene dicyanate [J]. Polymer, 2003, 44(26): 7861-7867.

    [22] OPALICKI M, KENNY M, NICOLAIS L. Cure kinetics of neat and carbon-fiber-reinforced TGDDM/DDS epoxy systems [J]. J Appl Polym Sci, 1996, 61(6): 1025-1037.

    [23] SU S P, JIANG D D, WILKIE C A. Study on the thermal stability of polystyryl surfactants and their modified clay nanocomposites [J]. Polym Degrad Stab, 2004, 84(2): 269-277.

    [24] KISSINGER H. Reaction kinetics in differential thermal analysis [J]. Anal Chem, 1957, 29(11): 1702-1706.

    [25] OH J H, JIANG J, LEE S H. Curing behavior of tetrafunctional epoxy resin/hyperbranched polymer system [J]. Polymer, 2001, 42(20): 8339-8347.

    [26] ZHOU F, DENG J R, JIANG W H. Study on curing reactions of epoxy resin diluted by 1,2-cyclohexanediol diglycidyl ether [J]. Thermosetting Resin, 2007, 22(2): 23-26.

    [27] LIU W B, QIU Q H, WANG J,etal. Curing kinetics and properties of epoxy resin-fluorenyl diamine systems [J]. Polymer, 2008, 49(20): 4399-4405.

    [28] MA Z G, GAO J G. Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine [J]. J Phys Chem B, 2006, 110(25): 12380-12383.

    [29] SIMON S L, GILLHAM J K. Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material [J]. J Appl Polym Sci, 1993, 47(3): 461-485.

    [30] BOINARD P, BANKS W M, PETHRICK R A. Changes in the dielectric relaxations of water in epoxy resin as a function of the extent of water ingress in carbon fibre composites [J].Polymer, 2005, 46(7): 2218-2229.

    [31] MAEHARA T, TAKENAKA J, TANAKA K,etal. Synthesis and polymerization of novel epoxy compounds having an adamantane ring and evaluation of their heat resistance and transparency [J]. J Appl Polym Sci, 2009, 112(1): 496-504.

    猜你喜歡
    湖南大學(xué)化工學(xué)院耐熱性
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    湖南中煙聯(lián)合湖南大學(xué)揭示植物維持代謝平衡的機制
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    A Study on the Cohesion of English and ChineseBlessing Short Messages
    耐熱性能優(yōu)異的鋁合金
    鋁加工(2017年1期)2017-03-07 00:53:33
    《化工學(xué)報》贊助單位
    退火對聚乳酸結(jié)晶及耐熱性能的影響
    中國塑料(2015年6期)2015-11-13 03:02:52
    誤區(qū):耐熱性好,維生素E不會損失
    不同濃度CaCl2對“普紅”和“梅紅”西洋杜鵑耐熱性影響研究
    免费在线观看黄色视频的| 午夜精品国产一区二区电影| 一区福利在线观看| 久久人妻福利社区极品人妻图片 | 久久精品亚洲熟妇少妇任你| 97在线人人人人妻| 黄色一级大片看看| 波多野结衣一区麻豆| 精品一区在线观看国产| 一边摸一边做爽爽视频免费| h视频一区二区三区| 久久人妻熟女aⅴ| 又大又爽又粗| 久久天躁狠狠躁夜夜2o2o | 嫁个100分男人电影在线观看 | 新久久久久国产一级毛片| 18禁国产床啪视频网站| 美女脱内裤让男人舔精品视频| 1024视频免费在线观看| 如日韩欧美国产精品一区二区三区| 国产97色在线日韩免费| 高潮久久久久久久久久久不卡| 亚洲一区中文字幕在线| 三上悠亚av全集在线观看| 国产精品香港三级国产av潘金莲 | 色视频在线一区二区三区| 又黄又粗又硬又大视频| 无限看片的www在线观看| 欧美 日韩 精品 国产| 搡老岳熟女国产| 国产精品国产av在线观看| 国产免费现黄频在线看| av网站免费在线观看视频| 亚洲人成电影免费在线| 各种免费的搞黄视频| 熟女少妇亚洲综合色aaa.| 国产高清videossex| 国产99久久九九免费精品| 一级毛片我不卡| 97人妻天天添夜夜摸| 中文字幕制服av| 久久精品成人免费网站| 国产色视频综合| 免费观看a级毛片全部| 桃花免费在线播放| 久久ye,这里只有精品| 国产成人精品久久二区二区免费| 亚洲av片天天在线观看| 黄色a级毛片大全视频| 成年美女黄网站色视频大全免费| 国产av精品麻豆| 国产福利在线免费观看视频| 在线观看免费日韩欧美大片| 国产麻豆69| 午夜久久久在线观看| 国产av国产精品国产| 日本欧美国产在线视频| 一级黄色大片毛片| 亚洲图色成人| 国产精品香港三级国产av潘金莲 | 成年女人毛片免费观看观看9 | 丝袜美足系列| 天天躁狠狠躁夜夜躁狠狠躁| 大话2 男鬼变身卡| 免费av中文字幕在线| 狂野欧美激情性bbbbbb| 蜜桃在线观看..| 汤姆久久久久久久影院中文字幕| 成人18禁高潮啪啪吃奶动态图| 国产亚洲av高清不卡| 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 在线观看国产h片| 国产精品国产三级国产专区5o| 久久久欧美国产精品| 国产黄色免费在线视频| 久久久久久久精品精品| 久久久久久人人人人人| 美女脱内裤让男人舔精品视频| 在线av久久热| 97精品久久久久久久久久精品| 80岁老熟妇乱子伦牲交| 一区在线观看完整版| 久久精品久久精品一区二区三区| 欧美 日韩 精品 国产| 黄色视频不卡| 亚洲成国产人片在线观看| 91九色精品人成在线观看| 国产日韩欧美亚洲二区| 亚洲黑人精品在线| 久久久久久久久免费视频了| 亚洲av在线观看美女高潮| 90打野战视频偷拍视频| 亚洲成国产人片在线观看| 人妻人人澡人人爽人人| 亚洲国产看品久久| 成年人黄色毛片网站| 啦啦啦中文免费视频观看日本| 久久人人97超碰香蕉20202| 午夜福利在线免费观看网站| 免费久久久久久久精品成人欧美视频| 在线观看www视频免费| 黄色视频不卡| 两人在一起打扑克的视频| 欧美 亚洲 国产 日韩一| 日韩视频在线欧美| 亚洲精品自拍成人| 久久综合国产亚洲精品| 嫩草影视91久久| 亚洲九九香蕉| 成人影院久久| 亚洲精品一区蜜桃| av网站免费在线观看视频| 伦理电影免费视频| 一二三四在线观看免费中文在| 国产av一区二区精品久久| 只有这里有精品99| 国产成人精品久久二区二区免费| 精品视频人人做人人爽| 中文欧美无线码| 久久热在线av| 久久久久久久大尺度免费视频| 国产免费现黄频在线看| 国产精品欧美亚洲77777| 日韩中文字幕欧美一区二区 | 丰满少妇做爰视频| 久久亚洲精品不卡| 亚洲熟女精品中文字幕| 一级毛片我不卡| 国产真人三级小视频在线观看| 色精品久久人妻99蜜桃| 少妇猛男粗大的猛烈进出视频| 97在线人人人人妻| 伊人亚洲综合成人网| 搡老乐熟女国产| 欧美成人精品欧美一级黄| 免费高清在线观看日韩| 中文字幕最新亚洲高清| 久久人人97超碰香蕉20202| 天堂中文最新版在线下载| 一级毛片电影观看| 欧美 日韩 精品 国产| 黑丝袜美女国产一区| 高清av免费在线| 国产日韩欧美视频二区| 精品久久久久久久毛片微露脸 | 亚洲国产精品一区三区| 亚洲av在线观看美女高潮| 亚洲国产精品一区二区三区在线| 黄色怎么调成土黄色| 99久久人妻综合| 国产福利在线免费观看视频| 日日爽夜夜爽网站| 久久亚洲精品不卡| 久久这里只有精品19| 日本欧美国产在线视频| 啦啦啦 在线观看视频| 国产成人91sexporn| 色婷婷久久久亚洲欧美| 精品人妻熟女毛片av久久网站| av片东京热男人的天堂| 亚洲欧美激情在线| 国产av精品麻豆| 欧美国产精品一级二级三级| 每晚都被弄得嗷嗷叫到高潮| 交换朋友夫妻互换小说| 中文字幕av电影在线播放| 在线观看人妻少妇| 麻豆国产av国片精品| 一级毛片我不卡| 两个人免费观看高清视频| 欧美日韩一级在线毛片| 亚洲欧美一区二区三区国产| 亚洲自偷自拍图片 自拍| 一区二区日韩欧美中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 手机成人av网站| 欧美黄色片欧美黄色片| 亚洲综合色网址| 韩国高清视频一区二区三区| 老司机影院毛片| 男女边吃奶边做爰视频| 丝袜在线中文字幕| 成年美女黄网站色视频大全免费| 午夜免费鲁丝| 精品一品国产午夜福利视频| 亚洲国产av影院在线观看| 9热在线视频观看99| 日本黄色日本黄色录像| 亚洲国产欧美在线一区| 亚洲专区中文字幕在线| 视频在线观看一区二区三区| 色播在线永久视频| 亚洲视频免费观看视频| 久久久久视频综合| 晚上一个人看的免费电影| 性色av乱码一区二区三区2| 搡老乐熟女国产| 97在线人人人人妻| 亚洲色图 男人天堂 中文字幕| 亚洲欧美清纯卡通| 欧美日本中文国产一区发布| www.熟女人妻精品国产| 一个人免费看片子| 最黄视频免费看| 在线 av 中文字幕| 国产高清不卡午夜福利| 亚洲av电影在线观看一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产欧美一区二区综合| 欧美乱码精品一区二区三区| 久久鲁丝午夜福利片| 777米奇影视久久| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品久久二区二区91| 国产99久久九九免费精品| 日韩视频在线欧美| 两人在一起打扑克的视频| 亚洲成人免费电影在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 亚洲一码二码三码区别大吗| 亚洲国产欧美网| 久久久欧美国产精品| 免费不卡黄色视频| 黄色 视频免费看| 国产成人精品久久二区二区91| 国精品久久久久久国模美| avwww免费| 视频区图区小说| 一二三四在线观看免费中文在| 精品久久久久久久毛片微露脸 | 亚洲精品久久午夜乱码| 国产野战对白在线观看| 大型av网站在线播放| 校园人妻丝袜中文字幕| 无遮挡黄片免费观看| 国产有黄有色有爽视频| 亚洲欧美日韩高清在线视频 | videos熟女内射| 大型av网站在线播放| 日日夜夜操网爽| 欧美黑人精品巨大| 可以免费在线观看a视频的电影网站| 亚洲av综合色区一区| 国产成人精品久久久久久| xxxhd国产人妻xxx| 国产av一区二区精品久久| 免费不卡黄色视频| 欧美日韩黄片免| 人成视频在线观看免费观看| 丁香六月欧美| 另类亚洲欧美激情| 爱豆传媒免费全集在线观看| 国产成人欧美| 国产色视频综合| 曰老女人黄片| 国产精品一区二区在线观看99| 制服人妻中文乱码| 日韩电影二区| 精品欧美一区二区三区在线| 男女午夜视频在线观看| 国产成人av教育| 亚洲欧美激情在线| 美女大奶头黄色视频| netflix在线观看网站| 欧美人与善性xxx| 国产男女内射视频| 日韩视频在线欧美| 亚洲免费av在线视频| 国产一级毛片在线| 一级,二级,三级黄色视频| 日韩免费高清中文字幕av| 亚洲视频免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 自线自在国产av| 超色免费av| 美女国产高潮福利片在线看| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦在线免费观看视频4| 国产又色又爽无遮挡免| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三区在线| 国产精品成人在线| 亚洲精品第二区| 免费观看人在逋| 99国产精品99久久久久| 男女无遮挡免费网站观看| 超色免费av| 一区二区三区四区激情视频| 国产日韩欧美亚洲二区| 日韩伦理黄色片| 亚洲欧美激情在线| 又大又爽又粗| 一级黄片播放器| 永久免费av网站大全| 人妻人人澡人人爽人人| 美女高潮到喷水免费观看| 久久人人爽av亚洲精品天堂| avwww免费| 国产精品亚洲av一区麻豆| 国产爽快片一区二区三区| 久久九九热精品免费| 精品福利观看| 国产精品久久久久久人妻精品电影 | 青草久久国产| 一区二区三区激情视频| 国产精品国产三级专区第一集| 中文乱码字字幕精品一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲精品av麻豆狂野| 午夜福利,免费看| 丰满人妻熟妇乱又伦精品不卡| 国产在线观看jvid| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| 99香蕉大伊视频| 亚洲精品在线美女| 久久性视频一级片| 亚洲精品在线美女| 午夜av观看不卡| 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| 超碰成人久久| 最近最新中文字幕大全免费视频 | 1024视频免费在线观看| 成年人午夜在线观看视频| 久久人妻福利社区极品人妻图片 | 国产精品 国内视频| 高清欧美精品videossex| 亚洲av电影在线进入| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区免费欧美 | 久久久久久久久久久久大奶| 欧美日韩av久久| 男女免费视频国产| 欧美国产精品va在线观看不卡| 免费高清在线观看日韩| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文av在线| 久久青草综合色| 亚洲av美国av| 50天的宝宝边吃奶边哭怎么回事| 欧美人与善性xxx| 青春草亚洲视频在线观看| 午夜免费观看性视频| 高清av免费在线| 巨乳人妻的诱惑在线观看| 最新在线观看一区二区三区 | 一区在线观看完整版| 妹子高潮喷水视频| 欧美日韩视频精品一区| 免费看av在线观看网站| 99精品久久久久人妻精品| 国产一级毛片在线| 日韩伦理黄色片| 中文字幕制服av| av福利片在线| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 飞空精品影院首页| 又大又黄又爽视频免费| 嫩草影视91久久| 人人妻人人澡人人看| 婷婷成人精品国产| 中文字幕人妻熟女乱码| 男人舔女人的私密视频| 午夜老司机福利片| 精品人妻一区二区三区麻豆| 首页视频小说图片口味搜索 | 国产精品一区二区在线不卡| 一区福利在线观看| av一本久久久久| 成人午夜精彩视频在线观看| 国产精品一区二区在线不卡| 99国产精品免费福利视频| 午夜免费鲁丝| 女性生殖器流出的白浆| 天天躁日日躁夜夜躁夜夜| 国产高清不卡午夜福利| 99国产精品一区二区三区| 国产成人精品久久久久久| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人| 9热在线视频观看99| 美女大奶头黄色视频| 欧美精品亚洲一区二区| 又大又爽又粗| 婷婷成人精品国产| 国产成人一区二区三区免费视频网站 | 国产欧美亚洲国产| 亚洲av片天天在线观看| 黄频高清免费视频| 水蜜桃什么品种好| 嫁个100分男人电影在线观看 | 七月丁香在线播放| 国产免费又黄又爽又色| www.熟女人妻精品国产| 欧美激情 高清一区二区三区| 丰满迷人的少妇在线观看| 国产伦理片在线播放av一区| 啦啦啦中文免费视频观看日本| 岛国毛片在线播放| 丰满少妇做爰视频| 国产福利在线免费观看视频| 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 婷婷成人精品国产| 精品一区二区三区四区五区乱码 | 观看av在线不卡| 成人国产一区最新在线观看 | 国产精品久久久人人做人人爽| 国产精品一区二区在线不卡| 成年人免费黄色播放视频| 丁香六月欧美| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩av久久| 这个男人来自地球电影免费观看| 国产成人欧美| 免费不卡黄色视频| 男女无遮挡免费网站观看| √禁漫天堂资源中文www| 91麻豆精品激情在线观看国产 | 亚洲午夜精品一区,二区,三区| 亚洲人成77777在线视频| 日日爽夜夜爽网站| www.999成人在线观看| 亚洲欧洲精品一区二区精品久久久| 尾随美女入室| 国产成人a∨麻豆精品| 国产有黄有色有爽视频| 黄色视频在线播放观看不卡| 久久精品亚洲av国产电影网| 嫩草影视91久久| 一本—道久久a久久精品蜜桃钙片| 亚洲国产看品久久| 两个人看的免费小视频| 国产一区二区激情短视频 | 免费黄频网站在线观看国产| 国产精品 欧美亚洲| 尾随美女入室| 大片免费播放器 马上看| 黄频高清免费视频| 亚洲精品第二区| 波多野结衣一区麻豆| av线在线观看网站| 2018国产大陆天天弄谢| 宅男免费午夜| 美女福利国产在线| 国产免费福利视频在线观看| 一级黄片播放器| 美女主播在线视频| 欧美av亚洲av综合av国产av| 久久ye,这里只有精品| 亚洲国产日韩一区二区| 精品久久久精品久久久| 久久天躁狠狠躁夜夜2o2o | 国产精品亚洲av一区麻豆| 日韩精品免费视频一区二区三区| 亚洲情色 制服丝袜| 亚洲av日韩精品久久久久久密 | 国产成人精品在线电影| 一边摸一边抽搐一进一出视频| 免费人妻精品一区二区三区视频| 纵有疾风起免费观看全集完整版| 曰老女人黄片| 后天国语完整版免费观看| 亚洲专区中文字幕在线| 久久久久国产一级毛片高清牌| 久久久精品免费免费高清| 欧美久久黑人一区二区| 亚洲人成77777在线视频| 成年人午夜在线观看视频| 国产精品国产三级专区第一集| 在线亚洲精品国产二区图片欧美| 一本—道久久a久久精品蜜桃钙片| 日韩欧美一区视频在线观看| 一级毛片女人18水好多 | 亚洲欧美精品综合一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区有黄有色的免费视频| www.熟女人妻精品国产| 国产亚洲欧美在线一区二区| 亚洲精品日本国产第一区| 又大又爽又粗| 乱人伦中国视频| 国产男女内射视频| 亚洲精品美女久久av网站| 国产在视频线精品| 免费高清在线观看视频在线观看| 久久精品国产a三级三级三级| 亚洲综合色网址| 欧美人与善性xxx| 欧美乱码精品一区二区三区| 久久精品成人免费网站| 黑人巨大精品欧美一区二区蜜桃| 午夜久久久在线观看| 久久久久精品人妻al黑| 亚洲欧美清纯卡通| 欧美日韩成人在线一区二区| 极品少妇高潮喷水抽搐| 久久ye,这里只有精品| 视频区欧美日本亚洲| 成年人午夜在线观看视频| 国产一区二区三区av在线| 极品少妇高潮喷水抽搐| av天堂久久9| 夫妻性生交免费视频一级片| 亚洲精品一卡2卡三卡4卡5卡 | 午夜激情久久久久久久| 国产欧美日韩精品亚洲av| 又黄又粗又硬又大视频| 大香蕉久久成人网| 精品亚洲成a人片在线观看| www.熟女人妻精品国产| 亚洲成色77777| 97人妻天天添夜夜摸| 亚洲人成电影免费在线| 精品视频人人做人人爽| 国精品久久久久久国模美| 最近最新中文字幕大全免费视频 | 国产精品亚洲av一区麻豆| 欧美老熟妇乱子伦牲交| 咕卡用的链子| 免费人妻精品一区二区三区视频| 一区二区三区精品91| 少妇粗大呻吟视频| 午夜福利视频在线观看免费| 美女脱内裤让男人舔精品视频| 91国产中文字幕| 亚洲欧美一区二区三区久久| 蜜桃在线观看..| 99热国产这里只有精品6| 高清欧美精品videossex| 尾随美女入室| 日韩大片免费观看网站| 亚洲中文字幕日韩| 亚洲人成77777在线视频| 男女国产视频网站| 涩涩av久久男人的天堂| 亚洲一区二区三区欧美精品| 大片免费播放器 马上看| 尾随美女入室| av网站在线播放免费| 999久久久国产精品视频| 国产成人精品无人区| 亚洲国产精品一区三区| 丁香六月天网| 欧美亚洲 丝袜 人妻 在线| 精品久久久精品久久久| 亚洲,欧美精品.| 一本色道久久久久久精品综合| 久久精品久久久久久久性| 欧美激情高清一区二区三区| 国产一区二区 视频在线| 一个人免费看片子| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 国产91精品成人一区二区三区 | 日本一区二区免费在线视频| a级毛片黄视频| 激情视频va一区二区三区| 免费在线观看影片大全网站 | 日本a在线网址| 美女主播在线视频| 99国产精品一区二区三区| 天堂8中文在线网| 国产老妇伦熟女老妇高清| 1024视频免费在线观看| 亚洲欧美激情在线| 久久99精品国语久久久| 亚洲国产成人一精品久久久| 少妇人妻久久综合中文| 国产av一区二区精品久久| 久久 成人 亚洲| 你懂的网址亚洲精品在线观看| 欧美成人午夜精品| 别揉我奶头~嗯~啊~动态视频 | 免费观看a级毛片全部| av天堂在线播放| 精品一区二区三区四区五区乱码 | 99香蕉大伊视频| 国产xxxxx性猛交| 丁香六月欧美| 久久99一区二区三区| 啦啦啦啦在线视频资源| 国产精品亚洲av一区麻豆| 国产精品国产av在线观看| 国产成人a∨麻豆精品| 国产黄色免费在线视频| 精品亚洲成国产av| 免费久久久久久久精品成人欧美视频| 岛国毛片在线播放| 一二三四在线观看免费中文在| 亚洲伊人久久精品综合| 欧美老熟妇乱子伦牲交| 一区二区三区乱码不卡18| 香蕉国产在线看| 在线观看人妻少妇| 国产成人av激情在线播放| 国产成人精品无人区| 少妇粗大呻吟视频| 国产成人欧美在线观看 | 人妻人人澡人人爽人人| 国产色视频综合| 日韩精品免费视频一区二区三区| 久久久久久久精品精品| 精品福利永久在线观看| 丝瓜视频免费看黄片| 精品第一国产精品| 国产高清不卡午夜福利| 啦啦啦啦在线视频资源| 国产精品免费大片| 国产精品一区二区在线观看99| 建设人人有责人人尽责人人享有的|