高彬恒, 陳 墾, 徐 亮
(四川大學(xué) 華西藥學(xué)院,四川 成都 610041)
四氫咪唑烷是生物活性化合物的重要結(jié)構(gòu)單元[1~3],常利用鄰二胺與羰基化合物的縮合反應(yīng)合成[4],但是該方法受二胺化合物來(lái)源的限制。亞甲胺基葉立德與亞胺通過(guò)1,3-偶極環(huán)加成反應(yīng)構(gòu)建四氫咪唑烷[5,6]也是重要的合成方法,該方法利用含酯基取代的穩(wěn)定型亞甲胺基葉立德,反應(yīng)條件比較苛刻,產(chǎn)物為4,5-雙取代的四氫咪唑烷。文獻(xiàn)[7,8]方法以N-甲氧基-N-三甲硅甲基芐胺(1)作為一種非穩(wěn)定型亞甲胺基葉立德前體,在氟離子、質(zhì)子酸或路易斯酸的作用下與烯烴或羰基化合物反應(yīng),生成各種五元含氮雜環(huán)。
本文以三氟醋酸(TFA)催化1生成非穩(wěn)定型亞甲胺基葉立德;再與N-Ts醛亞胺(2a~2j)完成1,3-偶極環(huán)加成反應(yīng)合成了10個(gè)新的4-取代四氫咪唑烷(3a~3j, Scheme 1),收率80%~99%,其結(jié)構(gòu)經(jīng)1H NMR和13C NMR表征。
Varian Unity NOVA-400/54型核磁共振儀(CDCl3為溶劑,TMS為內(nèi)標(biāo))。
柱層析用硅膠,200目~300目,青島海洋化工廠;薄層層析GF254硅膠板,煙臺(tái)江友硅膠開發(fā)有限公司;其余所用試劑均為分析純。
(1)1的合成[9]
在反應(yīng)瓶中加入氯甲基三甲基硅烷4.08 g(33 mmol)和CH3CN 35 mL,攪拌下滴加芐胺7.17 g(67 mmol),回流反應(yīng)16 h。冷卻至室溫,過(guò)濾,濾液濃縮后加水50 mL,用正己烷(3×30 mL)萃取,合并萃取液,用飽和食鹽水洗滌,無(wú)水硫酸鈉干燥,減壓蒸干得淡黃色液體A 5.8 g。
Scheme1
在燒瓶中加入37%甲醛溶液2.8 mL(36 mmol)和甲醇1.45 mL(36 mmol),冰浴冷卻,攪拌下緩慢滴加A,滴畢,于0 ℃反應(yīng)1 h;于10 ℃~15 ℃反應(yīng)2 h;加入無(wú)水碳酸鉀3.17 g(23 mmol),于室溫反應(yīng)2.5 h。靜置分層,在上層清液中加入無(wú)水碳酸鉀300 mg,攪拌20 min后過(guò)濾,濾液抽干得無(wú)色透明液體16.30 g,收率81%。
(2)3的合成(以3a為例)
氬氣保護(hù),在反應(yīng)管(5 mL)中加入2a0.5 mmol,10.75 mmol和無(wú)水CH2Cl2(1.5 mL),攪拌下滴加三氟醋酸(TFA) 0.05 mmol,于室溫反應(yīng)12 h(TLC檢測(cè))。反應(yīng)液經(jīng)硅膠柱層析[洗脫劑:V(石油醚) ∶V(乙酸乙酯)=15 ∶1]純化得白色固體3a。
用類似方法合成白色固體3b~3j。
3a:1H NMRδ: 7.60(dd,J=1.6 Hz, 6.4 Hz, 2H), 7.33~7.21(m, 10H), 7.13 (dd,J=1.6 Hz, 7.6 Hz, 2H), 4.74(t,J=7.6 Hz, 1H), 4.42(d,J=7.6 Hz, 1H), 4.08(d,J=8.0 Hz, 1H), 3.58(d,J=13.2 Hz, 1H), 3.40(d,J=13.2 Hz, 1H), 3.26(dd,J=7.6 Hz, 10.0 Hz, 1H), 2.66(dd,J=7.6 Hz, 10.4 Hz, 1H), 2.43(s, 3H);13C NMRδ: 143.5, 140.6, 137.6, 135.2, 129.5, 128.5, 128.5, 128.4, 127.8, 127.5, 127.5, 126.6, 71.4, 62.4, 62.0, 57.1, 21.6。
3b:1H NMRδ: 7.61(d,J=8.0 Hz, 2H), 7.32~7.25(m, 7H), 7.17~7.15(m, 2H), 6.83(dd,J=2.0 Hz, 6.8 Hz, 2H), 4.70(t,J=7.2 Hz, 1H), 4.40(d,J=8.0 Hz, 1H), 4.08(d,J=8.0 Hz, 1H), 3.80(s, 3H), 3.59(d,J=13.2 Hz, 1H), 3.42(d,J=13.2 Hz, 1H), 3.23(dd,J=7.2 Hz, 10.0 Hz, 1H), 2.66(dd,J=8.0 Hz, 10.0 Hz, 1H), 2.45(s, 3H);13C NMRδ: 159.0, 143.4, 137.6, 135.2, 132.7, 129.5, 128.5, 128.4, 127.8, 127.8, 127.5, 113.9, 71.3, 62.4, 61.5, 57.1, 55.3, 21.6。
3c:1H NMRδ: 7.61(dd,J=2.0 Hz, 8.4 Hz, 2H), 7.30~7.20(m, 7H), 7.14~7.08(m, 4H), 4.69(t,J=7.2 Hz, 1H), 4.40(d,J=8.0 Hz, 1H), 4.06(d,J=7.6 Hz, 1H), 3.56(d,J=12.8 Hz, 1H), 3.38(d,J=13.2 Hz, 1H), 3.23(m, 1H), 2.63(dd,J=7.6 Hz, 10.4 Hz, 1H), 2.44(s, 3H), 2.32(s, 3H);13C NMRδ: 143.5, 137.6, 137.2, 135.2, 129.5, 129.2, 128.5, 128.4, 127.8, 127.5, 126.5, 71.4, 62.4, 61.8, 57.1, 21.6, 21.1。
3d:1H NMRδ: 7.70(d,J=8.4 Hz, 2H), 7.63(dd,J=1.6 Hz, 8.0 Hz, 1H), 7.47(dd,J=1.2 Hz, 8.0 Hz, 1H), 7.32~7.24(m, 6H), 7.12~7.08(m, 3H), 5.08(t,J=7.2 Hz, 1H), 4.37(d,J=8.0 Hz, 1H), 4.13(d,J=7.6 Hz, 1H), 3.53(d,J=13.2 Hz, 1H), 3.40(dd,J=6.8 Hz, 10.0 Hz, 1H), 3.31(d,J=13.2 Hz, 1H), 2.51(dd,J=7.2 Hz, 10.4 Hz, 1H), 2.45(s, 3H);13C NMRδ: 143.9, 140.0, 137.5, 134.2, 132.5, 129.7, 128.9, 128.4, 128.1, 127.8, 127.5, 122.0, 71.6, 61.5, 60.8, 57.1, 21.6。
3e:1H NMRδ: 7.69(d,J=8.4 Hz, 2H), 7.64(dd,J=1.6 Hz, 7.6 Hz, 1H), 7.31~7.23(m, 7H), 7.17(dd,J=1.6 Hz, 7.6 Hz, 1H), 7.08(dd,J=2.0 Hz, 7.2 Hz, 2H), 5.11(t,J=7.2 Hz, 1H), 4.36(d,J=8.4 Hz, 1H), 4.10(d,J=8.0 Hz, 1H), 3.52(d,J=13.2 Hz, 1H), 3.39(dd,J=7.2 Hz, 10.4 Hz, 1H), 3.31(d,J=13.2 Hz, 1H), 2.51(dd,J=7.6 Hz, 10.4 Hz, 1H), 2.45(s, 3H);13C NMRδ: 143.8, 138.5, 137.5, 134.4, 131.9, 129.7, 129.7, 129.3, 128.6, 128.4, 128.2, 128.0, 127.5, 127.2, 71.4, 60.7, 59.3, 57.1, 21.6。
3f:1H NMRδ: 7.60(d,J=7.6 Hz, 2H), 7.30~7.25(m, 9H), 7.13(dd,J=2.0 Hz, 7.2 Hz, 2H), 4.69(t,J=7.2 Hz, 1H), 4.37(d,J=8.0 Hz, 1H), 4.08(d,J=7.6 Hz, 1H), 3.57(d,J=13.2 Hz, 1H), 3.40(d,J=12.8 Hz, 1H), 3.22(dd,J=6.8 Hz, 10.0 Hz, 1H), 2.62(dd,J=7.6 Hz, 10.4 Hz, 1H), 2.45 (s, 3H);13C NMRδ: 143.8, 139.2, 137.4, 134.9, 133.3, 129.6, 128.6, 128.5, 128.4, 128.0, 127.8, 127.5, 71.3, 62.1, 61.4, 57.0, 21.6。
3g:1H NMRδ: 7.57(d,J=8.0 Hz, 2H), 7.31~7.17(m, 9H), 6.99(d,J=3.2 Hz, 1H), 6.88(dd,J=3.2 Hz, 4.8 Hz, 1H), 5.11(t,J=6.4 Hz, 1H), 4.26(d,J=8.4 Hz, 1H), 4.09(d,J=7.2 Hz, 1H), 3.65(d,J=13.2 Hz, 1H), 3.49(d,J=13.2 Hz, 1H), 3.18(dd,J=6.8 Hz, 10.0 Hz, 1H), 2.85(dd,J=6.4 Hz, 10.4 Hz, 1H), 2.42(s, 3H);13C NMRδ: 144.4, 143.5, 137.5, 135.5, 129.5, 128.5, 128.4, 127.6, 127.5, 126.4, 125.6, 125.3, 70.3, 61.8, 57.7, 57.0, 21.6。
3h:1H NMRδ: 7.61~7.59(m, 2H), 7.31~7.26(m, 6H), 7.13(dd,J=1.6 Hz, 7.2 Hz, 2H), 6.99~6.95(m, 2H), 4.72(t,J=7.2 Hz, 1H), 4.38(d,J=7.6 Hz, 1H), 4.08(d,J=7.6 Hz, 1H), 3.57(d,J=12.8 Hz, 1H), 3.41(d,J=12.8 Hz, 1H), 3.22(m, 1H), 2.63(dd,J=7.2 Hz, 10.0 Hz, 1H), 2.45(s, 3H);13C NMRδ: 163.4, 161.0, 143.7, 137.5, 136.5, 136.5, 135.0, 129.6, 128.5, 128.3, 128.2, 127.8, 127.5, 115.4, 115.2, 71.3, 62.3, 61.4, 57.0, 21.6。
3i:1H NMRδ: 7.61~7.58(m, 2H), 7.32~7.25(m, 6H), 7.25~7.17(m, 2H), 6.31~6.27(m, 2H), 4.83(t,J=7.6 Hz, 1H), 4.40(d,J=8.0 Hz, 1H), 4.06(d,J=8.4 Hz, 1H), 3.65(d,J=12.8 Hz, 1H), 3.48(d,J=12.8 Hz, 1H), 3.20(m, 1H), 2.98(dd,J=8.0 Hz, 10.8 Hz, 1H), 2.43(s, 3H);13C NMRδ: 152.5, 143.4, 142.2, 137.7, 135.8, 129.5, 128.6, 128.4, 127.6, 127.5, 110.4, 108.1, 70.7, 58.2, 57.2, 55.0, 21.5。
3j:1H NMRδ: 7.70(d,J=8.4 Hz, 2H), 7.32(d,J=8.0 Hz, 2H), 7.29~7.23 (m, 3H), 7.01~6.99(m, 2H), 4.20(d,J=8.4 Hz, 1H), 3.64(m, 1H), 3.63(d,J=8.0 Hz, 1H), 3.47(d,J=13.2 Hz, 1H), 3.28(d,J=13.2 Hz, 1H), 2.77(dd,J=7.6 Hz, 9.6 Hz, 1H), 2.48(s, 3H), 2.32(dd,J=7.6 Hz, 9.6 Hz, 1H), 2.20~2.15(m, 1H), 0.95(d,J=6.8 Hz, 3H), 0.91(d,J=6.8 Hz, 3H);13C NMRδ: 143.4, 137.8, 135.2, 129.5, 128.3, 128.2, 128.0, 127.3, 70.8, 64.3, 56.8, 53.7, 31.5, 21.6, 19.3, 16.6。
表 1 催化劑的篩選*
*催化劑10 mol%,其余反應(yīng)條件同1.2(2)
以2a作底物,10 mol%催化劑,其余反應(yīng)條件同1.2(2),對(duì)催化劑進(jìn)行篩選,結(jié)果見(jiàn)表1。從表1可以看出,各種類型的催化劑均能不同程度地催化反應(yīng)發(fā)生,得到預(yù)期的環(huán)加成產(chǎn)物3a。文獻(xiàn)報(bào)道氟化鋰催化1與各種貧電子烯烴發(fā)生環(huán)加成反應(yīng),但是在本反應(yīng)的篩選中,僅獲得60%的收率。路易斯酸也可以催化反應(yīng),但是活性較低。質(zhì)子酸的催化活性相對(duì)高,其中TFA幾乎達(dá)到了定量收率,是最佳催化劑。無(wú)機(jī)質(zhì)子酸硫酸也可以獲得較好的收率。磺酸類質(zhì)子酸表現(xiàn)不佳,收率低于30%。
以TFA(10 mol%)為催化劑,其余反應(yīng)條件同1.2(2),拓展底物(2a~2j)的實(shí)驗(yàn)結(jié)果見(jiàn)表2。從表2可以看出,1能與2發(fā)生1,3-偶極環(huán)加成反應(yīng),生成相應(yīng)的3。無(wú)論是富電子的還是貧電子的取代苯基對(duì)甲苯磺酰亞胺(2a~2g),或是芳雜醛對(duì)甲苯磺酰亞胺(2h~2i),均獲得了90%以上的高收率。異丁醛亞胺(2j)也可以在此條件下獲得良好的收率(80%),這說(shuō)明該反應(yīng)對(duì)脂肪醛亞胺也具有良好的底物適應(yīng)性。
表 2 亞胺底物的拓展*
*以TFA(10 mol%)為催化劑,其余反應(yīng)條件同1.2(2)
[1] Sharma V, Crankshaw C L, Piwnica-Worms D. Effects of multidrug resistance(MDR1)p-glycoprotein expression levels and coordination metal on the cytotoxic potency of multidentate(N4O2)(Ethylenediamine) bis[propyl(R-benzylimino)]metal(Ⅲ) Cations[J].J Med Chem,1996,39:3483-3490.
[2] Sage C R, Michelitsch M D, Stout T J,etal. D221 in thymidylate synthase controls conformation change,and thereby opening of the imidazolidine[J].Biochemistry,1998,37:13893-13901.
[3] Chang-Fong G, Benamour K, Szymonki B,etal. Synthesis andα-adrenergic binding ligand affinities of 2-imino-midazolidine derivatives[J].Chem Pharm Bull,2000,48(5)729-733.
[4] Katritzky A, Suzuki K, He Hai-Ying. Convenient syntheses of unsymmetrical imidazolidines[J].J Org Chem,2002,67:3109-3114.
[5] Viso A, de la Pradilla F, Garcia A,etal. Highly diastereoselective[3+2] cycloadditions between nonracemicp-tolylsulfinimines and iminoesters:An efficient entry to enantiopureImidazolidines and vicinal diaminoalcohols[J].Chem Eur J,2003,9:2867-2876.
[6] Padwa A, Dean D, Osterhout M,etal. Synthesis of function alized azomethine ylides via the Rh(Ⅱ)-catalyzed cyclization ofalpha-diazo carbonyls onto iminopi-bonds[J].J Org Chem,1994,59:5347-5357.
[7] Terao Y, Kotaki H, Imai N,etal. Trifluoroacetic acid-catalyzed 1,3-cycloaddition of the simplest iminium ylide leading to 3- or 3,4-substituted pyrrolidines and 2,5-dihydropyrroles[J].Chem Pharm Bull,1985,33:2762-2766.
[8] Padwa A, Dent W. On the use ofN-[(trimethylsilyl)methyl]amino ethers as capped azomethine ylide equivalents[J].J Org Chem,1987,52:235-244.
[9] Kotian P, Lin T, El-Kattan,etal. A practical large-scale synthesis of (3R,4R)-4-(hydroxymethyl)pyrrolidin-3-olvia asymmetric 1,3-dipolar cycloaddition[J].Organic Process Research & Development,2005,9:193-197.