• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EFFECT OF SWEEP AND EJECTION EVENTS ON PARTICLE DISPERSION IN WALL BOUNDED TURBULENT FLOWS*

    2012-08-22 08:31:57LUOJianping
    水動力學研究與進展 B輯 2012年5期

    LUO Jian-ping

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China,

    E-mail: jp_luo@163.com

    LU Zhi-ming

    Shanghai Key Laboratory of Mechanics in Energy Engineering and Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    QIU Xiang

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China

    LI Dong-mei, LIU Yu-lu

    Shanghai Institute of Technology, Shanghai 200235, China

    (Received September 24, 2012, Revised October 8, 2012)

    EFFECT OF SWEEP AND EJECTION EVENTS ON PARTICLE DISPERSION IN WALL BOUNDED TURBULENT FLOWS*

    LUO Jian-ping

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China,

    E-mail: jp_luo@163.com

    LU Zhi-ming

    Shanghai Key Laboratory of Mechanics in Energy Engineering and Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    QIU Xiang

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China

    LI Dong-mei, LIU Yu-lu

    Shanghai Institute of Technology, Shanghai 200235, China

    (Received September 24, 2012, Revised October 8, 2012)

    This paper studies the sweep and ejection events in a channel flow with Reτ=80 by using Direct Numerical Simulation (DNS). The effects of ejection and sweep events on the transport of fluid particles are analyzed separately through a quadrant technique. By analyzing trajectories of the particles released at different wall-normal locations, it is found that the particles from the ejection events mainly move upward while the particles from the sweep events move downward of the flow during short and intermediate diffusion time durations. Numerical results show that the effects of the ejection and sweep events on the mean displacement and the mean square dispersion remain for a long time, one-order of magnitude larger than the streamwise Lagrangian integral scales.

    sweep, ejection, dispersion, quadrant analysis, turbulent channel flow

    Introduction

    One of the most ubiquitous properties of turbulent flows is the enhancement of transport processes, such as those of mass, heat or momentum, and many engineering devices depend on the ability to control and predict those processes for their successful operations[1]. It is now recognized that the downdrafts (orthe sweeps) and the updrafts (or the ejections) are the typical constitutive motions of coherent structures near the wall. These events make the most of contributions to both the Reynolds stresses and the momentum transfer[2]. Hence, the properties of these two types of eddy motions were extensively studied[1-9]. Keshavarzi et al.[3]studied experimentally the burst events, and their effects on the sediment entrainment and the deposition over two types of ripples, and found that the downstream of the ripple burst events are dominant in Quadrants 1 and 3, wheareas the upstream of the ripple burst events are dominant in Quadrants 2 and 4. Further, they found that the sediment entrainment/deposition would occur upstream/ downstream of the ripple burst events. Ojha and Mazumder[4]investigated experimentally the shear stress generation in a flow over a series of two-dimensional dunes and found that the relative dominance of the sweep and eject events in the generation ofshear stress is in a spatially cyclic manner near the bed region. Mianaei and Keshavarzi[5,6]found that at the stoss side of ripples, quadrants (II) and (IV) were dominant over quadrants (I) and (III), wheareas the reverse is true in the lee side. Huang et al.[7]discussed the bubble effects on the sweep and ejection events as a function of the Reynolds number. They found that the bubble might suppress the ejection and sweep events in high Reynolds number flows. The ejection-sweep cycle over bare and forested gentle hills was examined by Poggi and Katul[8]experimentally. It is shown that the ejections dominate the momentum transfer for both surface-covers at the top of the inner layer. However, the sweeps dominate the momentum transfer within and near the canopy. Besides these experimental studies, there were also extensive numerical simulations of the burst phenomena[1,9]. In conclusion, there were many studies of ejection and sweep events on momentum and particle transportation, but very few about the contributions of sweep and ejection events to the particle dispersion behavior in wall turbulent flows.

    In this paper, we investigate in details the transport of fluid particles for a channel flow with a Reynolds number Reτ=80using the Direct Numerical Simulation (DNS) approach. The effects of the ejection and sweep events on the transport of the particles are analyzed separately.

    1. Numerical results and discussions

    A DNS of a turbulent channel flow is carried out with 96×65×64 mesh points at a Reynolds number of Reτ=uτδ/ν=80, where uτ, δ and ν are, respectively, the friction velocity, the half width of the channel and the kinematic viscosity. The domain dimesions in the streamwise, wall-normal, and spanwise directions are 1 880×160×630 in units of wall thickness. The corresponding grid numbers in three directions are 96×65×64. The mass conservation equation and the Navier-Stokes (the momentum) equations of incompressible fluids are as follows

    where u, ν and p are the velocity vector, the kinematic viscosity and the pressure, respectively. A pseudo-spectral method is used in the spatial domain to solve the Navier-Stokes equations. Orszag and Kells[10]proposed a method to split the Navier-Stokes equation in time with fractional steps to integrate the non-linear terms, the pressure and the viscous terms separately. Periodic boundary conditions are imposed on the streamwise and spanwise directions to obtain the velocity of the fluid particles. The velocity fields are computed and stored with a time intervalΔt+=/ν=0.2for a period of 1 000. The fluid particle velocity along a particle trajectory is computed by employing a third-order Hermite polynomials in the homogeneous directions and a Chebyshev polynomial in the wall-normal direction[11-13]. The particles are tracked through the computed velocity fields to obtain the Lagrangian velocity data[11-13].

    The quadrant analysis is a useful technique to study how the turbulent fluctuations contribute to the momentum transfer throughout the bottom boundary layer[1,14,15]. As argued by Bogard and Tiederman[14], the quadrant analysis depends on the value of the hyperbolic-hole size H, and the optimum threshold for the buffer region is H≈1, based on direct comparisons between the detected events and instantaneous visualizations of the flow[14]. Following this line, we take H=1 in the present study[15].

    Table 1 Number-fraction of ejection and sweep particles at different released positions

    Table 2 Lagrangian integral time scales in the streamwise ()and wall-normal () directions

    Table 2 Lagrangian integral time scales in the streamwise ()and wall-normal () directions

    +T+L 1 T2L3.4 30 6 15.7 42.7 10 30 48.5 12

    Table 1 shows the number fraction of the ejection and sweep particles at various released positions (30 720 particles are released from each location). Note that only a small fraction of particles participate in the ejection and sweep events, as shown below, however, the ejection and sweep events play a dominant role in the particle dispersion behavior. It is also seen from Table 1 that more sweep events are detected than the eject events in a viscous sub-layer(y+=

    0 3.4), whereas more eject events than sweep events are detected in a log-layer (y+=30). The Lagrangian in-

    0 tegral time scale is an important typical time scale in the study of particle dispersion. The Lagrangian integral scales at three different vertical positions obtained by using the autocorrelation method are listed in Table 2. It is clearly seen that longitudinal integral timescales are much longer than the vertical ones.

    Fig.1 Distribution of particles released from y+=3.4 inx-0y plane at different times

    Now we focus our attention to the different contributions of the eject and the sweep events in the boundary layer to the mean displacements in both streamwise and wall-normal directions. Figure 1 shows the evolution of the particle distribution released from= 30 in x-y plane at t+=10, 50, 200and1 000,respectively,wheredenotesthereleased position in the streamwise direction. In the figure, the notation “ejection” denotes the particles originally in the ejection events, and the notation“sweep” means the particles originally in the sweep events. It is clearly seen that the particles from the sweep or the ejection events move in different ways, particularly at the early stage, i.e., the particles from the ejection events mainly move upward (i.e., leave the wall) and streamwise at the same time, while the particles from the sweep events move downstream close to the wall. The different movements of the particles from the sweep and the ejection events can still be seen clearly at t+=200. Similar behavior is found for the particles released from=15 or 30, but they are not shown here for clearness of the picture. To see more clearly (quantitatively) the different movements of the particles from the sweep and the ejection events, we plot the difference of the mean displacementsof the ejected and the swept particles released from three different locations as shown in Fig.2. First, it is found that, for the three release locations, the mean displacements of the particles from the sweep eventsare larger than that from the ejection eventswhen t+is less than aboutandbecomes smallerthanwhen t+≥, wheredenotes the integral time scale in the streamwise direction as listed in Table 2. This behavior can be mainly explained as follows. During the early stage, the particles from the sweep events have a larger streamwise velocity and move faster than those from the ejection events, and after some time (about one to two integral time scales after releasing), the ejected particles gather a higher momentum from the surrounding fluid as they leave the wall whereas the swept particles lose their high momentum as they approach the wall. Secondly, the displacement difference between the ejected and the swept particles is much larger for the particles released from=3.4 as compared to the particles released from=15.7 and 30 in a large time duration. The un-vanished difference between the ejected and the swept particles may indicate that the particles from the sweep motion stay for a fairly long time in the low-speed area close to the wall.

    Fig.3 Difference of mean displacementbetween the ejected and the swept particles released from different locations

    Figure 3 shows the difference of the mean displacement between the ejected and the swept particles released from y+=3.4, 15.7, 30 in the wall-normal

    0direction. The difference between sweep and ejection is clearly seen in a short diffusion duration. First, The differenceincreases rapidly with time for a short duration and then decreases gradually with time when t+passes the pointfor the particles released from=15.7 and 30. Meanwhile, for the particles released from=3.4, the differenceincreases slowly with time at the early stage, then rapidly after t+≈200, reaches the maximum value at about the time t+≈500, and after that, the difference decreases steadily. Secondly, the difference for the case t+<300 increases with the initial releasing distance from the wall. i.e.,

    when t+<300. For a large diffusion time duration, the particles are expected to distribute uniformly across the whole channel, so little difference is generated by ejection and sweep, i.e., the differencedecreases for a long time and disappears in a sufficiently long time. This property is demonstrated in Fig.3.

    Now, we consider the particle’s mean-square dispersion, which is calculated as

    where y0and t0are the initial spatial location and the initial time. The different behaviors of the meansquare dispersion in three directions for the particles released from the viscous sub-layer, the buffer layer and thelog layer were investigated in detail byLuoet al.[10]. In this study, we consider especially theeffects of the sweep and eject events on the mean-square dispersion. The mean-square dispersionin the streamwise and wall-normal directions for the particles released from the viscous sublayer (=3.4), the buffer layer (=15.7) and the log layer(= 30)are shown in Figs.4-5. For a comparison, the results for the dispersion of all released particles are also shown in these figures. As explained in Ref.[10], the results offor all particles show that the particles released from each layer disperse in proportion to t+2for short diffusion time durations, to t+3for intermediately large time durations due to the mean shear, and to t+1for a long time duration. It is interesting to note that the dispersion behavior for eitherthe ejection or the sweep events is qualitatively the same as the total dispersion behavior, i.e., there also exist three regimes with different power indices after the release of the particles. Quantitatively, the particle dispersion for the sweep events at a short time duration is smaller than that for the ejection events when the particles are released from the viscous sublayer (=3.4), but the reverse is true if the particles are released from the log layer (=30). Meanwhile, it is seen that the dispersion for the two events is nearly the same when the particles are released from the buffer layer (=15.7). This means that the sweep events disperse the particles in the streamwise direction more efficiently than the ejection events in the viscous sublayer and the reverse is true in the log layer. While the efficiency of the sweep and the ejection events is approximately the same near the buffer layer.

    Fig.4 Mean-square dispersion of particles released from= 3.4, 15.7, 30 in the streamwise direction

    Fig.5 Mean-square dispersion of particles released from= 3.4, 15.7, 30 in the wall-normal direction

    From Fig.5, it is seen that the dispersion in the wall normal direction from both events is proportional to t+2for a short time duration, then reduces tot+1for an intermediate time duration and finally reduces to t+0due to the wall constraint. The difference of the mean square dispersion between the two coherent events is relatively small except during the period of several integral time scales. The non trivial difference between the two coherent events in both streamwise and wall normal directions during an intermediate time duration needs a further investigation.

    2. Conclusions

    In this paper, the DNS method is applied to study the contributions of the sweep and ejection events to the particle dispersion in the wall-bounded turbulentflows with Reτ=80. The quadrant technique is adopted to analyze the events of sweep and ejection. By analyzing the trajectories of the particles released from the sweep and ejection events at different heights, it is found that remarkable differences appear for the mean displacement and the dispersion of the particles during short and intermediate diffusion time durations. The main results are as follows:

    (1) The mean displacement of the particles released from the sweep events in the streamwise direction is larger than that from the ejection events at t+<, but the reverse is true later on. The displacement difference between the ejected and thwswept particles is much larger for the particles released from=3.4as compared to the particles released from=15.7 and 30 after a long time. The initial effects of the ejection and sweep events on the mean displacement remain for several Lagrangian time scales.

    (2) The mean square dispersion of the particles from the ejection and sweep events in the streamwise direction is proportional to t+2, t+3and t+1in the early time stage, the intermediate time stage and the long time stage, respectively for all three release locations. However, quantitatively, the dispersion of the particles from the sweep events is smaller (larger) than that from the ejection events when the particles are released from the viscous sublayer (the log layer), and the two dispersions are nearly the same when the particles are released from the buffer layer. Again, the numerical results show that the initial effects from the two events remain for quite a long time, as long as one-order of magnitude larger than the Lagrangian time scales.

    [1] ADRIAN L. D., OSCAR F. and JAVIER J. Three-dimensional structure of momentum transfer in turbulent channels[J]. Journal of Fluid Mechanics, 2012, 694: 100-130.

    [2] GUO H., BORODULIN V. I. and KACHANOV Y. S. et al. Nature of sweep and ejection events in transitional and turbulent boundary layers[J]. Journal of turbulence, 2010, 11(34): 1-51.

    [3] KESHAVARZI A., BALL J. and NABAVI H. Frequency pattern of turbulent flow and sediment entrainment over ripples using image processing[J]. Hydrology and Earth System Sciences, 2012, 16(1): 147-156.

    [4] OJHA S. P., MAZUMDER B. S. Turbulence characteristics of flow region over a series of 2-D dune shaped structures[J]. Advances In Water Resources, 2008, 31(3): 561-576.

    [5] MIANAEI S. J., KESHAVARZI A. Spatio-temporal variation of transition probability of bursting events over the ripples at the bed of open channel[J]. Stochastic Environmental Research and Risk Assessment, 2008, 22(2): 257-264.

    [6] MIANAEI S. J., KESHAVARZI A. Study of near bed stochastic turbulence and sediment entrainment over the ripples at the bed of open channel using image processing technique[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(5): 591-598.

    [7] HUANG Jian, MURAI Yuichi and YAMAMOTO Fujio. Quadrant analysis of bubble induced velocity fluctuations in a transitional boundary layer[J]. Journal of

    [8] POGGI D., KATUL G. The ejection-sweep cycle over bare and forested gentle hills: A laboratory experiment[J]. Boundary-Layer Meteorology, 2007, 122(3): 493-515.

    [9] JIMENEZ J., HOYAS S. and SIMENS M. P. et al. Turbulent boundary layers and channels at moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2010, 657: 335-360.

    [10] ORSZAG S. A., KELLS L. C. Transition to turbulence in plane posiseuille and plane coquette flow[J]. Journal of Fluid Mechanics, 1980, 96: 159-205.

    [11] LUO J., USHIJIMA T. and KITOH O. et al. Lagrangian dispersion in turbulent channel flow and its relationship to Eulerian statistics[J]. International Journal of Heat and Fluid Flow, 2007, 28(5): 871-881.

    [12] LUO Jian-Ping, LU Zhi-Ming and USHIJIMA T. et al. Lagrangian structure function’s exponents in turbulent channel flow[J]. Chinese Physics Letters, 2010, 27(2): 024708. Hydrodynamics, 2009, 21(1): 93-99.

    [13] LUO Jian-ping, QIU Xiang and LI Dong-mei et al. High order Lagrangian velocity statistics in a turbulent channel flow with =Reτ80[J]. Journal of Hydrodynamics, 2012, 24(2): 287-291.

    [14] BOGARD D. G., TIEDERMAN W. G. Burst detection with single-point velocity measurements[J]. Journal of Fluid Mechanics, 1986, 162: 389-413.

    [15] LUO J., USHIJIMA T. and KITOH O. et al. Contributions of sweep and ejection events to particle disperrsion in wall turbulent flows[J]. Procedding of the 5th International Conference on Asian and Pacific Coasts. Singapore, 2009, 4: 93-99.

    10.1016/S1001-6058(11)60305-3

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11172179, 11102114), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant No. ZX2010-12), the Key Project of Shanghai Municipal Education Commission (Grant No. 11ZZ87) and the Shanghai Pujiang Program (Grant No. 08PJ1409100).

    Biography: LUO Jian-ping (1964-), Female, Ph. D.,

    Associate Professor

    LU Zhi-ming,

    E-mail: zmlu@staff.shu.edu.cn

    一二三四社区在线视频社区8| 桃红色精品国产亚洲av| 麻豆国产av国片精品| 人人妻人人澡人人看| 精品国产乱码久久久久久男人| 欧美zozozo另类| 91国产中文字幕| 国产视频内射| 午夜久久久久精精品| 国产日本99.免费观看| 亚洲精品国产一区二区精华液| 国产成人av激情在线播放| 国产伦在线观看视频一区| 欧美不卡视频在线免费观看 | 欧美在线黄色| 国产精品电影一区二区三区| 校园春色视频在线观看| 国内精品久久久久久久电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜理论影院| 一本综合久久免费| 老汉色∧v一级毛片| 成人三级黄色视频| 一二三四社区在线视频社区8| 91av网站免费观看| 欧美日韩一级在线毛片| 亚洲av电影不卡..在线观看| 波多野结衣巨乳人妻| 亚洲av五月六月丁香网| 欧美一区二区精品小视频在线| 亚洲成人久久性| 一a级毛片在线观看| 日本精品一区二区三区蜜桃| 一二三四社区在线视频社区8| 亚洲精品色激情综合| 黄频高清免费视频| 18禁黄网站禁片午夜丰满| 精品久久久久久久久久久久久 | 99精品在免费线老司机午夜| 成人18禁在线播放| 欧美另类亚洲清纯唯美| 99国产精品99久久久久| 亚洲 欧美 日韩 在线 免费| 午夜a级毛片| 国产精品日韩av在线免费观看| 一级片免费观看大全| 国产熟女午夜一区二区三区| 中文字幕最新亚洲高清| 色老头精品视频在线观看| 999久久久国产精品视频| 欧美黑人精品巨大| cao死你这个sao货| 国产精品亚洲av一区麻豆| 精品一区二区三区av网在线观看| 一本大道久久a久久精品| 老汉色∧v一级毛片| 一区福利在线观看| 欧美性长视频在线观看| 黄色 视频免费看| 97人妻精品一区二区三区麻豆 | 久久亚洲真实| 桃色一区二区三区在线观看| 成人欧美大片| 少妇 在线观看| 国产三级在线视频| 欧美性猛交黑人性爽| 一个人观看的视频www高清免费观看 | 久久精品91无色码中文字幕| 国产亚洲欧美98| av电影中文网址| 亚洲成人精品中文字幕电影| 国产精品久久久久久人妻精品电影| 精品午夜福利视频在线观看一区| 亚洲一区中文字幕在线| 国产精品免费一区二区三区在线| 国产精华一区二区三区| 真人做人爱边吃奶动态| 亚洲美女黄片视频| 免费搜索国产男女视频| √禁漫天堂资源中文www| 777久久人妻少妇嫩草av网站| 国内揄拍国产精品人妻在线 | 欧美黄色淫秽网站| 麻豆一二三区av精品| 天天一区二区日本电影三级| 精品人妻1区二区| 天堂动漫精品| 国产精华一区二区三区| 亚洲国产中文字幕在线视频| 熟妇人妻久久中文字幕3abv| 97碰自拍视频| 久久久久久国产a免费观看| 在线观看免费日韩欧美大片| 九色国产91popny在线| 日本熟妇午夜| 男女午夜视频在线观看| 免费高清在线观看日韩| 免费在线观看亚洲国产| 亚洲男人的天堂狠狠| 99久久99久久久精品蜜桃| 12—13女人毛片做爰片一| 丰满的人妻完整版| 国产精品 国内视频| x7x7x7水蜜桃| 热re99久久国产66热| 亚洲精品在线美女| 欧美黑人欧美精品刺激| 成年人黄色毛片网站| 黄色丝袜av网址大全| 日韩国内少妇激情av| 变态另类成人亚洲欧美熟女| 一区二区日韩欧美中文字幕| 亚洲精品久久国产高清桃花| 级片在线观看| 亚洲中文字幕日韩| 亚洲第一青青草原| 欧美成人一区二区免费高清观看 | 精品人妻1区二区| 欧美激情极品国产一区二区三区| 女警被强在线播放| 精品久久久久久久人妻蜜臀av| 亚洲国产高清在线一区二区三 | 久久精品影院6| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美98| 真人做人爱边吃奶动态| 国产高清视频在线播放一区| 啦啦啦 在线观看视频| 狂野欧美激情性xxxx| 欧美在线黄色| 真人做人爱边吃奶动态| 亚洲欧美激情综合另类| 亚洲国产欧美日韩在线播放| 国产亚洲精品av在线| 欧洲精品卡2卡3卡4卡5卡区| 十八禁人妻一区二区| 国产精品爽爽va在线观看网站 | 美女扒开内裤让男人捅视频| 91成年电影在线观看| 国产精品久久久av美女十八| 国产精品99久久99久久久不卡| 国产高清videossex| 亚洲人成电影免费在线| 91av网站免费观看| 欧美黑人欧美精品刺激| 国产亚洲精品久久久久5区| 久久久久国内视频| 日韩欧美在线二视频| 91九色精品人成在线观看| 亚洲精品在线美女| 午夜免费观看网址| 亚洲aⅴ乱码一区二区在线播放 | www.熟女人妻精品国产| 18禁裸乳无遮挡免费网站照片 | 日本免费一区二区三区高清不卡| 好看av亚洲va欧美ⅴa在| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美一区二区综合| or卡值多少钱| 亚洲精品色激情综合| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全免费视频| 成人亚洲精品av一区二区| 一本精品99久久精品77| 欧美色欧美亚洲另类二区| 久久亚洲真实| 一个人免费在线观看的高清视频| 99热只有精品国产| 日韩 欧美 亚洲 中文字幕| 亚洲一区中文字幕在线| 国产久久久一区二区三区| 国产日本99.免费观看| 国产av又大| 国产av又大| 免费看十八禁软件| 免费人成视频x8x8入口观看| 欧美性猛交黑人性爽| 国产欧美日韩精品亚洲av| 1024香蕉在线观看| 欧美av亚洲av综合av国产av| 伊人久久大香线蕉亚洲五| 国产乱人伦免费视频| 一区二区三区国产精品乱码| 久久伊人香网站| 女生性感内裤真人,穿戴方法视频| 国产一区二区三区视频了| 亚洲三区欧美一区| 亚洲国产高清在线一区二区三 | 亚洲精品久久国产高清桃花| 在线观看日韩欧美| 精品欧美一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 国产精品野战在线观看| 超碰成人久久| 女性被躁到高潮视频| 999精品在线视频| 色在线成人网| 亚洲av美国av| 免费看美女性在线毛片视频| 一本久久中文字幕| 国产亚洲欧美98| 欧美国产日韩亚洲一区| 高清在线国产一区| 国产又黄又爽又无遮挡在线| 国产又黄又爽又无遮挡在线| 国产99久久九九免费精品| 久久国产亚洲av麻豆专区| 亚洲自偷自拍图片 自拍| 国产黄片美女视频| 亚洲成人久久性| 2021天堂中文幕一二区在线观 | 亚洲欧美精品综合久久99| 精品国产乱子伦一区二区三区| 日本熟妇午夜| 美女大奶头视频| 久久精品aⅴ一区二区三区四区| 一a级毛片在线观看| 老汉色∧v一级毛片| 国产野战对白在线观看| 亚洲激情在线av| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 久久久久久久久中文| 久久欧美精品欧美久久欧美| 久久久久久久午夜电影| 国产国语露脸激情在线看| 国产激情欧美一区二区| 老司机靠b影院| 国产精品久久久人人做人人爽| 欧美激情高清一区二区三区| 很黄的视频免费| 国产亚洲精品av在线| 午夜免费成人在线视频| 成人亚洲精品一区在线观看| 麻豆成人午夜福利视频| 亚洲欧美日韩高清在线视频| 色哟哟哟哟哟哟| 深夜精品福利| 欧美乱妇无乱码| 久久人妻av系列| 欧美三级亚洲精品| 日韩欧美三级三区| 99riav亚洲国产免费| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 欧美午夜高清在线| 这个男人来自地球电影免费观看| 中文在线观看免费www的网站 | 侵犯人妻中文字幕一二三四区| 男女下面进入的视频免费午夜 | 精品欧美一区二区三区在线| 亚洲av五月六月丁香网| 午夜福利一区二区在线看| 亚洲国产欧美一区二区综合| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 久久天堂一区二区三区四区| 国产精品久久视频播放| 久久久久国产一级毛片高清牌| 亚洲国产日韩欧美精品在线观看 | 精品久久久久久,| 日韩欧美免费精品| 国产成人欧美在线观看| 欧美国产精品va在线观看不卡| 亚洲国产精品999在线| 久久中文字幕一级| 成人国语在线视频| 亚洲自偷自拍图片 自拍| 一a级毛片在线观看| 男女视频在线观看网站免费 | 日韩欧美国产在线观看| 国语自产精品视频在线第100页| 久久天堂一区二区三区四区| 俺也久久电影网| 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 国产精品二区激情视频| 精品久久久久久久末码| 国产aⅴ精品一区二区三区波| 亚洲精品国产区一区二| 久久久久久久午夜电影| 女人被狂操c到高潮| 天天一区二区日本电影三级| 草草在线视频免费看| 久久性视频一级片| 真人做人爱边吃奶动态| 亚洲av成人不卡在线观看播放网| 嫩草影院精品99| 精品午夜福利视频在线观看一区| 色老头精品视频在线观看| 丰满的人妻完整版| 一本一本综合久久| 国产精品野战在线观看| 午夜影院日韩av| 免费搜索国产男女视频| 亚洲欧洲精品一区二区精品久久久| 麻豆久久精品国产亚洲av| 免费看美女性在线毛片视频| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| 国内少妇人妻偷人精品xxx网站 | 午夜福利成人在线免费观看| 亚洲欧美精品综合一区二区三区| 久久中文看片网| 中亚洲国语对白在线视频| 亚洲欧洲精品一区二区精品久久久| 亚洲专区国产一区二区| 免费av毛片视频| 男女视频在线观看网站免费 | 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 老司机在亚洲福利影院| 午夜免费观看网址| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 每晚都被弄得嗷嗷叫到高潮| a级毛片a级免费在线| 色av中文字幕| 一边摸一边做爽爽视频免费| 黄色视频不卡| 亚洲第一欧美日韩一区二区三区| 久热爱精品视频在线9| 久久久久久久久久黄片| 在线观看免费午夜福利视频| 欧美日本视频| 午夜福利一区二区在线看| 麻豆成人午夜福利视频| 在线观看舔阴道视频| 男女下面进入的视频免费午夜 | 男女那种视频在线观看| 大型黄色视频在线免费观看| 免费观看人在逋| 亚洲国产中文字幕在线视频| 欧美成人午夜精品| 精品久久久久久久毛片微露脸| 成人亚洲精品av一区二区| 一级黄色大片毛片| 日韩欧美三级三区| 午夜激情福利司机影院| 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| 操出白浆在线播放| 久久久久国产精品人妻aⅴ院| 男女床上黄色一级片免费看| e午夜精品久久久久久久| 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久, | 91成人精品电影| 这个男人来自地球电影免费观看| 亚洲av中文字字幕乱码综合 | 精品日产1卡2卡| 999精品在线视频| 精品免费久久久久久久清纯| 久久久久久久久免费视频了| 婷婷精品国产亚洲av在线| 一级片免费观看大全| 人人澡人人妻人| 免费看a级黄色片| 久久久久国内视频| 欧美日本视频| 亚洲,欧美精品.| 国产97色在线日韩免费| 一区二区三区激情视频| 黄色视频,在线免费观看| 亚洲国产精品久久男人天堂| 国产成人欧美| 99国产综合亚洲精品| 最近最新中文字幕大全电影3 | 欧美日韩乱码在线| 成人18禁高潮啪啪吃奶动态图| av天堂在线播放| 桃红色精品国产亚洲av| 一本大道久久a久久精品| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 久久香蕉精品热| 听说在线观看完整版免费高清| xxx96com| 巨乳人妻的诱惑在线观看| 国产熟女午夜一区二区三区| 搞女人的毛片| 在线天堂中文资源库| 日韩欧美在线二视频| 久久久久亚洲av毛片大全| 这个男人来自地球电影免费观看| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜 | 美国免费a级毛片| 国产精品二区激情视频| 成人三级做爰电影| 99久久久亚洲精品蜜臀av| 最近最新中文字幕大全免费视频| 国产激情欧美一区二区| 两个人免费观看高清视频| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 日日干狠狠操夜夜爽| 国产99久久九九免费精品| 在线视频色国产色| 精品欧美国产一区二区三| 欧美国产精品va在线观看不卡| 亚洲精品国产精品久久久不卡| 在线播放国产精品三级| 成人三级黄色视频| 亚洲成人久久爱视频| av免费在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱子伦一区二区三区| 亚洲片人在线观看| 99在线视频只有这里精品首页| 美女国产高潮福利片在线看| 露出奶头的视频| 亚洲在线自拍视频| 一区福利在线观看| 夜夜夜夜夜久久久久| 精品一区二区三区视频在线观看免费| 欧美成人性av电影在线观看| 亚洲国产欧美网| 88av欧美| 成年免费大片在线观看| 国产一区二区三区视频了| 男女视频在线观看网站免费 | 一二三四在线观看免费中文在| 叶爱在线成人免费视频播放| 久久青草综合色| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 999久久久国产精品视频| 桃红色精品国产亚洲av| 欧美不卡视频在线免费观看 | 欧美黑人巨大hd| 韩国av一区二区三区四区| АⅤ资源中文在线天堂| 正在播放国产对白刺激| 久久国产乱子伦精品免费另类| 一级作爱视频免费观看| 女性被躁到高潮视频| 欧美性猛交黑人性爽| 中文在线观看免费www的网站 | 午夜免费观看网址| 美女扒开内裤让男人捅视频| 亚洲全国av大片| 亚洲五月婷婷丁香| 黑人欧美特级aaaaaa片| 一本大道久久a久久精品| 国产精品九九99| 久久人妻av系列| av欧美777| 可以免费在线观看a视频的电影网站| 91字幕亚洲| 青草久久国产| 国语自产精品视频在线第100页| 国产黄色小视频在线观看| 午夜日韩欧美国产| 亚洲熟妇中文字幕五十中出| svipshipincom国产片| 巨乳人妻的诱惑在线观看| 夜夜夜夜夜久久久久| 久久欧美精品欧美久久欧美| 一级作爱视频免费观看| 国产成人欧美| 国产亚洲av嫩草精品影院| 亚洲五月色婷婷综合| 一个人观看的视频www高清免费观看 | 老司机午夜福利在线观看视频| 97碰自拍视频| 精品欧美国产一区二区三| 午夜两性在线视频| 精品久久久久久久末码| 美女国产高潮福利片在线看| 91av网站免费观看| 精品卡一卡二卡四卡免费| 久久久水蜜桃国产精品网| 成人18禁高潮啪啪吃奶动态图| 草草在线视频免费看| 国产亚洲欧美精品永久| 成人三级黄色视频| 国产单亲对白刺激| 国产一区在线观看成人免费| 国产亚洲欧美98| 国产成人欧美| 午夜精品在线福利| 在线观看www视频免费| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区91| 亚洲自偷自拍图片 自拍| av在线天堂中文字幕| 黑人操中国人逼视频| 90打野战视频偷拍视频| 国产激情欧美一区二区| 免费高清视频大片| 国产精品一区二区免费欧美| 久久天堂一区二区三区四区| 黄色丝袜av网址大全| 日韩 欧美 亚洲 中文字幕| 国产97色在线日韩免费| 久久久久亚洲av毛片大全| 国产成人一区二区三区免费视频网站| 欧美亚洲日本最大视频资源| 成人手机av| 在线观看www视频免费| 午夜福利视频1000在线观看| 侵犯人妻中文字幕一二三四区| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 夜夜爽天天搞| 岛国在线观看网站| 黄频高清免费视频| 日韩国内少妇激情av| 日本a在线网址| 亚洲自偷自拍图片 自拍| 亚洲精品中文字幕一二三四区| 中文资源天堂在线| 亚洲九九香蕉| 欧美乱色亚洲激情| 国内毛片毛片毛片毛片毛片| 一本综合久久免费| 两个人视频免费观看高清| 老司机深夜福利视频在线观看| 日本a在线网址| 女性被躁到高潮视频| 免费人成视频x8x8入口观看| 午夜激情av网站| 午夜福利在线观看吧| 国语自产精品视频在线第100页| 啪啪无遮挡十八禁网站| 美女国产高潮福利片在线看| 日韩av在线大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 色精品久久人妻99蜜桃| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片 | 1024香蕉在线观看| 九色国产91popny在线| 中文字幕人妻丝袜一区二区| 啦啦啦韩国在线观看视频| 国产一区二区激情短视频| 久久久久久久久中文| 国产精品精品国产色婷婷| 中文资源天堂在线| 国产伦人伦偷精品视频| 欧美激情久久久久久爽电影| 国产成人精品久久二区二区91| 午夜激情av网站| 一边摸一边抽搐一进一小说| 欧美三级亚洲精品| 午夜精品久久久久久毛片777| 亚洲国产欧美日韩在线播放| 操出白浆在线播放| 欧美+亚洲+日韩+国产| 97超级碰碰碰精品色视频在线观看| 精品人妻1区二区| 久久久久国产一级毛片高清牌| 一a级毛片在线观看| 国产v大片淫在线免费观看| 国产真人三级小视频在线观看| 可以免费在线观看a视频的电影网站| 男女下面进入的视频免费午夜 | 国产99白浆流出| 一级作爱视频免费观看| 男人舔奶头视频| 成人国语在线视频| 久久亚洲精品不卡| 日韩欧美国产在线观看| 哪里可以看免费的av片| 国产亚洲精品综合一区在线观看 | 又大又爽又粗| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成伊人成综合网2020| 亚洲第一av免费看| 欧美中文综合在线视频| 国产精品,欧美在线| 黄片播放在线免费| 啦啦啦 在线观看视频| 看黄色毛片网站| 精品免费久久久久久久清纯| 国语自产精品视频在线第100页| 一本久久中文字幕| 午夜福利高清视频| 欧美黄色淫秽网站| 亚洲精品久久成人aⅴ小说| 久久人妻av系列| 久久久久久国产a免费观看| 久久精品亚洲精品国产色婷小说| а√天堂www在线а√下载| 欧美精品亚洲一区二区| 制服诱惑二区| av中文乱码字幕在线| 亚洲精品国产一区二区精华液| 免费电影在线观看免费观看| 日日夜夜操网爽| 免费看美女性在线毛片视频| 欧美日韩精品网址| 一本久久中文字幕| 大型黄色视频在线免费观看| 成年女人毛片免费观看观看9| 丰满的人妻完整版| 国产精品电影一区二区三区| 黄色视频,在线免费观看| 美女国产高潮福利片在线看| 在线观看免费日韩欧美大片| 好男人电影高清在线观看| 99久久综合精品五月天人人| 亚洲激情在线av| 人人妻人人看人人澡| 久久亚洲真实| 成人av一区二区三区在线看| 亚洲欧美激情综合另类| 午夜a级毛片| 夜夜躁狠狠躁天天躁| 欧美性猛交╳xxx乱大交人| 女性被躁到高潮视频| 禁无遮挡网站| 欧美又色又爽又黄视频|