• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EFFECT OF SWEEP AND EJECTION EVENTS ON PARTICLE DISPERSION IN WALL BOUNDED TURBULENT FLOWS*

    2012-08-22 08:31:57LUOJianping
    水動力學研究與進展 B輯 2012年5期

    LUO Jian-ping

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China,

    E-mail: jp_luo@163.com

    LU Zhi-ming

    Shanghai Key Laboratory of Mechanics in Energy Engineering and Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    QIU Xiang

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China

    LI Dong-mei, LIU Yu-lu

    Shanghai Institute of Technology, Shanghai 200235, China

    (Received September 24, 2012, Revised October 8, 2012)

    EFFECT OF SWEEP AND EJECTION EVENTS ON PARTICLE DISPERSION IN WALL BOUNDED TURBULENT FLOWS*

    LUO Jian-ping

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China,

    E-mail: jp_luo@163.com

    LU Zhi-ming

    Shanghai Key Laboratory of Mechanics in Energy Engineering and Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    QIU Xiang

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China

    LI Dong-mei, LIU Yu-lu

    Shanghai Institute of Technology, Shanghai 200235, China

    (Received September 24, 2012, Revised October 8, 2012)

    This paper studies the sweep and ejection events in a channel flow with Reτ=80 by using Direct Numerical Simulation (DNS). The effects of ejection and sweep events on the transport of fluid particles are analyzed separately through a quadrant technique. By analyzing trajectories of the particles released at different wall-normal locations, it is found that the particles from the ejection events mainly move upward while the particles from the sweep events move downward of the flow during short and intermediate diffusion time durations. Numerical results show that the effects of the ejection and sweep events on the mean displacement and the mean square dispersion remain for a long time, one-order of magnitude larger than the streamwise Lagrangian integral scales.

    sweep, ejection, dispersion, quadrant analysis, turbulent channel flow

    Introduction

    One of the most ubiquitous properties of turbulent flows is the enhancement of transport processes, such as those of mass, heat or momentum, and many engineering devices depend on the ability to control and predict those processes for their successful operations[1]. It is now recognized that the downdrafts (orthe sweeps) and the updrafts (or the ejections) are the typical constitutive motions of coherent structures near the wall. These events make the most of contributions to both the Reynolds stresses and the momentum transfer[2]. Hence, the properties of these two types of eddy motions were extensively studied[1-9]. Keshavarzi et al.[3]studied experimentally the burst events, and their effects on the sediment entrainment and the deposition over two types of ripples, and found that the downstream of the ripple burst events are dominant in Quadrants 1 and 3, wheareas the upstream of the ripple burst events are dominant in Quadrants 2 and 4. Further, they found that the sediment entrainment/deposition would occur upstream/ downstream of the ripple burst events. Ojha and Mazumder[4]investigated experimentally the shear stress generation in a flow over a series of two-dimensional dunes and found that the relative dominance of the sweep and eject events in the generation ofshear stress is in a spatially cyclic manner near the bed region. Mianaei and Keshavarzi[5,6]found that at the stoss side of ripples, quadrants (II) and (IV) were dominant over quadrants (I) and (III), wheareas the reverse is true in the lee side. Huang et al.[7]discussed the bubble effects on the sweep and ejection events as a function of the Reynolds number. They found that the bubble might suppress the ejection and sweep events in high Reynolds number flows. The ejection-sweep cycle over bare and forested gentle hills was examined by Poggi and Katul[8]experimentally. It is shown that the ejections dominate the momentum transfer for both surface-covers at the top of the inner layer. However, the sweeps dominate the momentum transfer within and near the canopy. Besides these experimental studies, there were also extensive numerical simulations of the burst phenomena[1,9]. In conclusion, there were many studies of ejection and sweep events on momentum and particle transportation, but very few about the contributions of sweep and ejection events to the particle dispersion behavior in wall turbulent flows.

    In this paper, we investigate in details the transport of fluid particles for a channel flow with a Reynolds number Reτ=80using the Direct Numerical Simulation (DNS) approach. The effects of the ejection and sweep events on the transport of the particles are analyzed separately.

    1. Numerical results and discussions

    A DNS of a turbulent channel flow is carried out with 96×65×64 mesh points at a Reynolds number of Reτ=uτδ/ν=80, where uτ, δ and ν are, respectively, the friction velocity, the half width of the channel and the kinematic viscosity. The domain dimesions in the streamwise, wall-normal, and spanwise directions are 1 880×160×630 in units of wall thickness. The corresponding grid numbers in three directions are 96×65×64. The mass conservation equation and the Navier-Stokes (the momentum) equations of incompressible fluids are as follows

    where u, ν and p are the velocity vector, the kinematic viscosity and the pressure, respectively. A pseudo-spectral method is used in the spatial domain to solve the Navier-Stokes equations. Orszag and Kells[10]proposed a method to split the Navier-Stokes equation in time with fractional steps to integrate the non-linear terms, the pressure and the viscous terms separately. Periodic boundary conditions are imposed on the streamwise and spanwise directions to obtain the velocity of the fluid particles. The velocity fields are computed and stored with a time intervalΔt+=/ν=0.2for a period of 1 000. The fluid particle velocity along a particle trajectory is computed by employing a third-order Hermite polynomials in the homogeneous directions and a Chebyshev polynomial in the wall-normal direction[11-13]. The particles are tracked through the computed velocity fields to obtain the Lagrangian velocity data[11-13].

    The quadrant analysis is a useful technique to study how the turbulent fluctuations contribute to the momentum transfer throughout the bottom boundary layer[1,14,15]. As argued by Bogard and Tiederman[14], the quadrant analysis depends on the value of the hyperbolic-hole size H, and the optimum threshold for the buffer region is H≈1, based on direct comparisons between the detected events and instantaneous visualizations of the flow[14]. Following this line, we take H=1 in the present study[15].

    Table 1 Number-fraction of ejection and sweep particles at different released positions

    Table 2 Lagrangian integral time scales in the streamwise ()and wall-normal () directions

    Table 2 Lagrangian integral time scales in the streamwise ()and wall-normal () directions

    +T+L 1 T2L3.4 30 6 15.7 42.7 10 30 48.5 12

    Table 1 shows the number fraction of the ejection and sweep particles at various released positions (30 720 particles are released from each location). Note that only a small fraction of particles participate in the ejection and sweep events, as shown below, however, the ejection and sweep events play a dominant role in the particle dispersion behavior. It is also seen from Table 1 that more sweep events are detected than the eject events in a viscous sub-layer(y+=

    0 3.4), whereas more eject events than sweep events are detected in a log-layer (y+=30). The Lagrangian in-

    0 tegral time scale is an important typical time scale in the study of particle dispersion. The Lagrangian integral scales at three different vertical positions obtained by using the autocorrelation method are listed in Table 2. It is clearly seen that longitudinal integral timescales are much longer than the vertical ones.

    Fig.1 Distribution of particles released from y+=3.4 inx-0y plane at different times

    Now we focus our attention to the different contributions of the eject and the sweep events in the boundary layer to the mean displacements in both streamwise and wall-normal directions. Figure 1 shows the evolution of the particle distribution released from= 30 in x-y plane at t+=10, 50, 200and1 000,respectively,wheredenotesthereleased position in the streamwise direction. In the figure, the notation “ejection” denotes the particles originally in the ejection events, and the notation“sweep” means the particles originally in the sweep events. It is clearly seen that the particles from the sweep or the ejection events move in different ways, particularly at the early stage, i.e., the particles from the ejection events mainly move upward (i.e., leave the wall) and streamwise at the same time, while the particles from the sweep events move downstream close to the wall. The different movements of the particles from the sweep and the ejection events can still be seen clearly at t+=200. Similar behavior is found for the particles released from=15 or 30, but they are not shown here for clearness of the picture. To see more clearly (quantitatively) the different movements of the particles from the sweep and the ejection events, we plot the difference of the mean displacementsof the ejected and the swept particles released from three different locations as shown in Fig.2. First, it is found that, for the three release locations, the mean displacements of the particles from the sweep eventsare larger than that from the ejection eventswhen t+is less than aboutandbecomes smallerthanwhen t+≥, wheredenotes the integral time scale in the streamwise direction as listed in Table 2. This behavior can be mainly explained as follows. During the early stage, the particles from the sweep events have a larger streamwise velocity and move faster than those from the ejection events, and after some time (about one to two integral time scales after releasing), the ejected particles gather a higher momentum from the surrounding fluid as they leave the wall whereas the swept particles lose their high momentum as they approach the wall. Secondly, the displacement difference between the ejected and the swept particles is much larger for the particles released from=3.4 as compared to the particles released from=15.7 and 30 in a large time duration. The un-vanished difference between the ejected and the swept particles may indicate that the particles from the sweep motion stay for a fairly long time in the low-speed area close to the wall.

    Fig.3 Difference of mean displacementbetween the ejected and the swept particles released from different locations

    Figure 3 shows the difference of the mean displacement between the ejected and the swept particles released from y+=3.4, 15.7, 30 in the wall-normal

    0direction. The difference between sweep and ejection is clearly seen in a short diffusion duration. First, The differenceincreases rapidly with time for a short duration and then decreases gradually with time when t+passes the pointfor the particles released from=15.7 and 30. Meanwhile, for the particles released from=3.4, the differenceincreases slowly with time at the early stage, then rapidly after t+≈200, reaches the maximum value at about the time t+≈500, and after that, the difference decreases steadily. Secondly, the difference for the case t+<300 increases with the initial releasing distance from the wall. i.e.,

    when t+<300. For a large diffusion time duration, the particles are expected to distribute uniformly across the whole channel, so little difference is generated by ejection and sweep, i.e., the differencedecreases for a long time and disappears in a sufficiently long time. This property is demonstrated in Fig.3.

    Now, we consider the particle’s mean-square dispersion, which is calculated as

    where y0and t0are the initial spatial location and the initial time. The different behaviors of the meansquare dispersion in three directions for the particles released from the viscous sub-layer, the buffer layer and thelog layer were investigated in detail byLuoet al.[10]. In this study, we consider especially theeffects of the sweep and eject events on the mean-square dispersion. The mean-square dispersionin the streamwise and wall-normal directions for the particles released from the viscous sublayer (=3.4), the buffer layer (=15.7) and the log layer(= 30)are shown in Figs.4-5. For a comparison, the results for the dispersion of all released particles are also shown in these figures. As explained in Ref.[10], the results offor all particles show that the particles released from each layer disperse in proportion to t+2for short diffusion time durations, to t+3for intermediately large time durations due to the mean shear, and to t+1for a long time duration. It is interesting to note that the dispersion behavior for eitherthe ejection or the sweep events is qualitatively the same as the total dispersion behavior, i.e., there also exist three regimes with different power indices after the release of the particles. Quantitatively, the particle dispersion for the sweep events at a short time duration is smaller than that for the ejection events when the particles are released from the viscous sublayer (=3.4), but the reverse is true if the particles are released from the log layer (=30). Meanwhile, it is seen that the dispersion for the two events is nearly the same when the particles are released from the buffer layer (=15.7). This means that the sweep events disperse the particles in the streamwise direction more efficiently than the ejection events in the viscous sublayer and the reverse is true in the log layer. While the efficiency of the sweep and the ejection events is approximately the same near the buffer layer.

    Fig.4 Mean-square dispersion of particles released from= 3.4, 15.7, 30 in the streamwise direction

    Fig.5 Mean-square dispersion of particles released from= 3.4, 15.7, 30 in the wall-normal direction

    From Fig.5, it is seen that the dispersion in the wall normal direction from both events is proportional to t+2for a short time duration, then reduces tot+1for an intermediate time duration and finally reduces to t+0due to the wall constraint. The difference of the mean square dispersion between the two coherent events is relatively small except during the period of several integral time scales. The non trivial difference between the two coherent events in both streamwise and wall normal directions during an intermediate time duration needs a further investigation.

    2. Conclusions

    In this paper, the DNS method is applied to study the contributions of the sweep and ejection events to the particle dispersion in the wall-bounded turbulentflows with Reτ=80. The quadrant technique is adopted to analyze the events of sweep and ejection. By analyzing the trajectories of the particles released from the sweep and ejection events at different heights, it is found that remarkable differences appear for the mean displacement and the dispersion of the particles during short and intermediate diffusion time durations. The main results are as follows:

    (1) The mean displacement of the particles released from the sweep events in the streamwise direction is larger than that from the ejection events at t+<, but the reverse is true later on. The displacement difference between the ejected and thwswept particles is much larger for the particles released from=3.4as compared to the particles released from=15.7 and 30 after a long time. The initial effects of the ejection and sweep events on the mean displacement remain for several Lagrangian time scales.

    (2) The mean square dispersion of the particles from the ejection and sweep events in the streamwise direction is proportional to t+2, t+3and t+1in the early time stage, the intermediate time stage and the long time stage, respectively for all three release locations. However, quantitatively, the dispersion of the particles from the sweep events is smaller (larger) than that from the ejection events when the particles are released from the viscous sublayer (the log layer), and the two dispersions are nearly the same when the particles are released from the buffer layer. Again, the numerical results show that the initial effects from the two events remain for quite a long time, as long as one-order of magnitude larger than the Lagrangian time scales.

    [1] ADRIAN L. D., OSCAR F. and JAVIER J. Three-dimensional structure of momentum transfer in turbulent channels[J]. Journal of Fluid Mechanics, 2012, 694: 100-130.

    [2] GUO H., BORODULIN V. I. and KACHANOV Y. S. et al. Nature of sweep and ejection events in transitional and turbulent boundary layers[J]. Journal of turbulence, 2010, 11(34): 1-51.

    [3] KESHAVARZI A., BALL J. and NABAVI H. Frequency pattern of turbulent flow and sediment entrainment over ripples using image processing[J]. Hydrology and Earth System Sciences, 2012, 16(1): 147-156.

    [4] OJHA S. P., MAZUMDER B. S. Turbulence characteristics of flow region over a series of 2-D dune shaped structures[J]. Advances In Water Resources, 2008, 31(3): 561-576.

    [5] MIANAEI S. J., KESHAVARZI A. Spatio-temporal variation of transition probability of bursting events over the ripples at the bed of open channel[J]. Stochastic Environmental Research and Risk Assessment, 2008, 22(2): 257-264.

    [6] MIANAEI S. J., KESHAVARZI A. Study of near bed stochastic turbulence and sediment entrainment over the ripples at the bed of open channel using image processing technique[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(5): 591-598.

    [7] HUANG Jian, MURAI Yuichi and YAMAMOTO Fujio. Quadrant analysis of bubble induced velocity fluctuations in a transitional boundary layer[J]. Journal of

    [8] POGGI D., KATUL G. The ejection-sweep cycle over bare and forested gentle hills: A laboratory experiment[J]. Boundary-Layer Meteorology, 2007, 122(3): 493-515.

    [9] JIMENEZ J., HOYAS S. and SIMENS M. P. et al. Turbulent boundary layers and channels at moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2010, 657: 335-360.

    [10] ORSZAG S. A., KELLS L. C. Transition to turbulence in plane posiseuille and plane coquette flow[J]. Journal of Fluid Mechanics, 1980, 96: 159-205.

    [11] LUO J., USHIJIMA T. and KITOH O. et al. Lagrangian dispersion in turbulent channel flow and its relationship to Eulerian statistics[J]. International Journal of Heat and Fluid Flow, 2007, 28(5): 871-881.

    [12] LUO Jian-Ping, LU Zhi-Ming and USHIJIMA T. et al. Lagrangian structure function’s exponents in turbulent channel flow[J]. Chinese Physics Letters, 2010, 27(2): 024708. Hydrodynamics, 2009, 21(1): 93-99.

    [13] LUO Jian-ping, QIU Xiang and LI Dong-mei et al. High order Lagrangian velocity statistics in a turbulent channel flow with =Reτ80[J]. Journal of Hydrodynamics, 2012, 24(2): 287-291.

    [14] BOGARD D. G., TIEDERMAN W. G. Burst detection with single-point velocity measurements[J]. Journal of Fluid Mechanics, 1986, 162: 389-413.

    [15] LUO J., USHIJIMA T. and KITOH O. et al. Contributions of sweep and ejection events to particle disperrsion in wall turbulent flows[J]. Procedding of the 5th International Conference on Asian and Pacific Coasts. Singapore, 2009, 4: 93-99.

    10.1016/S1001-6058(11)60305-3

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11172179, 11102114), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant No. ZX2010-12), the Key Project of Shanghai Municipal Education Commission (Grant No. 11ZZ87) and the Shanghai Pujiang Program (Grant No. 08PJ1409100).

    Biography: LUO Jian-ping (1964-), Female, Ph. D.,

    Associate Professor

    LU Zhi-ming,

    E-mail: zmlu@staff.shu.edu.cn

    亚洲精品美女久久久久99蜜臀| 亚洲自偷自拍图片 自拍| 日本vs欧美在线观看视频| 欧美日韩亚洲综合一区二区三区_| 啦啦啦免费观看视频1| 天天躁狠狠躁夜夜躁狠狠躁| 涩涩av久久男人的天堂| 伊人久久大香线蕉亚洲五| 亚洲精品国产区一区二| 日韩中文字幕欧美一区二区| 午夜激情av网站| 老司机在亚洲福利影院| 又黄又爽又免费观看的视频| 91大片在线观看| 9热在线视频观看99| 首页视频小说图片口味搜索| 母亲3免费完整高清在线观看| 夜夜爽天天搞| 黄色视频,在线免费观看| 一个人免费在线观看的高清视频| 大香蕉久久网| 国产亚洲欧美在线一区二区| 久久香蕉国产精品| videosex国产| 90打野战视频偷拍视频| 深夜精品福利| 一级片免费观看大全| 久久久久久亚洲精品国产蜜桃av| netflix在线观看网站| 欧美日韩黄片免| 久久精品国产a三级三级三级| 亚洲成人国产一区在线观看| 十八禁人妻一区二区| 老司机福利观看| 久久精品国产综合久久久| 黄色 视频免费看| 他把我摸到了高潮在线观看| 一级,二级,三级黄色视频| 无人区码免费观看不卡| 99国产精品99久久久久| 精品国产亚洲在线| 高清视频免费观看一区二区| 久久精品成人免费网站| av一本久久久久| 热99国产精品久久久久久7| 亚洲伊人色综图| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美精品济南到| 丰满人妻熟妇乱又伦精品不卡| 免费日韩欧美在线观看| 亚洲欧美色中文字幕在线| 午夜福利在线免费观看网站| 极品人妻少妇av视频| 国产激情欧美一区二区| 男人舔女人的私密视频| videosex国产| 国产区一区二久久| 欧美乱色亚洲激情| 涩涩av久久男人的天堂| 久久精品人人爽人人爽视色| 日本一区二区免费在线视频| 我的亚洲天堂| 欧美 日韩 精品 国产| 亚洲精品一二三| 一级片免费观看大全| 大片电影免费在线观看免费| 欧美激情久久久久久爽电影 | 成人精品一区二区免费| 午夜视频精品福利| 日本黄色日本黄色录像| 午夜老司机福利片| 99国产精品99久久久久| 人人妻,人人澡人人爽秒播| 黄色视频不卡| 日本wwww免费看| 国产成人免费无遮挡视频| 国产无遮挡羞羞视频在线观看| 国产精品久久久人人做人人爽| 国产精品久久久久久人妻精品电影| 成年女人毛片免费观看观看9 | 亚洲久久久国产精品| 一级,二级,三级黄色视频| 午夜久久久在线观看| 岛国在线观看网站| 日韩欧美一区视频在线观看| 99国产精品一区二区蜜桃av | 热99久久久久精品小说推荐| 午夜福利在线观看吧| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区mp4| 欧美黑人精品巨大| 亚洲国产精品一区二区三区在线| 狂野欧美激情性xxxx| 一区二区三区国产精品乱码| 自线自在国产av| 亚洲精品粉嫩美女一区| 无人区码免费观看不卡| 色综合婷婷激情| 亚洲精品国产区一区二| 精品久久久久久久毛片微露脸| 亚洲国产精品一区二区三区在线| 十分钟在线观看高清视频www| 亚洲在线自拍视频| 高清欧美精品videossex| 99久久人妻综合| 亚洲av日韩精品久久久久久密| 欧美日韩福利视频一区二区| 真人做人爱边吃奶动态| 色在线成人网| 最近最新免费中文字幕在线| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美精品综合一区二区三区| 在线永久观看黄色视频| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| av中文乱码字幕在线| 午夜福利在线免费观看网站| 99热网站在线观看| 色婷婷久久久亚洲欧美| av欧美777| 欧美精品人与动牲交sv欧美| 人人澡人人妻人| 欧美日韩黄片免| 亚洲熟妇中文字幕五十中出 | 怎么达到女性高潮| 久久精品国产a三级三级三级| 亚洲精品国产精品久久久不卡| 免费看十八禁软件| 国产成人精品久久二区二区91| 人人妻人人澡人人爽人人夜夜| 欧美在线一区亚洲| 大型av网站在线播放| 国产免费现黄频在线看| 午夜福利免费观看在线| cao死你这个sao货| 男人的好看免费观看在线视频 | 亚洲久久久国产精品| 女人久久www免费人成看片| 天天操日日干夜夜撸| 国产极品粉嫩免费观看在线| 法律面前人人平等表现在哪些方面| 9色porny在线观看| 三上悠亚av全集在线观看| 久久精品人人爽人人爽视色| 777米奇影视久久| 欧美精品啪啪一区二区三区| 亚洲精品一二三| 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 999精品在线视频| 女性生殖器流出的白浆| www日本在线高清视频| 亚洲精品在线观看二区| 18禁美女被吸乳视频| 99久久综合精品五月天人人| 在线观看66精品国产| 18禁国产床啪视频网站| 99香蕉大伊视频| 国产1区2区3区精品| 国产在线一区二区三区精| 天堂√8在线中文| 免费在线观看黄色视频的| 久久人人爽av亚洲精品天堂| 大型黄色视频在线免费观看| а√天堂www在线а√下载 | 女性生殖器流出的白浆| 大片电影免费在线观看免费| 亚洲精品在线美女| 午夜福利免费观看在线| 国产单亲对白刺激| 国产乱人伦免费视频| 宅男免费午夜| 一进一出抽搐动态| 亚洲国产精品合色在线| 亚洲成av片中文字幕在线观看| 国产色视频综合| 日日夜夜操网爽| 黑人巨大精品欧美一区二区mp4| 日韩欧美三级三区| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品久久久久久毛片 | 日韩免费高清中文字幕av| 国产一区在线观看成人免费| 又大又爽又粗| 黄色毛片三级朝国网站| 欧美av亚洲av综合av国产av| 在线观看免费日韩欧美大片| 黑人操中国人逼视频| 亚洲欧美色中文字幕在线| 最近最新免费中文字幕在线| 窝窝影院91人妻| 极品少妇高潮喷水抽搐| 欧美在线一区亚洲| 91精品国产国语对白视频| 国产亚洲精品第一综合不卡| 欧美亚洲 丝袜 人妻 在线| 欧美最黄视频在线播放免费 | 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 91在线观看av| 欧美激情 高清一区二区三区| av福利片在线| 一边摸一边抽搐一进一出视频| 欧美老熟妇乱子伦牲交| 女警被强在线播放| 99国产精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 这个男人来自地球电影免费观看| 黄色毛片三级朝国网站| 丰满的人妻完整版| 一进一出抽搐动态| 国产精品1区2区在线观看. | 国产在线精品亚洲第一网站| 天天影视国产精品| 麻豆国产av国片精品| 欧美日韩国产mv在线观看视频| 国产不卡一卡二| 制服诱惑二区| 成年版毛片免费区| 国产欧美亚洲国产| 国产精品免费大片| 99国产极品粉嫩在线观看| 交换朋友夫妻互换小说| 精品卡一卡二卡四卡免费| 午夜福利乱码中文字幕| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 午夜福利在线免费观看网站| 久久午夜综合久久蜜桃| 乱人伦中国视频| cao死你这个sao货| 99久久99久久久精品蜜桃| av在线播放免费不卡| 夜夜爽天天搞| 在线播放国产精品三级| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| 久久香蕉激情| 久热爱精品视频在线9| 女人久久www免费人成看片| 高清av免费在线| 悠悠久久av| 亚洲国产精品一区二区三区在线| 男男h啪啪无遮挡| 亚洲片人在线观看| 精品国产一区二区久久| 成人特级黄色片久久久久久久| 午夜福利在线免费观看网站| 91老司机精品| 午夜福利视频在线观看免费| 69精品国产乱码久久久| 久热爱精品视频在线9| 人人妻人人澡人人爽人人夜夜| 免费av中文字幕在线| 伊人久久大香线蕉亚洲五| 久久亚洲真实| av电影中文网址| 精品乱码久久久久久99久播| 精品久久蜜臀av无| 黄色 视频免费看| 狠狠狠狠99中文字幕| 免费观看精品视频网站| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 水蜜桃什么品种好| 久久中文字幕一级| 免费观看精品视频网站| 久久天堂一区二区三区四区| 国产精品亚洲av一区麻豆| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| 一级片免费观看大全| 夜夜夜夜夜久久久久| 两个人看的免费小视频| 日日爽夜夜爽网站| 日本黄色视频三级网站网址 | 国产在线精品亚洲第一网站| 亚洲精品在线美女| 捣出白浆h1v1| 欧美日韩一级在线毛片| 啦啦啦视频在线资源免费观看| 飞空精品影院首页| 美女高潮到喷水免费观看| 国产成人av教育| 亚洲精品av麻豆狂野| 亚洲 国产 在线| 国产精品.久久久| 人人妻人人澡人人看| 色综合婷婷激情| 国产不卡av网站在线观看| 亚洲欧美激情综合另类| 成人av一区二区三区在线看| 大香蕉久久成人网| 欧美日韩av久久| 久久国产精品大桥未久av| 中文字幕最新亚洲高清| 国产不卡一卡二| 日本wwww免费看| 丰满饥渴人妻一区二区三| 免费久久久久久久精品成人欧美视频| 黄色 视频免费看| av网站免费在线观看视频| 男男h啪啪无遮挡| a级片在线免费高清观看视频| 国产精品亚洲av一区麻豆| 国产成人欧美| 亚洲av欧美aⅴ国产| 亚洲成人手机| 黄片小视频在线播放| 精品午夜福利视频在线观看一区| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 精品一区二区三区视频在线观看免费 | 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 国产一区二区三区视频了| 国产成人精品久久二区二区91| 热re99久久国产66热| 精品乱码久久久久久99久播| 国内久久婷婷六月综合欲色啪| 色在线成人网| 在线观看免费午夜福利视频| 久久久精品区二区三区| 久久久久国内视频| 欧美日韩精品网址| 亚洲av第一区精品v没综合| 男男h啪啪无遮挡| 日本精品一区二区三区蜜桃| 熟女少妇亚洲综合色aaa.| 久久久久久久国产电影| 欧美乱妇无乱码| 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 亚洲色图综合在线观看| 亚洲视频免费观看视频| 人妻久久中文字幕网| 午夜免费成人在线视频| 日本wwww免费看| 亚洲精品在线美女| 又大又爽又粗| 美女国产高潮福利片在线看| 亚洲性夜色夜夜综合| 国产男女内射视频| 午夜福利欧美成人| 中出人妻视频一区二区| 国产一区有黄有色的免费视频| 18禁黄网站禁片午夜丰满| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 国产精品国产高清国产av | 激情在线观看视频在线高清 | 在线观看免费视频日本深夜| 99国产精品一区二区蜜桃av | 亚洲精品自拍成人| 老司机亚洲免费影院| 久久国产精品大桥未久av| 亚洲色图综合在线观看| 亚洲精品一二三| 中出人妻视频一区二区| 在线观看一区二区三区激情| 亚洲免费av在线视频| 精品电影一区二区在线| 久99久视频精品免费| 不卡一级毛片| 成人黄色视频免费在线看| 久久香蕉精品热| 夜夜爽天天搞| 757午夜福利合集在线观看| 五月开心婷婷网| 夜夜躁狠狠躁天天躁| 国产欧美日韩一区二区三| 一级片'在线观看视频| 村上凉子中文字幕在线| 女人被狂操c到高潮| 人人妻,人人澡人人爽秒播| 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 一区二区三区精品91| 侵犯人妻中文字幕一二三四区| 天天操日日干夜夜撸| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 久久精品亚洲精品国产色婷小说| 极品教师在线免费播放| 香蕉久久夜色| 性色av乱码一区二区三区2| 午夜91福利影院| 午夜福利在线免费观看网站| 久久精品国产综合久久久| 欧美在线黄色| 最新在线观看一区二区三区| 欧美+亚洲+日韩+国产| 国产精华一区二区三区| 天天躁日日躁夜夜躁夜夜| 亚洲av日韩精品久久久久久密| 制服人妻中文乱码| 久久中文看片网| 欧美大码av| 国产蜜桃级精品一区二区三区 | 91精品三级在线观看| 两个人看的免费小视频| 精品国产美女av久久久久小说| 色尼玛亚洲综合影院| 欧美在线黄色| 久久草成人影院| 国产深夜福利视频在线观看| 99热网站在线观看| 欧美精品高潮呻吟av久久| 亚洲精品乱久久久久久| 精品国产一区二区三区四区第35| 欧美中文综合在线视频| 欧美午夜高清在线| 国产高清国产精品国产三级| 精品国产美女av久久久久小说| www.精华液| 久久精品aⅴ一区二区三区四区| 亚洲国产中文字幕在线视频| 日韩欧美一区视频在线观看| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 国内久久婷婷六月综合欲色啪| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区精品| 欧美日韩亚洲高清精品| 热99re8久久精品国产| 亚洲全国av大片| 日本wwww免费看| 十八禁高潮呻吟视频| 亚洲欧美激情综合另类| 天天躁夜夜躁狠狠躁躁| 国产成人精品无人区| 免费观看精品视频网站| 乱人伦中国视频| а√天堂www在线а√下载 | tube8黄色片| а√天堂www在线а√下载 | 亚洲精品粉嫩美女一区| √禁漫天堂资源中文www| 午夜免费成人在线视频| 国产色视频综合| 少妇粗大呻吟视频| 黄色视频,在线免费观看| 看片在线看免费视频| 久久精品人人爽人人爽视色| 女人爽到高潮嗷嗷叫在线视频| 日韩熟女老妇一区二区性免费视频| 国产成人精品久久二区二区免费| 国内毛片毛片毛片毛片毛片| 欧美日韩瑟瑟在线播放| 1024视频免费在线观看| 999久久久精品免费观看国产| 久9热在线精品视频| 精品电影一区二区在线| 国产成人免费观看mmmm| 久久精品国产a三级三级三级| 国产亚洲欧美98| 日韩成人在线观看一区二区三区| 国产激情久久老熟女| 亚洲国产看品久久| 高清在线国产一区| 十八禁网站免费在线| 久久青草综合色| 国产午夜精品久久久久久| 国产1区2区3区精品| 国产亚洲欧美精品永久| 国产成人系列免费观看| 老司机午夜福利在线观看视频| 精品视频人人做人人爽| 成人18禁高潮啪啪吃奶动态图| 午夜免费观看网址| 我的亚洲天堂| 免费高清在线观看日韩| 757午夜福利合集在线观看| 亚洲精华国产精华精| 在线观看免费视频日本深夜| 免费观看a级毛片全部| 日韩制服丝袜自拍偷拍| 久久久久视频综合| 日韩欧美一区视频在线观看| 人人澡人人妻人| 女人久久www免费人成看片| 天天躁日日躁夜夜躁夜夜| 狠狠狠狠99中文字幕| 久热爱精品视频在线9| 欧美成狂野欧美在线观看| 成人国产一区最新在线观看| 老司机午夜福利在线观看视频| 一区二区日韩欧美中文字幕| 欧美久久黑人一区二区| 国产免费现黄频在线看| 国产精品乱码一区二三区的特点 | 国内毛片毛片毛片毛片毛片| 成年版毛片免费区| 久久午夜亚洲精品久久| av天堂在线播放| 精品久久蜜臀av无| 久久精品国产清高在天天线| 精品国内亚洲2022精品成人 | 窝窝影院91人妻| 国产精品av久久久久免费| 欧美激情久久久久久爽电影 | 亚洲黑人精品在线| 超碰97精品在线观看| 18禁黄网站禁片午夜丰满| 波多野结衣av一区二区av| 国产激情久久老熟女| 人妻一区二区av| 亚洲成人手机| 天天操日日干夜夜撸| 在线观看www视频免费| 国产av又大| 亚洲少妇的诱惑av| 高清av免费在线| 日韩欧美三级三区| 99国产精品99久久久久| 午夜亚洲福利在线播放| 黑人巨大精品欧美一区二区mp4| 亚洲一卡2卡3卡4卡5卡精品中文| videos熟女内射| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久久久久久大奶| 国产精品久久久久久精品古装| 免费在线观看亚洲国产| 国产主播在线观看一区二区| 精品国内亚洲2022精品成人 | 国产1区2区3区精品| 男女之事视频高清在线观看| 亚洲欧美激情在线| 国产麻豆69| 午夜福利乱码中文字幕| 脱女人内裤的视频| 黄频高清免费视频| 午夜两性在线视频| 日韩一卡2卡3卡4卡2021年| 精品一品国产午夜福利视频| 久久人人爽av亚洲精品天堂| 大陆偷拍与自拍| 精品福利观看| 国产熟女午夜一区二区三区| 亚洲国产毛片av蜜桃av| 国产aⅴ精品一区二区三区波| 成人免费观看视频高清| 曰老女人黄片| 99香蕉大伊视频| 一级a爱片免费观看的视频| xxx96com| 久久中文字幕一级| 欧美成人午夜精品| aaaaa片日本免费| 少妇被粗大的猛进出69影院| 久久国产亚洲av麻豆专区| 久久99一区二区三区| 不卡一级毛片| 成年女人毛片免费观看观看9 | 亚洲国产中文字幕在线视频| 天堂√8在线中文| 超碰成人久久| 欧美精品一区二区免费开放| 精品亚洲成国产av| 多毛熟女@视频| 亚洲精品粉嫩美女一区| a级毛片黄视频| 一级作爱视频免费观看| 精品一区二区三卡| 黄色a级毛片大全视频| 少妇裸体淫交视频免费看高清 | 日本五十路高清| √禁漫天堂资源中文www| 国产欧美亚洲国产| 一边摸一边抽搐一进一出视频| 欧美色视频一区免费| 日韩成人在线观看一区二区三区| 两个人看的免费小视频| 中文字幕另类日韩欧美亚洲嫩草| 黑人巨大精品欧美一区二区mp4| 很黄的视频免费| av视频免费观看在线观看| 久久国产亚洲av麻豆专区| 啪啪无遮挡十八禁网站| 麻豆乱淫一区二区| 后天国语完整版免费观看| 三上悠亚av全集在线观看| 久久中文字幕一级| 国产成人av教育| 亚洲综合色网址| 国产一卡二卡三卡精品| 国精品久久久久久国模美| 老司机影院毛片| 又黄又粗又硬又大视频| 欧美在线一区亚洲| 欧美成人午夜精品| 久久香蕉激情| 久久精品国产a三级三级三级| 男人操女人黄网站| 成人国产一区最新在线观看| x7x7x7水蜜桃| 精品人妻1区二区| 最新在线观看一区二区三区| 国产又色又爽无遮挡免费看| 在线播放国产精品三级| 亚洲久久久国产精品| 一区二区三区国产精品乱码| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 黄频高清免费视频| 亚洲五月色婷婷综合| 国产熟女午夜一区二区三区| 亚洲av成人不卡在线观看播放网| 国产成人欧美在线观看 | 人成视频在线观看免费观看| 中文字幕精品免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| 免费在线观看视频国产中文字幕亚洲|