• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL STUDY OF FLOW AROUND AN OSCILLATING DIAMOND PRISM AND CIRCULAR CYLINDER AT LOW KEULEGAN-CARPENTER NUMBER*

    2012-08-22 08:31:57GHOZLANIBelgacemHAFSIAZouhaierMAALELKhlifa

    GHOZLANI Belgacem, HAFSIA Zouhaier, MAALEL Khlifa

    Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Modélisation en’Hydraulique et Environnement, B.P. 37. Le Belvédère, 1002 Tunis, Tunisia, E-mail: ghozlanib@yahoo.fr

    (Received October 29, 2011, Revised April 23, 2012)

    NUMERICAL STUDY OF FLOW AROUND AN OSCILLATING DIAMOND PRISM AND CIRCULAR CYLINDER AT LOW KEULEGAN-CARPENTER NUMBER*

    GHOZLANI Belgacem, HAFSIA Zouhaier, MAALEL Khlifa

    Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Modélisation en’Hydraulique et Environnement, B.P. 37. Le Belvédère, 1002 Tunis, Tunisia, E-mail: ghozlanib@yahoo.fr

    (Received October 29, 2011, Revised April 23, 2012)

    In order to identify the influence of shape corners on the instantaneous forces in the case of oscillating bodies, the simulated flow field is compared for two kinds of cross sections: diamond prism and circular cylinder. For these two flow configurations, the same Reynolds number and a Keulegan-Carpenter are considered. To compute the dynamic flow field surrounding the body, the Navier-Stokes transport equations in a non-inertial reference frame attached to the body are considered. Hence, a source term is added locally to the momentum equation to take into account the body acceleration. The proposed model is solved using the PHOENICS code. For the oscillating circular cylinder, the simulated results are in good agreement with the experimental data available in the litterature. After validation of this proposed model, flow field for diamond prism is determined. For both bodies, the process of the vortex formation is similar, with the formation of a recirculation zone in the near-wake containing a symmetric pair of vortices of equal strength and opposite rotation. The length of recirculation zone varies approximately linearly with time. However, the in-line force coefficient of the oscillating diamond prism is found to be greatest, since the recirculation zone is longer compared with that of the oscillating circular cylinder.

    oscillating cylinder, diamond prism, body shape, non-inertial frame, numerical simulation, in-line and transverse force coefficient

    Introduction

    The motion of bluff bodies such as circular and square cylinders in fluid at rest is a fluid-structure interaction problem which has a practical and theoretical interest in the fields of naval hydrodynamics, aerospace and civil engineering. Moreover, the determination of the in-line and transverse variations of forces acting on the oscillating body is very important for designing offshore structures.

    The flow field induced by a moving body can be determined by considering that the body is fixed in a moving fluid with the same magnitude of the body velocity but in the opposite direction. The disturbed flow field around smooth-edged or sharp-edged cylinders has some similarities. The main distinction between these two flow configurations is that theseparation point is not fixed in the first case[1].

    Historically, the problem of flow around fixed circular cylinders has attracted a great deal of research interest experimentally and numerically. Results are presented for a single circular cylinder[2,3]and for arrangements of cylinders[4-6]. The flow field, force coefficients, pressure distributions and intensification or suppression of vortex shedding depend strongly on the Reynolds number, configuration, shape and the gap spacing between cylinders.

    In practice, the flow around an oscillating cylinder is more important than that around a fixed one because of its more complicated nature, depending on the cylinder forcing frequency and the amplitude and direction of oscillation, in addition to the Reynolds number of the flow. Based on flow visualizations at low Stokes numbers ()β, Tatsuno and Bearman[7]made an extensive study of the types of vortical motions produced when a cylinder oscillates in the fluid at rest. The flow field was grouped into eight regimes defined by the values of the Keulegan-Carpenternumber (KC) and the Stokes number (β). This classification made by Tatsuno and Bearman[7]becomes the standard description of the associated flow regimes.

    Recent advances in flow field measuring techniques and Computational Fluid Dynamics (CFD) for time varying flows have led to more comprehension of flow regimes around an oscillating cylinder. Lin and Rockwell[8]studied the vortex patterns at KC= 10 with a sequence of instantaneous Particle Image Velocimetry (PIV). Dütsch et al.[9]measured the velocity fields around an oscillating circular cylinder at KC =5, 6 and 10 with a Laser Doppler Anemometry (LDA). Due to the succession of the shedding vortex mode, measurement of the instantaneous transverse force is difficult. Hence, several numerical studies of the oscillating circular cylinder have been conducted to overcome this difficulty[10,11]. In addition, some work has been performed for the rotational oscillations of single[12]or two circular cylinders in side by side arrangement[13]to compute the hydrodynamic loads on it. They suggested that the reduction of the wake instability depending on the frequency and amplitude of oscillation. Also, they observed that the unsteady lift and drag components reach their maxima when the forced frequency is that of the natural vortex shedding frequency of the cylinder.

    So far, there have been relatively few studies of the flow around a diamond prism and other sharpedged bluff bodies. Zheng and Dalton[14]presented a numerical model to simulate an oscillating flow around a diamond cylinder and a square cylinder. The time variation of the in-line force coefficients presents an irregular wave forms when vortex shedding became asymmetric. Bearman et al.[15]conducted flow visualization of oscillating flow past a square cylinder. In this case, the inlet angles of the oscillating flow affect the time histories of in-line and transverse force coefficients.

    The flow field features around an oscillating diamond prism are not yet considered for a detailed analysis. The present study attempts to understand and to present the effects of the body shape on the flow fields and the instantaneous force signals acting on the body. A numerical investigation is conducted of the flow around oscillating circular cylinder and diamond prisms for Re =100 and KC=5.

    1. Mathematical formulation and numerical method

    1.1 Problem description

    The aim of this study is to predict two-dimensional fluid motion induced by the oscillation of a circular cylinder (Case 1) and a diamond prism (Case 2) of the same cross-stream dimension D=0.01m in water at rest (see Fig.1). The body is allowed to oscillate only in the longitudinal direction and the body vibrating velocity is given by The considered oscillating flow is controlled by the Reynolds number (Re) and Keulegan-Carpenter number (KC). KC is defined byKC=U∞T/D = 5 (or KC=2πA/D) , whereD is the cylinder diameter, A the oscillation amplitude, T the period of oscillation and U∞the maximum velocity in the oscillation. The Reynolds number for this flow is usually defined as Re=U∞D(zhuǎn)/v =100, v being the kinematic viscosity of the fluid. The flow is affected additionally by the Stokes number which is defined by β=D2/vT[7]where Re is the product of KC and β.

    Fig.1 Schematic of the problem domain in-line in a fluid

    The body is initially located at the center of the domain so its center has coordinates 15D and 10D. The domain has a length of 30D and a width of 20D. These dimensions were chosen similar to the experiment carried out by Dütsch et al.[9]at the same conditions for an oscillating cylinder to validate the proposed model.

    1.2 Governing equations and boundaries conditions

    To handle a moving object, there are generally two categories of treatments depending on the chosen frame of reference: inertial or moving frames.

    The Navier-Stokes equations governing an incompressible Newtonian fluid flow in an inertial frame connected to the stationary fluid are written as

    where ui(u,w) are the velocity components in the directions along the axes coordinatesxi(x,z), p is the pressure, ρ is the density of the fluid, which was fixed to 998.2 Kg·m–3and μ is the dynamic viscosity taken equal to 10–3Kg·(ms)–1for all computations.

    Fig.2 Rectangular meshes refined near the surfaces

    In applying these transport equations in the inertial system, the numerical grid has to be moved and adjusted from time step to time step according to the cylinder motion. However, a long distance moving object, the remeshing of the computational fluid domain is difficult[16]. For this reason, the proposed model is based on the Navier-Stokes equations written in an accelerated reference system. The inertialix and accelerated framesare connected by the relationship

    Fig.3 Effect of grid refinement on the velocity components at section x =0.144m at phase timet=T/2+nt

    Fig.4 The effect of time step Δt/T on the velocity components at section x=0.144m at phase timet=T/2+nt

    Fig.5 Comparison of the velocity components at four cross sections at timet=T/2+nt

    Hence, the fundamental equations for the accelerated system are heredenotes the fluid velocity in the accelerated reference system. The added source termtakes into account the oscillating body acceleration. With this formulation, the grid remainsfixed during the computation. The boundary conditions are changed from the flow induced by the motion of a body to oscillating flow around a body at rest (see Fig.1).The fluid velocities at the inlet, outlet and body surface boundaries,,iBu~, is related to oscillating flow around a fixed body by

    The initial values ofthe velocity and the pressure in the whole domain are zero. The computed velocity inaccelerated frameis transformed in the inertial velocity field by velocity of the moving body Ui,c(t).

    The instantaneous in-line and transverse force coefficients (non-dimensionalized by 0.5ρU∞2D) are defined as follows

    1.3 Numerical method

    In this study, the PHOENICS code has been applied to the simulation oftheflow around an oscillating body. The transport equations are discretized by the finite volume method numerical in which the conservation equations are written in an integral form. The solution domain is subdivided into a finite number of control volume and conservation equations are applied to each control volume. The convection term was approximated by a hybrid difference scheme. This code used staggered Cartesian grid arrangement. In the PHOENICS code, the body shape is approximated by the cutting cell approach in a Cartesian grid (see Fig.2(a)).

    2. Results an d discussions

    2.1 Grid and timeinde pendence

    Four grids sizes were tested for the case of an oscillating circular cylinderand three time steps were used to test the grid and time independence (see Figs.1(a) and 2(a)). Non-uniform grid dimensions were used in the x-z plane with the minimum grid size being employed near the body shape. The grid is refined near the surface body to resolve the fine flow structures in the viscous layer (see Fig.2). The effects of different grids on the velocity profiles at x= 0.144 m are shown in Fig.3. For a grid with 180× 140 cells in the x and z directions, the computed results are grid independent. For this grid the time independence study is carried out, and it is observed that the results become time step independent for =TΔ 0.049 s (see Fig.4).

    2.2 In-line oscillation of a circular cylinder

    The flow field induced by an oscillating cylinder were first simulated in order to validate the proposed model. The predicted velocity componentsat four sections x=0.144 m, 0.150 m, 0.156 m and 0.162 m at phase time t=T/2+nT are shown in Fig.5. The experimental measurements as well as numerical data reported byDütsch et al.[9]are provided in these figures for comparison. The cylinder motion velocity of -U∞cos(2π/Tt ) is also shown in these figures for comparison (at x=0.150 m ). For all velocity profiles, a good agreement is achieved.

    Fig.6 In-line force coefficient as function of the non-dimensional time

    Fig.7 In-line and transverse forces coefficients during one period of oscillation

    Fig.8Pressure and vorticity isolines for an oscillating circular cylinder at Re=100 and KC =5

    Figure 6 shows the in-line force coefficient as function of the non-dimensional time. The present res ults are in very good agreement with the numerical results obtained by Dütsch et al.[9]and Shen et al.[12]. It is found that the instantaneous in-line force signal is highly sinusoidal and periodic, due to the domination of the inertia forces at low KC. Figure 7 shows the in-line and transverse force coefficients and the cylinder velocity (non-dimensionalized by U∞) for one period of cylinder oscillation. There is about 54ophase shift when comparing the in-line force coefficient with the cylinder velocity. Both maximum in-line force coefficient and phase shift agree very well with the numerical results from Dütsch et al.[9]. Hence, the transverse coefficient is equal to zero, indicating a symmetrical flow patterns at low KC. By following Tatsuno and Bearman[7], the parameter set of the present investigation (Re=100 andKC=5) correspond to regime A. This flow regime is stable, symmetric and is characterized by a periodic vortex shedding. Therefore, the transverse coefficient as function of the non-dimensional time is equal to zero, reflected a symmetric pattern of vortical flow formation (see Fig.7). The process of the vortex formation is illustrated by the pressure and vorticity isolines in Fig.8 during the forward and backward motion of the oscillating cylinder. As the-oscillating cylinder moved in the forward direction, at the front of the cylinder an upper and lower boundary layer flows are developed, which are separated at the same upper and lower positions on the cylinder wall. The separating flow produces two counter rotating vortices of apparently the same magnitude of strength, and hence resulting in the same vortex shape. On the upper side of the cylinder a clockwise rotating vortex r emains attached to the cylinder and on the lower side, there is a counterclockwise vortex. In addition, the backward motion of the cylinder caused a splitting of the vortex pair, which was produced by the forward motion and there is inversing in the vorticity sign. The symmetrical flow is also indicated by the velocity fields and streamlines for three times of the cylinder motion, shown in Fig.9.

    2.3 In-line oscillation of diamond prism

    In this section, the flow induced by an oscillating diamond prism in fluid at rest is considered. The numerical simulation was conducted in the same computational domain shown in Fig.1(b) and the grid refinement, used for this case, near the body surface is shown in Fig.2(b). The diamond prism of diameter D=0.01 m is allowed to oscillate only in the longitudinal direction with the same cylinder vibrating velocity.

    Fig.9 Velocity vectors and streamlines in the vicinty of the circu lar cylinder atRe=100 and KC=5

    Fig.10 Length of the separation bubble of the flow aroundat Re=100 and KC=5

    To get a quantitative check of the flow field property, the length of the recirculation zone for the oscillating diamond prism and cylinder, defined by the dista nce from its basis to th e saddle point related to the two contra rotating vortex zone in the near wake, is plotted in Fig.10 as a function of time. This figure shows that the length of the recirculation of the two bodies shape increase almost linearly. However, for a fixed time, it can be seen that the diamond prism increases slightly the length of the recirculation, as compared with that due to the cylinder.

    Fig.11 In-line force coefficient as function of the non-dimensional time

    The in-line force coefficient on the oscillating diamond prism and the cylinder is shown in Fig.11. The two in-line force coefficient curves are similar and nearly sinusoidal because of the domination of the inertia forces. However, the maximum in-line force coefficient on the oscillating diamond prism is greater than the oscillating cylinder. In fact, for a cylindrical shape the length of recirculation zone is smaller (see Fig.10) and streamlines remains attached to the body for longer distance. Moreover, there is about 5ophase shift when comparing the in-line force coefficient on the oscillating diamond prism with that of the oscillating cylinder.

    The numerical predictions of vorticity isolines around the oscillating diamond prism during the forward and backward motion of the oscillating diamond prism are shown in Fig.12. This figure shows a symmetric pair of vortices are formed from the movement of the diamond prism and they remain attached to the leeward face of the diamond prism indicate a symmetrical flow about the line of diamond prism motion.

    3. Conclusions

    In this study, the flow around an oscillating circular cylinder and diamond prism has been simulated by solving the incompressible Navier-Stokes equations with the PHOENICS code. For both body shapes, the parameter set of the present investigation is Re=100 and KC=5. For oscillating cylinder, good agreement is obtained between the predicted results, experimental and numerical results available in litterature. The periodic vortex consisting of vortices withsymmetric locations around the oscillating cylinder has been well predicted. Moreover, comparison between cylinder and diamond prism show that forin the latter the maximum in-line force and the separation length increase.

    Fig.12 Vorticity isolines for an oscillating diamond prism at Re=100 and KC=5

    Finally, it has to be emphasized that the present results have proved the applicability and accuracy of the fixed-grid approach to simulate flow around an oscillating body. From the viewpoint of computational cost, this approach has an attractive advantage as it is well known that the remeshing process requires a great amount of computational time since the movinggrid was adopted.

    Also, results have shown that the hydrodynamic characteristic of oscillating bodies depend strongly on the shape of the bluff body. This work would help bette r understand the physics of the flow around sharp-edged cylinders. Also, the presented results can be a good basis for reduction of the wake instability in the sharp-edged cylinders case. Further research should be investigated the flow around an oscillating square prism at different attack angles to determine the optimum body configuration.

    [1] SWAROOP A. Design of vortex flow meter[D]. Master Thesis, Delhi, India: Indian Institute of Technology Delhi, 1990.

    [2] NORBERG C. Fluctuating lift on a circular cylinder: Review and new measurements[J]. Journal of Fluids and Structures, 2003, 17(1): 57-96.

    [3] WANG Jia-song. Flow around a circular cylinder using a finite-volume TVD scheme based on a vector transformation approach[J]. Journal of Hydrodynamics, 2010, 22(2): 221-228.

    [4] KU X., LIN J. Numerical simulation of the flows over two tandem cylinders by lattice Boltzmann method[J]. Modern Physics Letters B, 2005, 19(28-29): 1551- 1554.

    [5] ZOU Lin, LIN Yu-feng and LU Hong. Flow patterns and force characteristics of laminar flow past four cylinders in diamond arrangement[J]. Journal of Hydrodynamics, 2011, 23(1): 55-64.

    [6] GHADIRI-DEHKORDI Behzad, SARVGHADMOGHADDAM Hesam and HOURI JAFARI Hamed. Numerical simulation of flow over two circular cylinders in tandem arrangement[J]. Journal of Hydrodynamics, 2011, 23(1): 114-126.

    [7]TATSUNO M., BEARMAN P. W. A visual study of the flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers and low Stokes numbers[J]. Journal of Fluid Mechanics, 1990, 211: 157-182.

    [8]LIN J.-C., ROCKWELL D. Quantitative interpretation of vortices from a cylinder oscillating in quiescent fluid[J]. Experiments in Fluids, 1997, 23(2): 99-104.

    [9] DüTSCHH., DURST F. and BECKER S. et al. Low-Reynolds-number flow around an oscillating cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360: 249-271.

    [10] ZHENG Z. C., ZHANG N. Frequency effects on lift and drag for flow past an oscillating cylinder[J]. Journal of Fluids and Structures, 2008, 24(3): 382-399.

    [12] SHEN L., CHAN E.-S. and LIN P. Calculation of hydrodynamic forces acting on a submerged moving

    object using immersed boundary method[J]. Compu- ters and Fluids, 2009, 38(3): 691-702.

    [13] LU X.-Y., SATO J. A numerical study of flow past a rotationally oscillating circular cylinder[J]. Journal of Fluids and Structures, 1996, 10(8): 829-849.

    [14] ZHENG W., DALTON C. Numerical prediction of force on rectangular cylinders in oscillating viscous flow[J]. Journal of Fluids and Structures, 1999, 13(2): 225-249.

    [15] BEARMAN P. W., GRAHAM J. M. R. and OBASAJU E. D. et al. The influence of corner radius on the forces experienced by cylindrical bluff bodies in oscillatory flow[J]. Applied Ocean Research, 1984, 6(2): 83-89.

    [16] TEZDUYAR T. E., BEHR M. and LIOU J. A new strategy for finite element computations involving moving boundaries and interfaces–The deforming-spatialdomain/space-time procedure[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351.

    10.1016/S1001-6058(11)60302-8

    * Biography: GHOZLANI Belgacem (1982-), Male, Ph. D. Candidate, Physics Instructor

    夜夜看夜夜爽夜夜摸| 国产乱人偷精品视频| 97超视频在线观看视频| 3wmmmm亚洲av在线观看| 精品人妻偷拍中文字幕| 女性生殖器流出的白浆| 又黄又爽又刺激的免费视频.| 久久久久久久久久久丰满| tube8黄色片| 男女无遮挡免费网站观看| 成人美女网站在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品第二区| 简卡轻食公司| 日本猛色少妇xxxxx猛交久久| 欧美精品一区二区免费开放| 欧美另类一区| 97精品久久久久久久久久精品| tube8黄色片| 亚洲经典国产精华液单| 九九久久精品国产亚洲av麻豆| 日本av手机在线免费观看| 国产精品99久久99久久久不卡 | 大片电影免费在线观看免费| av不卡在线播放| 特大巨黑吊av在线直播| 国产成人一区二区在线| 免费高清在线观看视频在线观看| 超碰av人人做人人爽久久| 亚洲欧美日韩另类电影网站 | 永久网站在线| 中文精品一卡2卡3卡4更新| 女人十人毛片免费观看3o分钟| 亚洲欧美中文字幕日韩二区| 精品一品国产午夜福利视频| 国产黄色免费在线视频| 欧美性感艳星| 蜜桃亚洲精品一区二区三区| 久久久久国产网址| 精品一区二区免费观看| 亚洲欧美清纯卡通| 美女中出高潮动态图| 日本-黄色视频高清免费观看| av免费在线看不卡| 大片免费播放器 马上看| 女的被弄到高潮叫床怎么办| 91精品一卡2卡3卡4卡| 男人舔奶头视频| 久久久国产一区二区| 国产精品久久久久成人av| 亚洲av在线观看美女高潮| 国产欧美亚洲国产| 亚洲欧美一区二区三区黑人 | 男男h啪啪无遮挡| 如何舔出高潮| 色网站视频免费| 久久久成人免费电影| 免费观看无遮挡的男女| 乱码一卡2卡4卡精品| 国产av精品麻豆| 99久久精品热视频| 我要看黄色一级片免费的| 老女人水多毛片| 久久久久久久久久久免费av| 国产欧美另类精品又又久久亚洲欧美| 精品人妻熟女av久视频| 人妻 亚洲 视频| 在线看a的网站| 亚洲自偷自拍三级| 久久人人爽人人片av| 另类亚洲欧美激情| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 国产精品久久久久成人av| 香蕉精品网在线| 黄色配什么色好看| 99久久中文字幕三级久久日本| 一本久久精品| 赤兔流量卡办理| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 麻豆精品久久久久久蜜桃| 久久av网站| 久久国产乱子免费精品| 成人无遮挡网站| 精品亚洲成国产av| 91久久精品电影网| 亚洲av电影在线观看一区二区三区| 免费黄色在线免费观看| 日本黄色日本黄色录像| 最近最新中文字幕免费大全7| 午夜福利影视在线免费观看| 国产在线男女| 免费观看a级毛片全部| 国产高清有码在线观看视频| 免费黄网站久久成人精品| 一个人看的www免费观看视频| 99热网站在线观看| 国产精品熟女久久久久浪| 中文字幕久久专区| 国产黄频视频在线观看| 好男人视频免费观看在线| 又爽又黄a免费视频| 高清午夜精品一区二区三区| 久久人人爽人人爽人人片va| 色视频www国产| 国产在线视频一区二区| av又黄又爽大尺度在线免费看| 在线 av 中文字幕| 亚洲不卡免费看| 色网站视频免费| 一本色道久久久久久精品综合| 中文字幕精品免费在线观看视频 | 丰满人妻一区二区三区视频av| 狂野欧美激情性xxxx在线观看| 亚洲国产色片| 精品少妇黑人巨大在线播放| 国产成人免费观看mmmm| 少妇 在线观看| 欧美人与善性xxx| 视频区图区小说| 精品久久久精品久久久| 另类亚洲欧美激情| 久久99热这里只有精品18| 国语对白做爰xxxⅹ性视频网站| 国产成人a区在线观看| 男女啪啪激烈高潮av片| 午夜免费鲁丝| 日本欧美视频一区| 欧美日韩在线观看h| 女人十人毛片免费观看3o分钟| 美女视频免费永久观看网站| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品999| 免费播放大片免费观看视频在线观看| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 欧美bdsm另类| 简卡轻食公司| 欧美激情极品国产一区二区三区 | 秋霞伦理黄片| 精品久久久久久久久亚洲| 欧美xxxx黑人xx丫x性爽| 国产免费又黄又爽又色| 亚洲精品亚洲一区二区| 国产av国产精品国产| 精品亚洲成a人片在线观看 | 亚洲精品中文字幕在线视频 | 中文天堂在线官网| 国精品久久久久久国模美| 新久久久久国产一级毛片| 国产高潮美女av| 国产高清国产精品国产三级 | 777米奇影视久久| 97精品久久久久久久久久精品| 不卡视频在线观看欧美| 有码 亚洲区| 亚洲精品456在线播放app| 老司机影院毛片| 2018国产大陆天天弄谢| 高清毛片免费看| 男女免费视频国产| 欧美zozozo另类| tube8黄色片| 蜜臀久久99精品久久宅男| 亚洲aⅴ乱码一区二区在线播放| 观看免费一级毛片| 五月伊人婷婷丁香| 国产黄色视频一区二区在线观看| 女性生殖器流出的白浆| 激情五月婷婷亚洲| 又爽又黄a免费视频| 欧美精品人与动牲交sv欧美| 国产成人免费无遮挡视频| 亚洲第一av免费看| 在线观看免费日韩欧美大片 | 黄色怎么调成土黄色| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 国产黄片视频在线免费观看| 美女中出高潮动态图| 中文欧美无线码| 成人无遮挡网站| 午夜免费观看性视频| 久久国产乱子免费精品| 人妻少妇偷人精品九色| 人人妻人人澡人人爽人人夜夜| 国产亚洲91精品色在线| 晚上一个人看的免费电影| 在线天堂最新版资源| 国产国拍精品亚洲av在线观看| 国产精品一二三区在线看| 岛国毛片在线播放| 国产精品爽爽va在线观看网站| 中文字幕制服av| 久久人妻熟女aⅴ| 免费大片18禁| 美女中出高潮动态图| 亚洲熟女精品中文字幕| 亚洲欧美中文字幕日韩二区| .国产精品久久| 97在线视频观看| 亚洲国产成人一精品久久久| freevideosex欧美| 婷婷色综合www| 在线播放无遮挡| 国产伦精品一区二区三区视频9| 亚洲国产最新在线播放| 最近最新中文字幕大全电影3| 在线看a的网站| 青春草亚洲视频在线观看| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久久电影| 国产精品人妻久久久影院| 狂野欧美激情性bbbbbb| 人妻制服诱惑在线中文字幕| 26uuu在线亚洲综合色| 国产精品熟女久久久久浪| 久久久久久久久久成人| 国产国拍精品亚洲av在线观看| 91精品国产九色| 在线看a的网站| 日本av手机在线免费观看| 久久久久久久亚洲中文字幕| 在线观看一区二区三区| 美女高潮的动态| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 男人舔奶头视频| 王馨瑶露胸无遮挡在线观看| 国产毛片在线视频| 日韩三级伦理在线观看| 亚洲图色成人| 成人黄色视频免费在线看| 亚洲av免费高清在线观看| 一个人看视频在线观看www免费| 国产精品一及| 国产精品蜜桃在线观看| av在线观看视频网站免费| 午夜福利影视在线免费观看| 看十八女毛片水多多多| 国产精品女同一区二区软件| 男女无遮挡免费网站观看| 日韩不卡一区二区三区视频在线| 亚洲成人一二三区av| 我的老师免费观看完整版| 在线观看免费高清a一片| 97超碰精品成人国产| 亚洲av男天堂| 中文字幕免费在线视频6| 久久热精品热| 国产精品久久久久成人av| 看免费成人av毛片| 深爱激情五月婷婷| 久久久精品免费免费高清| 亚洲av.av天堂| 美女视频免费永久观看网站| 欧美亚洲 丝袜 人妻 在线| 我要看黄色一级片免费的| 人妻制服诱惑在线中文字幕| 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 一区在线观看完整版| 亚洲国产精品成人久久小说| av福利片在线观看| 少妇裸体淫交视频免费看高清| 国产淫语在线视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品国产精品| 99热国产这里只有精品6| 97精品久久久久久久久久精品| 欧美日韩综合久久久久久| 久久ye,这里只有精品| 在线观看人妻少妇| 亚洲欧美成人综合另类久久久| 国产精品国产三级国产专区5o| 国产av精品麻豆| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看 | 久久97久久精品| 国产av一区二区精品久久 | 欧美日韩亚洲高清精品| 日日啪夜夜撸| 国产美女午夜福利| 纵有疾风起免费观看全集完整版| 亚洲四区av| 亚洲成色77777| 观看美女的网站| 久久婷婷青草| 日韩av免费高清视频| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 毛片一级片免费看久久久久| 久久鲁丝午夜福利片| 一级毛片电影观看| 亚洲av中文字字幕乱码综合| 国产男人的电影天堂91| 久久国产精品男人的天堂亚洲 | 久久精品熟女亚洲av麻豆精品| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久久久免| 日本av免费视频播放| 午夜激情福利司机影院| 国产免费一级a男人的天堂| av国产久精品久网站免费入址| 麻豆成人av视频| 激情五月婷婷亚洲| 国产精品国产av在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产欧美日韩一区二区三区在线 | 在线看a的网站| 国产成人a∨麻豆精品| 国产毛片在线视频| 久久人人爽av亚洲精品天堂 | 久久6这里有精品| 亚洲无线观看免费| 丰满迷人的少妇在线观看| 免费人成在线观看视频色| 97超视频在线观看视频| videos熟女内射| 亚洲国产av新网站| 成年av动漫网址| 国产 一区精品| 在线免费观看不下载黄p国产| 欧美区成人在线视频| 女人十人毛片免费观看3o分钟| 人妻一区二区av| av一本久久久久| 成人一区二区视频在线观看| 麻豆国产97在线/欧美| 一个人免费看片子| 日韩大片免费观看网站| 九九爱精品视频在线观看| 国产真实伦视频高清在线观看| 久久久久国产精品人妻一区二区| 亚洲精品自拍成人| 狂野欧美白嫩少妇大欣赏| 91久久精品电影网| 狂野欧美激情性bbbbbb| 婷婷色麻豆天堂久久| 在线免费十八禁| 日本免费在线观看一区| 婷婷色综合www| 人人妻人人澡人人爽人人夜夜| 日本爱情动作片www.在线观看| 国产伦在线观看视频一区| 国产亚洲午夜精品一区二区久久| 欧美一级a爱片免费观看看| 最近最新中文字幕免费大全7| 日日啪夜夜爽| 亚洲精品乱久久久久久| 国产 一区 欧美 日韩| 成人国产麻豆网| 国产欧美日韩一区二区三区在线 | 国产乱人视频| 少妇 在线观看| 国产乱人视频| 三级国产精品片| 2022亚洲国产成人精品| 欧美丝袜亚洲另类| 欧美精品人与动牲交sv欧美| 51国产日韩欧美| 22中文网久久字幕| 少妇 在线观看| 亚洲av中文av极速乱| 亚洲精品第二区| 国产黄色免费在线视频| 人妻系列 视频| 亚洲精品视频女| 在线免费观看不下载黄p国产| 日韩av在线免费看完整版不卡| 最近2019中文字幕mv第一页| 2022亚洲国产成人精品| 超碰97精品在线观看| 国产一区二区三区av在线| 成人二区视频| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 七月丁香在线播放| 日韩视频在线欧美| 国产男女内射视频| 免费看不卡的av| 成人影院久久| 亚洲丝袜综合中文字幕| 久久久久久伊人网av| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 久久久久久久亚洲中文字幕| 精品久久国产蜜桃| 免费看不卡的av| 丰满迷人的少妇在线观看| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 黑丝袜美女国产一区| 一本久久精品| 成人毛片a级毛片在线播放| 亚洲欧美中文字幕日韩二区| 日日啪夜夜撸| 国产精品蜜桃在线观看| 一区二区av电影网| 久久久久久久亚洲中文字幕| 97在线视频观看| 日韩成人伦理影院| 国产精品一区二区在线不卡| 久久久久久久久久成人| 六月丁香七月| 亚洲欧美一区二区三区黑人 | 国产精品麻豆人妻色哟哟久久| 18禁裸乳无遮挡动漫免费视频| 黄色欧美视频在线观看| 伦理电影免费视频| 亚洲最大成人中文| 国产免费视频播放在线视频| 精品国产露脸久久av麻豆| 国产精品久久久久成人av| 亚洲精品aⅴ在线观看| 亚洲人与动物交配视频| 久久国产乱子免费精品| 又爽又黄a免费视频| 国产一区亚洲一区在线观看| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂 | 一本一本综合久久| 日韩人妻高清精品专区| 男人狂女人下面高潮的视频| 亚洲怡红院男人天堂| 高清在线视频一区二区三区| 高清av免费在线| 亚洲精品一二三| 久久99热这里只频精品6学生| 国产白丝娇喘喷水9色精品| 大片免费播放器 马上看| av.在线天堂| 国内精品宾馆在线| 日韩av在线免费看完整版不卡| 热re99久久精品国产66热6| 哪个播放器可以免费观看大片| 蜜桃亚洲精品一区二区三区| 日韩不卡一区二区三区视频在线| 国产成人精品一,二区| 丰满乱子伦码专区| 国产欧美亚洲国产| 午夜老司机福利剧场| 制服丝袜香蕉在线| a级毛色黄片| 97超碰精品成人国产| 亚洲国产精品一区三区| 国产黄片美女视频| 男人爽女人下面视频在线观看| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品电影小说 | 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 日本黄大片高清| 最近的中文字幕免费完整| 91aial.com中文字幕在线观看| 免费看av在线观看网站| 日日撸夜夜添| 国产欧美日韩精品一区二区| 久久综合国产亚洲精品| 人人妻人人澡人人爽人人夜夜| 毛片一级片免费看久久久久| 永久网站在线| 色视频www国产| 婷婷色麻豆天堂久久| av卡一久久| 国产成人精品久久久久久| 最近的中文字幕免费完整| 少妇人妻一区二区三区视频| 亚洲av不卡在线观看| 美女国产视频在线观看| 乱码一卡2卡4卡精品| 高清av免费在线| 国产精品不卡视频一区二区| 天天躁日日操中文字幕| 欧美精品人与动牲交sv欧美| 欧美 日韩 精品 国产| 中国三级夫妇交换| 日韩欧美一区视频在线观看 | 亚洲国产最新在线播放| 1000部很黄的大片| 国产一级毛片在线| 中国三级夫妇交换| 欧美日本视频| 亚洲高清免费不卡视频| 在线观看av片永久免费下载| 中文字幕免费在线视频6| av又黄又爽大尺度在线免费看| 18+在线观看网站| 日日摸夜夜添夜夜爱| 亚洲欧美精品自产自拍| 超碰97精品在线观看| 国产成人91sexporn| 亚洲av中文字字幕乱码综合| 卡戴珊不雅视频在线播放| 人妻夜夜爽99麻豆av| 美女高潮的动态| 亚洲av.av天堂| 少妇的逼水好多| 91久久精品国产一区二区成人| 熟女电影av网| 韩国高清视频一区二区三区| 七月丁香在线播放| 欧美日本视频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品视频女| 高清毛片免费看| 亚洲欧洲日产国产| 免费大片黄手机在线观看| 男人和女人高潮做爰伦理| 欧美精品一区二区免费开放| 国产高清三级在线| 超碰av人人做人人爽久久| 精品国产一区二区三区久久久樱花 | 国产免费又黄又爽又色| 久久久久久久精品精品| 日本黄大片高清| 国产精品伦人一区二区| 亚洲av福利一区| 在线精品无人区一区二区三 | 欧美亚洲 丝袜 人妻 在线| 99久久人妻综合| 国产亚洲午夜精品一区二区久久| 性高湖久久久久久久久免费观看| av女优亚洲男人天堂| av免费观看日本| 国产高清三级在线| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 晚上一个人看的免费电影| xxx大片免费视频| 99国产精品免费福利视频| 2021少妇久久久久久久久久久| 91aial.com中文字幕在线观看| tube8黄色片| 视频中文字幕在线观看| 在线看a的网站| 欧美日韩亚洲高清精品| 一级a做视频免费观看| 国产白丝娇喘喷水9色精品| 日韩 亚洲 欧美在线| 国产精品秋霞免费鲁丝片| 小蜜桃在线观看免费完整版高清| 精品久久久久久久末码| 男人舔奶头视频| 新久久久久国产一级毛片| 成人漫画全彩无遮挡| 99视频精品全部免费 在线| 久久人人爽人人片av| av免费在线看不卡| 99re6热这里在线精品视频| 日韩亚洲欧美综合| 99热国产这里只有精品6| 人妻 亚洲 视频| 久久午夜福利片| 只有这里有精品99| 亚洲第一av免费看| 女人十人毛片免费观看3o分钟| 22中文网久久字幕| 亚洲国产精品国产精品| 亚洲国产精品一区三区| 永久网站在线| 中文字幕免费在线视频6| 久久久精品94久久精品| 国产av精品麻豆| 国产无遮挡羞羞视频在线观看| 亚洲自偷自拍三级| 大香蕉久久网| 国产黄色视频一区二区在线观看| 亚洲综合色惰| 国产精品99久久久久久久久| 久久久色成人| 精品国产乱码久久久久久小说| 秋霞伦理黄片| 欧美日韩国产mv在线观看视频 | 亚洲精品一区蜜桃| 欧美一区二区亚洲| 久久国产精品大桥未久av | 十八禁网站网址无遮挡 | 亚洲丝袜综合中文字幕| 好男人视频免费观看在线| 国产精品成人在线| 一个人免费看片子| 国精品久久久久久国模美| 亚洲精品亚洲一区二区| av在线老鸭窝| 久久 成人 亚洲| 这个男人来自地球电影免费观看 | 国产91av在线免费观看| 久久ye,这里只有精品| 日本-黄色视频高清免费观看| 午夜精品国产一区二区电影| 狂野欧美激情性xxxx在线观看| 免费观看在线日韩| 国产爽快片一区二区三区| 久久久久人妻精品一区果冻| 身体一侧抽搐| av线在线观看网站| 欧美性感艳星| 亚洲av欧美aⅴ国产| 精品亚洲成a人片在线观看 | 亚洲欧美精品自产自拍| 亚洲美女搞黄在线观看| 一级毛片久久久久久久久女| 交换朋友夫妻互换小说| 极品少妇高潮喷水抽搐| av在线播放精品| 国产黄色免费在线视频| 黄色欧美视频在线观看|