廖 勇,敖俊紅,楊蓉婭
? 綜 述 ?
病原真菌外排轉(zhuǎn)運(yùn)蛋白與真菌耐藥的研究進(jìn)展
廖 勇,敖俊紅,楊蓉婭
病原真菌通過(guò)對(duì)抗機(jī)體防御系統(tǒng)和抗真菌藥物的攻擊,從而成功定植于宿主體內(nèi)并最終導(dǎo)致機(jī)體感染, 真菌外排轉(zhuǎn)運(yùn)蛋白在上述過(guò)程中起著重要作用,主要包括ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette transporters,ABC)與主要易化子超家族(the major facilitator superfamily,MFS),分別通過(guò)與ATP水解酶或質(zhì)子梯度耦合來(lái)運(yùn)輸并清除真菌胞內(nèi)的毒性物質(zhì)。與其它生物相比,真菌基因組中具有更多轉(zhuǎn)運(yùn)蛋白家族編碼基因,這些轉(zhuǎn)運(yùn)蛋白不僅對(duì)真菌致病過(guò)程中所產(chǎn)生的代謝產(chǎn)物和宿主細(xì)胞分泌的抗菌成分起外排作用;同時(shí),在病原真菌對(duì)抗臨床抗真菌藥物中也發(fā)揮著重要作用。本文就這兩個(gè)超家族的轉(zhuǎn)運(yùn)蛋白在主要病原真菌耐藥性中所發(fā)揮的作用進(jìn)行綜述。
病原真菌;外排轉(zhuǎn)運(yùn)蛋白;耐藥;進(jìn)展
深部真菌病的發(fā)病率在近二十年迅速上升[1],其中,白念珠菌在所有常見(jiàn)血源性致病真菌中已位列第四。念珠菌屬、隱球菌屬、曲霉菌屬、鐮刀菌屬和接合菌屬等病原真菌均能夠適應(yīng)機(jī)體環(huán)境,且其所引起的深部真菌病均具有較高死亡率。病原真菌不斷受到外源性毒性成分的攻擊,這些化合物可以是其他微生物為爭(zhēng)奪有限生存資源而合成的成分,也可能是機(jī)體的防御體系主動(dòng)合成,或是其他來(lái)源的抗真菌物質(zhì)。不論其來(lái)源,這些化合物迫使真菌通過(guò)進(jìn)化來(lái)適應(yīng)周圍環(huán)境并生存下來(lái)。對(duì)抗這些抗真菌化合物的常見(jiàn)機(jī)制就是通過(guò)細(xì)胞膜表面的外排轉(zhuǎn)運(yùn)蛋白將其主動(dòng)外排,從而減少其在真菌胞內(nèi)的積聚,使其對(duì)于毒性物質(zhì)產(chǎn)生耐受。研究發(fā)現(xiàn),這些轉(zhuǎn)運(yùn)蛋白是真菌重要的毒力因子,部分轉(zhuǎn)運(yùn)蛋白已證實(shí)其功能涉及真菌致病性的多個(gè)方面,包括鈣鐵攝取,通道運(yùn)輸,應(yīng)激耐受和菌相轉(zhuǎn)換等。本文重點(diǎn)討論ATP結(jié)合盒(ABC)轉(zhuǎn)運(yùn)蛋白和主要易化子超家族(MFS)與主要病原真菌耐藥的關(guān)系。
真菌基因組中約每百萬(wàn)堿基存在10~30個(gè)轉(zhuǎn)運(yùn)蛋白的編碼基因,比例明顯高于其它生物,對(duì)目前已完成測(cè)序的真菌基因組研究發(fā)現(xiàn)ABC和MFS為最常見(jiàn)的轉(zhuǎn)運(yùn)蛋白超家族,其編碼基因約占真菌基因組所有轉(zhuǎn)運(yùn)蛋白編碼基因的50%。盡管ABC和MFS在真菌致病過(guò)程中發(fā)揮重要作用,但其編碼基因的數(shù)量與真菌致病性之間未發(fā)現(xiàn)明確相關(guān)性,如構(gòu)巢曲霉和煙曲霉的基因組中都含有45個(gè)編碼ABC轉(zhuǎn)運(yùn)子的基因,構(gòu)巢曲霉具有更多的MFS基因,但其致病性遠(yuǎn)低于煙曲霉。
ABC轉(zhuǎn)運(yùn)蛋白是主要的外排泵轉(zhuǎn)運(yùn)蛋白,主要包括ABCA、ABCB、ABCC、ABCD和ABCG五個(gè)轉(zhuǎn)運(yùn)子家族(其中三個(gè)家族ABCB、ABCC和ABCG)與胞內(nèi)毒性物質(zhì)的外排密切相關(guān),分別稱為多藥耐藥家族(MDR)、多藥耐藥相關(guān)蛋白家族(MRP)以及多效性耐藥家族(PDR)[2]。ABC可通過(guò)水解三磷酸腺苷(ATP)供能將物質(zhì)從細(xì)胞內(nèi)排出。在酵母菌和絲狀真菌中均發(fā)現(xiàn)ABC轉(zhuǎn)運(yùn)蛋白中的多效性耐藥家族(PDR)基因存在缺失或多拷貝,表現(xiàn)出較低的進(jìn)化保守性,表明該家族的成員在外界選擇性壓力下可以迅速發(fā)生適應(yīng)性反應(yīng)。MFS轉(zhuǎn)運(yùn)蛋白包括17個(gè)轉(zhuǎn)運(yùn)蛋白家族,其中兩個(gè)家族,藥物:H+逆向轉(zhuǎn)運(yùn)子(14跨膜片段)(DHA14)和藥物:H+逆向轉(zhuǎn)運(yùn)子(12跨膜片段)(DHA12)與外排毒性物質(zhì)功能相關(guān)[3]。
病原真菌能夠在抗真菌治療的過(guò)程中產(chǎn)生耐藥性,多種因素可以導(dǎo)致病原真菌耐藥性升高,藥物外排轉(zhuǎn)運(yùn)蛋白的轉(zhuǎn)錄增加是其重要因素之一,而相關(guān)轉(zhuǎn)錄激活因子的表達(dá)上調(diào)在其中起到重要作用[4]。ABC轉(zhuǎn)運(yùn)蛋白雖不直接參與真菌的致病過(guò)程,但可為具有耐藥性的病原真菌提供“定植”優(yōu)勢(shì)。研究發(fā)現(xiàn)白念珠菌的CDR1和CDR2;克柔氏念珠菌的ABC1 和ABC2;光滑念珠菌的CgCDR1、PDH1(也稱為CgCDR2)和SNQ2;煙曲霉的AtrF以及新生隱球菌的CneAFR1和CneMDR1[5-7]與三唑類抗真菌藥物(氟康唑、伊曲康唑、酮康唑、泊沙康唑以及伏立康唑)的單一耐藥或交叉耐藥相關(guān),但與棘白菌素類抗真菌藥物及人組蛋白-5(抗真菌蛋白)的耐藥不相關(guān)[8]。白念珠菌的MFS轉(zhuǎn)運(yùn)蛋白如MDR1和FLU1 與真菌的耐藥性相關(guān)[9]。與ABC轉(zhuǎn)運(yùn)蛋白不同, MFS轉(zhuǎn)運(yùn)蛋白相對(duì)特異地與氟康唑耐藥相關(guān)。
2.1 外排轉(zhuǎn)運(yùn)蛋白與白念珠菌耐藥
白念珠菌基因組中至少含有27個(gè)ABC轉(zhuǎn)運(yùn)蛋白,其中7個(gè)基因的序列及功能已在白念珠菌基因組數(shù)據(jù)庫(kù)(CGD)中得到注釋,包括CDR1、CDR2、CDR3、CDR4、CDR11、SNQ2和YOR1,并證實(shí)或推斷與白念珠耐藥相關(guān)[10]。 研究發(fā)現(xiàn)CaCDR1和CaCDR2與抗真菌藥物的外排相關(guān),CaCDR3和CaCDR4編碼磷脂轉(zhuǎn)移酶,其基因序列與CaCdr1p和CaCdr2p具有高度同源性,但與白念珠菌耐藥不相關(guān)[11]。白念珠菌基因組中6個(gè)MFS轉(zhuǎn)運(yùn)蛋白基因的功能被注釋(MDR1、FLU1、TPO3、f1 9.2350、NAG3和MDR97),CaCdr1p、CaCdr2p和CaMdr1p轉(zhuǎn)運(yùn)蛋白是介導(dǎo)白念珠菌對(duì)唑類抗真菌藥物耐藥的膜表面外排轉(zhuǎn)運(yùn)蛋白。CaMdr1p可特異性引起氟康唑耐藥,但CaCdr1p和CaCdr2p的特異性不強(qiáng)[12,13]。部分白念珠菌氟康唑耐藥株高表達(dá)CaCDR1和CaCDR2,而部分耐藥株只高表達(dá)CaMDR1[14],表明唑類耐藥株中至少存在兩個(gè)不同的轉(zhuǎn)錄調(diào)控信號(hào)途徑調(diào)控外排轉(zhuǎn)運(yùn)蛋白的表達(dá)。盡管白念珠菌氟康唑臨床耐藥是由多機(jī)制介導(dǎo)的,但高水平耐藥株與CaCDR1和CaCDR2的高表達(dá)更加相關(guān),其中CaCDR1的表達(dá)較CaCDR2更為重要[15]。對(duì)白念珠菌氟康唑耐藥臨床株轉(zhuǎn)運(yùn)蛋白表達(dá)量進(jìn)行研究,結(jié)果發(fā)現(xiàn)CaCdr1p的表達(dá)量明顯高于CaCdr2p,證明在氟康唑耐藥機(jī)制中CaCdr1p起更為重要的作用。因此,CaCdr1p可以作為針對(duì)氟康唑耐藥菌株的重要藥物靶點(diǎn)進(jìn)行進(jìn)一步研究[16]。
2.2 光滑念珠菌
約30%的光滑念珠菌臨床株對(duì)唑類抗真菌藥物表現(xiàn)出中度先天性耐藥。給予唑類抗真菌藥物治療,光滑念珠菌可較快產(chǎn)生對(duì)于唑類藥物的獲得性耐藥[17],且原有治療藥物撤除后,耐藥性仍可穩(wěn)定保存。光滑念珠菌可能存在18個(gè)ABC轉(zhuǎn)運(yùn)蛋白和15個(gè)MFS轉(zhuǎn)運(yùn)蛋白[2]。體外試驗(yàn)研究發(fā)現(xiàn)高表達(dá)CgCDR1基因的光滑念珠菌,可引起菌株對(duì)唑類藥物耐藥;而該基因的缺陷會(huì)導(dǎo)致菌株對(duì)唑類藥物敏感性升高。光滑念珠菌ABC轉(zhuǎn)運(yùn)蛋白CgSNQ2與釀酒酵母轉(zhuǎn)運(yùn)蛋白ScSNQ2具有高度同源性,可介導(dǎo)唑類抗真菌藥物耐藥[7]。光滑念珠菌的CgPDR1和CgPDR3與白念珠菌轉(zhuǎn)錄因子TAC1是同源基因,可通過(guò)與底物結(jié)合,促進(jìn)外排轉(zhuǎn)運(yùn)蛋白的表達(dá)[18]。光滑念珠菌唑類臨床耐藥株與敏感株相比,CgCDR1和 CgPDH1的表達(dá)量顯著升高;且耐藥株的CgPdh1p 存在氨基酸位點(diǎn)替換,導(dǎo)致CgCDR1表達(dá)上調(diào)及菌株對(duì)于唑類藥物的耐藥[19]。
2.3 克柔氏念珠菌
克柔氏念珠菌一般認(rèn)為對(duì)于氟康唑先天性耐藥,但對(duì)于新一代唑類抗真菌藥(伏立康唑和泊沙康唑)較為敏感[20]??巳崾夏钪榫鷮?duì)于氟康唑先天耐藥的主要機(jī)制是其與藥物靶點(diǎn)Erg11p親和力下降;同時(shí),藥物外排泵的高表達(dá)在其中也起重要作用[21]。Katiyar等通過(guò)對(duì)ABC轉(zhuǎn)運(yùn)蛋白NBDs的高度保守區(qū)域設(shè)計(jì)引物,在克柔氏念珠菌中擴(kuò)增出兩個(gè)ABC轉(zhuǎn)運(yùn)蛋白CkABC1和 CkABC2。CkABC2在不同培養(yǎng)條件下均為低水平表達(dá),而CkABC1 可以在不同唑類抗真菌藥的作用下表達(dá)上調(diào)[7];將CkABC1p異源表達(dá)于釀酒酵母中,使釀酒酵母可將包括氟康唑、伊曲康唑、酮康唑及伏立康唑在內(nèi)的抗真菌藥物外排出細(xì)胞,說(shuō)明該蛋白是藥物外排轉(zhuǎn)運(yùn)蛋白[22]。
2.4 煙曲霉
煙曲霉基因組中可能存在49個(gè)ABC和278個(gè)MFS 轉(zhuǎn)運(yùn)蛋白,數(shù)量是釀酒酵母的4倍,但只有少數(shù)與煙曲霉臨床耐藥相關(guān)[23]。目前,對(duì)于煙曲霉ABC或MFS外排轉(zhuǎn)運(yùn)蛋白與抗真菌耐藥性相關(guān)的數(shù)據(jù)較少。研究發(fā)現(xiàn),部分唑類耐藥臨床株的外排轉(zhuǎn)運(yùn)蛋白表達(dá)量較敏感株上調(diào)。atrF基因?qū)儆贏BC 轉(zhuǎn)運(yùn)蛋白的PDR家族,是構(gòu)巢曲霉AtrA 和 AtrB轉(zhuǎn)運(yùn)蛋白的同源蛋白,給予該菌亞致死濃度的伊曲康唑,可使其基因表達(dá)水平上調(diào)為基礎(chǔ)水平的5倍[24]。體外誘導(dǎo)煙曲霉耐藥研究發(fā)現(xiàn),其耐藥是由藥物靶位點(diǎn)CYP51A基因突變及藥物外排泵(MDR1、MDR2、MDR3、MDR4和atrF)表達(dá)量的上調(diào)等多種機(jī)制共同作用所致[25,26]。AfuMDR1和AfuMDR2是通過(guò)ABC 外排泵特異性引物在煙曲霉中擴(kuò)增出來(lái)的MDR家族轉(zhuǎn)運(yùn)蛋白,與構(gòu)巢曲霉的AtrD和黃曲霉的AflMDR1具有高度同源性。在釀酒酵母中過(guò)量表達(dá)AfuMdr1p,可使其對(duì)西洛芬凈(棘白菌素B類似物)耐受性增加[27],但未有對(duì)其它抗真菌藥物的耐藥表型。煙曲霉轉(zhuǎn)運(yùn)蛋白abcA 屬于PDR轉(zhuǎn)運(yùn)蛋白家族,但煙曲霉abcA基因缺陷株對(duì)于所有抗真菌藥物的敏感性未發(fā)生變化。紫外線誘導(dǎo)突變獲得的26株伊曲康唑煙曲霉耐藥株中,其中8株在AfuCYP51A 的G54位點(diǎn)發(fā)生唑類藥物耐藥相關(guān)氨基酸突變;而50%的突變株AfuMDR3與AfuMDR4基因表達(dá)量明顯上調(diào)[26]。AfuMDR3蛋白具有MFS家族轉(zhuǎn)運(yùn)蛋白的典型結(jié)構(gòu),AfuMDR4蛋白具有ABC家族轉(zhuǎn)運(yùn)蛋白的典型結(jié)構(gòu);但目前仍沒(méi)有數(shù)據(jù)表明煙曲霉伊曲康唑耐藥表型與AfuMDR3和AfuMDR4具有直接相關(guān)性,但以上研究說(shuō)明藥物外排轉(zhuǎn)運(yùn)蛋白在曲霉屬真菌對(duì)唑類藥物耐藥的形成過(guò)程中也發(fā)揮了一定作用。
2.5 隱球菌屬
新生隱球菌和格特隱球菌是重要的人類病原真菌,其兩性霉素B及氟康唑耐藥臨床株和體外誘導(dǎo)突變株既往均有報(bào)道[28]。新生隱球菌可能存在54個(gè)ABC和159個(gè)MFS轉(zhuǎn)運(yùn)蛋白[29],但只有CneAfr1p和CneMdr1p與新生隱球菌耐藥性相關(guān)[5,30]。CneAfr1p是ABC轉(zhuǎn)運(yùn)蛋白PDR家族成員,與構(gòu)巢曲霉AtrBp、煙曲霉AfuAtrFp、釀酒酵母ScSnq2p和光滑念珠菌CgPdh1p具有高度同源性[5]。新生隱球菌CneAfr1p高表達(dá)株在體外具有較強(qiáng)的唑類藥物耐藥性,該菌株感染的小鼠對(duì)于任何唑類藥物均無(wú)治療反應(yīng),且菌株表現(xiàn)出更強(qiáng)的致病性[30]。在給予氟康唑或伊曲康唑長(zhǎng)期維持治療的過(guò)程中,隱球菌會(huì)出現(xiàn)獲得性耐藥。對(duì)臨床耐藥株的研究發(fā)現(xiàn),氟康唑中度耐藥株多數(shù)發(fā)生CneERG11基因點(diǎn)突變,而高度耐藥株則藥物外排泵表達(dá)上調(diào)。CneMdr1p屬于ABC轉(zhuǎn)運(yùn)蛋白MDR家族;與AflMDR1和AfuMDR1具有高度同源性;該基因的表達(dá)與唑類藥物耐藥的相關(guān)性,在新生隱球菌臨床耐藥株和體外誘導(dǎo)突變株中均得到證實(shí)。
真菌中的外排轉(zhuǎn)運(yùn)蛋白,特別是ABC轉(zhuǎn)運(yùn)子和MFS轉(zhuǎn)運(yùn)蛋白超家族,在真菌致病過(guò)程中所起的作用至關(guān)重要。大量的研究證實(shí)其可將細(xì)胞內(nèi)的毒性代謝產(chǎn)物和真菌毒素運(yùn)輸至胞外,清除宿主合成的抗真菌成分,使真菌對(duì)于臨床抗真菌藥物產(chǎn)生耐藥。認(rèn)識(shí)每個(gè)外排轉(zhuǎn)運(yùn)蛋白在臨床真菌耐藥中所發(fā)揮的作用,對(duì)于早期檢測(cè)相應(yīng)臨床耐藥株、研發(fā)特異性外排泵阻斷劑及降低深部真菌感染患者的死亡率至關(guān)重要。目前,較為深入的研究主要集中于釀酒酵母和白念珠菌,而其它病原真菌具有更多的ABC和MFS轉(zhuǎn)運(yùn)蛋白,特別是重要的致病絲狀真菌曲霉菌,仍需要進(jìn)一步更為全面而深入的研究。
[1] Nucci M, Marr KA. Emerging fungal diseases [J]. Clin Infect Dis, 2005, 41(4):521-526.
[2] Gbelska Y, Krijger JJ, Breunig KD. Evolution of gene families:the multidrug resistance transporter genes in five related yeast species [J]. FEMS Yeast Res, 2006, 6(3):345-355.
[3] Pao SS, Paulsen IT, Saier MH, Jr. Major facilitator superfamily [J]. Microbiol Mol Biol Rev, 1998, 62(1):1-34.
[4] Cowen LE, Steinbach WJ. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance [J]. Eukaryot Cell, 2008, 7(5):747-764.
[5] Posteraro B, Sanguinetti M, Sanglard D, et al. Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in the resistance to fluconazole [J]. Mol Microbiol, 2003, 47(2):357-371.
[6] Torelli R, Posteraro B, Ferrari S, et al. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata [J]. Mol Microbiol, 2008, 68(1):186-201.
[7] Katiyar SK, Edlind TD. Identification and expression of multidrug resistance-related ABC transporter genes in Candida krusei [J]. Med Mycol, 2001, 39(1):109-116.
[8] Niimi K, Maki K, Ikeda F, et al. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility [J]. Antimicrob Agents Chemother, 2006, 50(4):1148-1155.
[9] Pasrija R, Banerjee D, Prasad R. Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport [J]. Eukaryot Cell, 2007, 6(3):443-453.
[10] Arnaud MB, Costanzo MC, Skrzypek MS, et al. Sequence resources at the Candida genome database [J]. Nucleic Acids Res, 2007, 35:D452-456.
[11] Franz R, Michel S, Morschhauser J. A fourth gene from the Candida albicans CDR family of ABC transporters [J]. Gene, 1998, 220(1-2):91-98.
[12] Nakamura K, Niimi M, Niimi K, et al. Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters [J]. Antimicrob Agents Chemother, 2001, 45(12): 3366-3374.
[13] Kohli A, Gupta V, Krishnamurthy S, et al. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans [J]. J Biosci, 2001, 26(3):333-339.
[14] Znaidi S, De Deken X, Weber S, et al. The zinc cluster transcription factor Tac1p regulates PDR16 expression in Candida albicans [J]. Mol Microbiol, 2007, 66(2):440-452.
[15] Chau AS, Mendrick CA, Sabatelli FJ, et al. Application of realtime quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles [J]. Antimicrob Agents Chemother, 2004, 48(6):2124-2131.
[16] Holmes AR, Lin YH, Niimi K, et al. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates [J]. Antimicrob Agents Chemother, 2008, 52(11):3851-3862.
[17] Bennett JE, Izumikawa K, Marr KA. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis [J]. Antimicrob Agents Chemother, 2004, 48(5):1773-1777.
[18] Thakur JK, Arthanari H, Yang F, et al. A nuclear receptor-like pathway regulating multidrug resistance in fungi [J]. Nature, 2008, 452(7187):604-609.
[19] Tsai HF, Krol AA, Sarti KE, et al. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants [J]. Antimicrob Agents Chemother, 2006, 50(4):1384-1392.
[20] Pfaller MA, Messer SA, Boyken L, et al. Selection of a surrogate agent (fluconazole or voriconazole) for initial susceptibility testing of posaconazole against Candida spp.: results from a global antifungal surveillance program [J]. J Clin Microbiol, 2008, 46(2):551-559.
[21] Fukuoka T, Johnston DA, Winslow CA, et al. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei [J]. Antimicrob Agents Chemother, 2003, 47(4):1213-1219.
[22] Lamping E, Monk BC, Niimi K, et al. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae [J]. Eukaryot Cell, 2007, 6(7):1150-1165.
[23] Ferreira ME, Colombo AL, Paulsen I, et al. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus [J]. Med Mycol, 2005, 43(Suppl 1): s313-319.
[24] Slaven JW, Anderson MJ, Sanglard D, et al. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate [J]. Fungal Genet Biol, 2002, 36(3):199-206.
[25] da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance [J]. Antimicrobial agents and chemotherapy, 2004, 48(11):4405-4413.
[26] Nascimento AM, Goldman GH, Park S, et al. Multiple resistance mechanisms among Aspergillus fumigatus mutants with highlevel resistance to itraconazole [J]. Antimicrobial agents and chemotherapy, 2003, 47(5):1719-1726.
[27] Tobin MB, Peery RB, Skatrud PL. Genes encoding multiple drug resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus [J]. Gene, 1997, 200(1-2):11-23.
[28] Hsueh PR, Lau YJ, Chuang YC, et al. Antifungal susceptibilities of clinical isolates of Candida species, Cryptococcus neoformans, and Aspergillus species from Taiwan: surveillance of multicenter antimicrobial resistance in Taiwan program data from 2003 [J]. Antimicrob Agents Chemother, 2005, 49(2):512-517.
[29] Loftus BJ, Fung E, Roncaglia P, et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans [J]. Science, 2005, 307(5713):1321-1324.
[30] Sanguinetti M, Posteraro B, La Sorda M, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans [J]. Infect Immun, 2006, 74(2):1352-1359.
The progress of research on efflux pumps in pathogenic fungi and drug resistant
LIAO Yong, AO Jun-hong, YANG Rong-ya
Department of Dermatology, General Hospital of Beijing Region of PLA., Beijing 100700, China
Only after overcoming both the host defenses system and antifungal treatment, maybe the pathogenic fungi can successfully maintain its colonization and eventually lead to the infection of the host. Efflux pumps in fungi play an important role in this process, mainly including the ATP-binding cassette (ABC) pumps and the major facilitator superfamily (MFS) transporters. Through coupling transport with ATP hydrolysis or a proton gradient respectively, they can transport and remove the intracellular toxic chemicals. Compared with other organisms, fungi have more coding genes of transporter families. These transporters of pathogenic fungi can export the compounds produced in the process of pathogenesis and antimicrobial components secreted by the host cell, meanwhile they also play an important role in resistance of the pathogenic fungi against clinical antifungals. In this review, we discussed the role of these two superfamily transporters in resistance of main pathogenic fungi.
Pathogenic fungi;Efflux pumps;Resistance;Progress [J Pract Dermatol, 2011, 4(4):215-218]
R379
A
1674-1293(2011)04-0215-04
廖 勇
2011-07-26
2011-09-14)
(本文編輯 祝賀)
國(guó)家自然基金(31050014)
100700,北京軍區(qū)總院全軍皮膚病診治中心(廖勇,敖俊紅,楊蓉婭)
廖勇,主治醫(yī)師,研究方向:醫(yī)學(xué)真菌學(xué)E-mail: liaoyong8337@yahoo.cn
敖
俊紅,E-mail: aojunhong@sina.com