• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于遺傳EM 算法的航班延誤狀態(tài)空間模型

    2011-05-05 22:55:32陳海燕1王建東1濤2
    關(guān)鍵詞:南京航空航天大學(xué)中國民航計算機(jī)科學(xué)

    陳海燕1 王建東1 徐 濤2

    (1.南京航空航天大學(xué)計算機(jī)科學(xué)與技術(shù)學(xué)院,南京,210016,中國;2.中國民航大學(xué)計算機(jī)科學(xué)與技術(shù)學(xué)院,天津,300300,中國)

    INTRODUCTION

    As a result of excessive demand for air transportation,the flight delay becomes an urgent problem that exacerbates national transportation bandwidth limitations.Over the past decade,researches were focused on analyzing flight delay factors,predicting delay and propagation,and mitigating delays and other issues[1-4].Deterministic models are commonly used in delay prediction.For example,one of the models is to estimate delays according to flight schedule.Models like this usually ignore random factors such as unexpected events and queuing.Prediction models based on random density functions of seasonal trends,daily propagation and daily delay[5-6],that to a certain extend reflect the overall patterns of flight delays,are insufficient in capturing variations in individual flight delay.

    Real-time prediction of flight delay is essential in the state estimation process for a dynamic system.Flight operation process is monitored in order to collect data in real time,which provides an opportunity to apply dynamic data-driven application system(DDDAS)[7]that can dynamically employ prediction to control and guide the measurements,and in reverse,can dynamically steer the prediction based on the measurements.DDDAS promises more accurate analysis and prediction,more precise controls,and more reliable outcomes,which can improve advance prediction capabilities of prediction systems.The challenge in the problem remains in establishment of the delay state-space model,which is the foundation in applying the dynamic data-driven approach.P.Wang[8]presented a simple recursive model based on delay propagation. In the model,P.Wang demonstrated a linear relationship a-mong system states while ignored the effective pattern of uncertainties.In this paper,a recursive model is further improved with the use of an explicit expression to calculate flight delay caused by random factors.Delay information is feedback to the state-space model as the system input.In order to search for maximum likelihood estimates of parameters in the model,the genetic algorithm(GA)is combined with the traditional expectation-maximization(EM)algorithm to avoid the local maximum problem.Performance comparison between the model and the genetic EM algorithm is given as well.

    1 STATE-SPACE MODEL OF FLIGHT DELAY

    1.1 Delay propagation of flight

    From departure at an airport to arrival at the destination, an aircraftaccomplishes a flight task.For efficiency and cost considerations,an aircraft should perform multiple tasks consecutively each day.Assume d denotes a departure event and a an arrival event.T hen the discrete event sequence of an aircraft performs in a day can be written as d1a1d2a2…dnan,where the state of the next event only depends on the state of the current event,and not on the state of the past event.T he discrete events sequence is a Markov chain.T herefore,the relationship among states can be represented in a state-space model.

    1.2 State-space model of flight delay

    The state-space model of flight delay based on the recursive model[8]can be expressed as

    System model

    Measurement model

    where xidenotes the state variable,uithe system input,yithe measurement,wiand videnote the process and measurement noise,respectively,and both are random white noises.T he system model(1)describes the evolution of the state variables over the sequence,whereas the measurement model(2)represents how measurements relate to the state variables.If an aircraft accomplish n flight tasks,then we have i=1,…,2n.When i is an odd number,xidenotes a departure delay state or an arrival delay state,vise versa.

    Since the flight delay in this paper represents the difference between the actual flight time and the scheduled flight time.Random factors such as weather,baggage check-ins,and mechanical failures may result in a delayed flight.On the other hand,an early flight task completion is achievable through planning methods and strategies.Flight delays caused by these uncertainties can be added to the model as ui.Additionally,air turnaround time and ground turnaround time correspond to two uncorrelated processes.Values of uifor different models should be estimated in two delay states.However,the relationship between the uncertainties and the flight delays is not represented by any mathematical models,which leaves the calculation of uias a key problem in establishment of the state-space model.

    1.3 Modeling of system input

    In general,xiis the departure delay from an upstream airport,uiis represented as the delay in air.When ui<0,it is actually denoted as flight time compensation.Earlier statistics show that the longer itinerary duration a flight is to take,the more compensation the flight can obtain.And the longer itinerary duration impacts on the final status of the arrival delay.As a result,a more effective way to represent uiis given as follows

    where f sidenotes the scheduled flight time between airports,ri the delay of per scheduled flight time,or delay rate.Table 1 shows delay rates in percentage at different levels extracted from the historical flight data.

    Nearly 85%of flights obtain compensation in some levels,while 15%of flights end in flight delays.T he delay rates vary significantly in distribution,decreasing sharply as a function of the distance from the center.T he statistic result suggests us to use a finite mixture model to describethe delay rate distribution.Finite mixture distribution model[9]is a mathematical method to model the generic random phenomena.Long-term empirical results show the high adaptability of this method.T he density distribution g of delay rate is modeled as a function with m mixed components.The mixture density of the ith point is written as

    Table1 Percentages of delay rates at different levels

    where Θ= (αi,…,αm,θ1,…,θm)denotes the parameter vector,mixing weightofthe j th component, and ψj(ri|θj)the density function of the jth component depending on parameter θj.In this paper,we assume that g is a normal mixture model.And θj is denoted as θj= (μj,∑j),where μdenotes the mean and∑the covariance matrix.

    In the finite mixture model of data set r=(r1,r2,…,rn),riis assigned to the most possible component.Then,a label vector set of ri,z=(z1,z2,…,zn)is obtained.If ribelongs to the kth component,then zik=1 and the rest label variants are set to 0.Parameter vector Θ is estimated to obtain z.And the log-likelihood of Θ is given as follows

    2 PARAMETER ESTIMATION BASED ON GENETIC EM ALGORITHM

    The EM algorithm[10]is the most popular and effective method for parameter estimation.T he traditional EM algorithm is an iterative two-step procedure:E-step and M-step.T he E-step calculates the expectation of the log-likelihood on the observed data r and the current value of Θ.The M-step updates the corresponding estimate of Θ.After a certain number of iterations,the algorithm obtains the local optimal value of Θ.In order to avoid the local maximum problem associated with the traditional EM algorithm,calculation mechanism of GA can be applied to EM to find the global optimum.The combination of GA and EM is known as genetic EM algorithm[11].

    In this paper,the fitness function used in the genetic EM algorithm is the log-likelihood function defined in Eq.(5)and calculation stops when improvement of the fitness function value decreases below a given threshold.The procedure of the genetic EM algorithm is shown as follows

    3 CASESTUDYAND VALIDATION

    T he flight operation data used in this case study is provided by a domestic airline.Information like arrival delay,upstream delay propagation and delay rate is extracted from the experimental data which is also divided into several groups categorized by operating date,testing set(only one set),and training set(excepting the testing set).Parameters are estimated using the genetic EM algorithm on the training set.The fitness of the model is validated on the testing set.

    3.1 Density estimation of delay rate

    Density estimation of delay rate is implemented in Matlab7.1.The density distribution of the original delay rate is shown in Fig.1,where the distribution represents a mixture of normal distributions rather than a single normal distribution.Assuming component number m=1,2,3,4,we obtain one single model and three mixture models after parameter estimation.As a result,Fig.2 shows a fitted distribution with two components.

    Fig.1 Density distribution of original delay rate

    Fig.2 Fitted distribution with two components

    3.2 Fitness test of model

    Since the normal mixture models are mixtures of normal distributions,general test methods cannot be directly applied to fitness test for the model.T herefore,a hypothesis test based on Kolmogorov-Smirnov method is used in the test with steps shown as follows.

    (1)Generate a number of random samples according to the density function of the mixture model,where the sample set is denoted as X1and the testing set is denoted as X2.

    (2)Give a null hypothesis H0:in which X1and X2are drawn from the same continuous distribution.

    (3)Run the Matlab function″(h,p)=ktest2(X1,X2)″to find whether the distributions are the same at the 5%significance level.If the significance level equals or exceeds the p-value then we have h=1,otherwise h=0.Reject H0if h=1 or accept the null hypothesis if h=0.

    T he Results from all four tests on these models are listed in T able 2.The null hypothesis is accepted when m=2.Therefore,for the case study,the normal mixture model with two components has the best fitness.

    Table2 Results of model tests

    3.3 Performance validation of genetic EM algorithm

    T he performance of model is validated in the calculation through the comparison between the genetic and the traditional EM algorithms.On the same stop criteria,the log-likelihood values produced in all iterations from the two EM algorithms with m=3 are collected and shown in Fig.3.In each step,the genetic EM algorithm achieves the better log-likelihood value,which represents the higher effectiveness.

    Fig.3 Log-likelihood values of genetic EM and traditional EM

    Additionally,the total iteration numbers of the two EM algorithms,denoted as m,are compared in T able 3.Results show that the iteration number of traditional EM algorithm increases significantly with larger m.T he iteration number increases slightly in the genetic EM algorithm.When the algorithm preparation time is ignored,the genetic EM algorithm can achieve the faster convergence and maintain the higher accuracy than the traditional EM algorithm.

    Table 3 Iteration Steps with increasing m

    4 CONCLUSION

    In this paper,a flight delay state-space model is proposed based on the delay propagation.In the model,delay from the upstream event is denoted as a current state,while the delay caused by other uncertainties is denoted as the system input.System inputs are produced using different models when two delay states are estimated.T he modeling process is demonstrated in detail.T he genetic EM algorithm is used to find the global optimal estimates of the parameters in the normal mixture model of random delay.Case study and model validation are carried out on real flight data.Results show that the model has an excellent fit to the real data in both the mixture density distribution calculation and the Kolmogorov-Smirnov test.In conclusion,the traditional EM algorithm can be optimized and become more efficient by using GA method in finding the global optimum.Most importantly,the flight delay state-space model proposed in this paper can make it possible to apply DDDAS to the air transportation industry in the near future.DDDAS architecture for flight delay prediction can be established based on this computational model,together with the advanced measurement infrastructure and information technology.

    ACKNOWLEDGEMENT

    Authors would highly appreciate the anonymous domestic airline,which provided historical flight information.

    [1] Abdelghany K F,Shah S S,Raina S,et al.A model for projecting flight delays during irregular operation conditions[J].Journal of Air Transport Management,2004,10(6):385-394.

    [2] Hsu C L,Hsu C C,Li H C.Flight delay propagation,allowing for behavioral response[J].International Journal of Critical Infrastructures,2007,3(3/4):301-326.

    [3] Ding Jianli,Yu Yuecheng,Wang Jiandong.A model forpredicting flight delayand delaypropagation based on parallel cellular automata[C]//ISECS International Colloquium on Computing,Communication,Control and Management.Washington D C,USA:IEEE,2009:70-73.

    [4] AhmadBeygi S,Cohn A,Lapp M.Decreasing airline delay propagation by re-allocating scheduled slack[J].IIE Transactions,2010,42(7):478-489.

    [5] Tu Y F,Ball M,Jank W.Estimating flight departure delay distributions—A statisticalapproach with long-term trend and short-term pattern[J].Journal of the American Statistical Association,2008,103(481):112-125.

    [6] Abdel-Aty M,Lee C,Bai Y Q,et al.Detecting periodic patterns of arrival delay[J].Journal of Air Transport Management,2007,13(6):355-361.

    [7] Darema F.Introduction to the ICCS2007workshop on dynamic data driven applications systems[C]//International Conference on Computational Science.Berlin, Heidelberg:Springer-Verlag Press,2007:955-962.

    [8] Wang P T R,Schaefer L A,Wojcik L A.Flight connections and theirimpacts on delay propagation[C]//Digital Avionics Systems Conference.Washington D C,USA:IEEE,2003,1(5.B.4):1-9.

    [9] McLachlan G,Peel D.Finite mixture models[M].New York:John Wiley,2000.

    [10]Dempster A,Laird N,Rubin D.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the RoyalStatisticalSociety:Series B(Methodological),1977,39(1):1-38.

    [11]Pernkopf F,Bouchaffra D.Genetic-based EM algorithm for learning gaussian mixture models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1344-1348.

    猜你喜歡
    南京航空航天大學(xué)中國民航計算機(jī)科學(xué)
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    通告
    探討計算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
    航空世界(2018年12期)2018-07-16 08:34:48
    淺談計算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
    電子制作(2017年2期)2017-05-17 03:55:01
    重慶第二師范學(xué)院計算機(jī)科學(xué)與技術(shù)專業(yè)簡介
    中國民航大學(xué)學(xué)報2016年分類索引
    老熟女久久久| 国产一区二区激情短视频 | 亚洲国产精品999| 国产日韩欧美在线精品| 悠悠久久av| 黄色视频在线播放观看不卡| 亚洲欧美中文字幕日韩二区| 中文乱码字字幕精品一区二区三区| 超碰97精品在线观看| 国产午夜精品一二区理论片| 久久人妻熟女aⅴ| 国产麻豆69| 欧美久久黑人一区二区| 亚洲精品在线美女| 国产一区二区三区综合在线观看| 在线观看免费日韩欧美大片| 校园人妻丝袜中文字幕| 欧美 日韩 精品 国产| 亚洲欧美成人精品一区二区| 一区二区三区精品91| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩国产mv在线观看视频| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| av福利片在线| 国产99久久九九免费精品| 亚洲三区欧美一区| 在线观看免费视频网站a站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 精品少妇内射三级| 涩涩av久久男人的天堂| 午夜福利网站1000一区二区三区| 夫妻午夜视频| 欧美成人午夜精品| 精品人妻熟女毛片av久久网站| 汤姆久久久久久久影院中文字幕| 国产精品女同一区二区软件| 国产成人欧美| 91精品三级在线观看| 汤姆久久久久久久影院中文字幕| 丰满乱子伦码专区| 狂野欧美激情性bbbbbb| 久久天堂一区二区三区四区| 日韩一本色道免费dvd| 又粗又硬又长又爽又黄的视频| 亚洲四区av| 午夜福利视频在线观看免费| 99精国产麻豆久久婷婷| 亚洲免费av在线视频| 精品卡一卡二卡四卡免费| 三上悠亚av全集在线观看| 欧美黑人欧美精品刺激| 中文字幕人妻熟女乱码| 多毛熟女@视频| 日韩不卡一区二区三区视频在线| 精品第一国产精品| 成人三级做爰电影| 男人爽女人下面视频在线观看| 欧美精品高潮呻吟av久久| 国产熟女欧美一区二区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲美女黄色视频免费看| 免费久久久久久久精品成人欧美视频| 欧美日韩av久久| 巨乳人妻的诱惑在线观看| 一级毛片黄色毛片免费观看视频| 一级毛片 在线播放| 天天躁日日躁夜夜躁夜夜| 十八禁高潮呻吟视频| kizo精华| av线在线观看网站| 最近2019中文字幕mv第一页| 一级毛片我不卡| 久久精品亚洲熟妇少妇任你| 老司机亚洲免费影院| a级毛片黄视频| 丰满饥渴人妻一区二区三| 老熟女久久久| 两个人免费观看高清视频| 美女高潮到喷水免费观看| 中文字幕另类日韩欧美亚洲嫩草| 青草久久国产| 精品午夜福利在线看| 黄色怎么调成土黄色| 麻豆精品久久久久久蜜桃| 欧美老熟妇乱子伦牲交| 看非洲黑人一级黄片| 久久97久久精品| 中文字幕制服av| 性高湖久久久久久久久免费观看| 少妇的丰满在线观看| 我要看黄色一级片免费的| 日本91视频免费播放| av.在线天堂| 久久久国产一区二区| 国产精品一区二区精品视频观看| 熟女av电影| 亚洲天堂av无毛| 亚洲色图综合在线观看| 国产成人av激情在线播放| 国产精品免费视频内射| 亚洲视频免费观看视频| 午夜av观看不卡| av在线播放精品| 亚洲专区中文字幕在线 | 美女福利国产在线| 男人添女人高潮全过程视频| 免费高清在线观看视频在线观看| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线| 99精国产麻豆久久婷婷| 国产视频首页在线观看| 男人舔女人的私密视频| 亚洲国产精品一区二区三区在线| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频| 色网站视频免费| 成年女人毛片免费观看观看9 | 亚洲精品中文字幕在线视频| 欧美日韩一区二区视频在线观看视频在线| 国产视频首页在线观看| 亚洲av成人不卡在线观看播放网 | 啦啦啦 在线观看视频| 99精品久久久久人妻精品| 9191精品国产免费久久| 丁香六月天网| 亚洲一码二码三码区别大吗| 国产亚洲午夜精品一区二区久久| 晚上一个人看的免费电影| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 久久人人爽人人片av| 亚洲在久久综合| 少妇人妻 视频| 亚洲综合精品二区| 午夜免费男女啪啪视频观看| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 久久久欧美国产精品| 制服诱惑二区| 热re99久久国产66热| 国产日韩欧美在线精品| 亚洲美女黄色视频免费看| 久久韩国三级中文字幕| 免费少妇av软件| 亚洲精品日韩在线中文字幕| 99久久99久久久精品蜜桃| 欧美精品高潮呻吟av久久| 日韩av不卡免费在线播放| 91老司机精品| 国产亚洲精品第一综合不卡| av在线观看视频网站免费| 免费观看性生交大片5| 亚洲伊人色综图| 午夜福利网站1000一区二区三区| 亚洲,一卡二卡三卡| 91成人精品电影| 久久免费观看电影| 亚洲,一卡二卡三卡| 在线观看人妻少妇| 成人手机av| 精品少妇内射三级| 国产午夜精品一二区理论片| 最黄视频免费看| 欧美人与性动交α欧美软件| 亚洲欧美成人精品一区二区| 成人国产av品久久久| 交换朋友夫妻互换小说| 久久综合国产亚洲精品| 国产成人系列免费观看| 黄片无遮挡物在线观看| 99九九在线精品视频| 免费看av在线观看网站| 大陆偷拍与自拍| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 波多野结衣av一区二区av| 亚洲激情五月婷婷啪啪| 国精品久久久久久国模美| 最近2019中文字幕mv第一页| www日本在线高清视频| 我要看黄色一级片免费的| 九九爱精品视频在线观看| 久久99一区二区三区| 精品一区二区三区av网在线观看 | 51午夜福利影视在线观看| 国产片内射在线| 热re99久久精品国产66热6| 色94色欧美一区二区| 国产精品人妻久久久影院| 一边摸一边做爽爽视频免费| 人体艺术视频欧美日本| 久久影院123| 国产精品蜜桃在线观看| 亚洲精品自拍成人| 嫩草影院入口| 男女无遮挡免费网站观看| 婷婷色麻豆天堂久久| 国产1区2区3区精品| 久久狼人影院| 女人精品久久久久毛片| 国产精品免费视频内射| 成人亚洲精品一区在线观看| 操美女的视频在线观看| 国产亚洲一区二区精品| 欧美精品一区二区大全| 国产1区2区3区精品| 在线观看免费视频网站a站| 亚洲一卡2卡3卡4卡5卡精品中文| 久热爱精品视频在线9| 看十八女毛片水多多多| 国产日韩一区二区三区精品不卡| 美女午夜性视频免费| 欧美人与性动交α欧美精品济南到| 国产精品久久久久成人av| 国产毛片在线视频| 日韩大片免费观看网站| 亚洲国产成人一精品久久久| 午夜日本视频在线| 日韩欧美精品免费久久| 老汉色av国产亚洲站长工具| svipshipincom国产片| 99久久人妻综合| 视频在线观看一区二区三区| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免| 色综合欧美亚洲国产小说| 999精品在线视频| 亚洲欧美一区二区三区黑人| av国产久精品久网站免费入址| 赤兔流量卡办理| 久久这里只有精品19| 免费黄色在线免费观看| 黄频高清免费视频| 91精品伊人久久大香线蕉| 赤兔流量卡办理| 性少妇av在线| 18禁动态无遮挡网站| 午夜福利网站1000一区二区三区| 天天躁日日躁夜夜躁夜夜| 免费黄频网站在线观看国产| 亚洲美女黄色视频免费看| 国产老妇伦熟女老妇高清| 久久鲁丝午夜福利片| 免费久久久久久久精品成人欧美视频| videos熟女内射| 国产精品国产三级专区第一集| 久久精品国产综合久久久| 宅男免费午夜| 成人三级做爰电影| 在线观看人妻少妇| 别揉我奶头~嗯~啊~动态视频 | 精品国产国语对白av| 午夜福利乱码中文字幕| 欧美日韩亚洲综合一区二区三区_| 国产97色在线日韩免费| 校园人妻丝袜中文字幕| 99热全是精品| 午夜福利,免费看| 久久精品亚洲av国产电影网| av天堂久久9| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频| 亚洲人成电影观看| 欧美精品av麻豆av| 啦啦啦啦在线视频资源| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 大片免费播放器 马上看| 亚洲欧美色中文字幕在线| 成人毛片60女人毛片免费| 丰满乱子伦码专区| 在线亚洲精品国产二区图片欧美| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| 捣出白浆h1v1| 亚洲情色 制服丝袜| 欧美av亚洲av综合av国产av | 国产又爽黄色视频| av片东京热男人的天堂| 亚洲三区欧美一区| 亚洲av国产av综合av卡| 一级a爱视频在线免费观看| 久久国产精品大桥未久av| 亚洲情色 制服丝袜| 精品视频人人做人人爽| 一本—道久久a久久精品蜜桃钙片| 欧美 日韩 精品 国产| 麻豆av在线久日| 无限看片的www在线观看| 岛国毛片在线播放| 黄色怎么调成土黄色| 考比视频在线观看| 国产精品免费大片| 国产一区有黄有色的免费视频| 亚洲欧美成人综合另类久久久| 久久久精品区二区三区| 免费高清在线观看视频在线观看| 97精品久久久久久久久久精品| 99国产综合亚洲精品| 高清不卡的av网站| 免费在线观看完整版高清| av网站在线播放免费| 精品人妻一区二区三区麻豆| 人人妻人人澡人人看| 免费看av在线观看网站| 青草久久国产| 亚洲欧美日韩另类电影网站| 日韩av不卡免费在线播放| 不卡av一区二区三区| 久久国产精品大桥未久av| 啦啦啦中文免费视频观看日本| av视频免费观看在线观看| 777米奇影视久久| 新久久久久国产一级毛片| 欧美日韩一级在线毛片| 欧美日韩亚洲高清精品| av免费观看日本| 韩国av在线不卡| 欧美在线一区亚洲| 欧美人与性动交α欧美软件| 中文字幕人妻丝袜制服| 日韩免费高清中文字幕av| 国产在线免费精品| 一二三四中文在线观看免费高清| 国产成人精品福利久久| 啦啦啦视频在线资源免费观看| 亚洲,欧美精品.| 多毛熟女@视频| 精品国产一区二区三区四区第35| 在线观看三级黄色| 久久国产精品男人的天堂亚洲| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频| 日本色播在线视频| 欧美成人精品欧美一级黄| 欧美xxⅹ黑人| www.熟女人妻精品国产| 一级毛片黄色毛片免费观看视频| 亚洲国产中文字幕在线视频| 国语对白做爰xxxⅹ性视频网站| 国产精品麻豆人妻色哟哟久久| 国产成人精品在线电影| 激情五月婷婷亚洲| 极品少妇高潮喷水抽搐| 亚洲av欧美aⅴ国产| 久久午夜综合久久蜜桃| 国产精品国产三级国产专区5o| 国产成人一区二区在线| 日本vs欧美在线观看视频| 最近的中文字幕免费完整| 亚洲人成网站在线观看播放| 亚洲一级一片aⅴ在线观看| 丝袜在线中文字幕| 伦理电影大哥的女人| 一边亲一边摸免费视频| 久久久久久人人人人人| 叶爱在线成人免费视频播放| svipshipincom国产片| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 桃花免费在线播放| 美国免费a级毛片| 久久精品aⅴ一区二区三区四区| 亚洲欧洲国产日韩| 麻豆乱淫一区二区| 香蕉丝袜av| 精品午夜福利在线看| 免费看av在线观看网站| 永久免费av网站大全| 啦啦啦在线免费观看视频4| avwww免费| 午夜av观看不卡| 午夜激情av网站| 叶爱在线成人免费视频播放| 人人妻人人添人人爽欧美一区卜| 国产亚洲av片在线观看秒播厂| 在线观看免费午夜福利视频| 午夜日韩欧美国产| 日韩 欧美 亚洲 中文字幕| 亚洲美女黄色视频免费看| 午夜91福利影院| 五月开心婷婷网| 黑人猛操日本美女一级片| 无遮挡黄片免费观看| 日韩伦理黄色片| 免费黄色在线免费观看| 啦啦啦 在线观看视频| av网站在线播放免费| 伊人久久大香线蕉亚洲五| 美女大奶头黄色视频| 一区二区三区乱码不卡18| 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片| 如何舔出高潮| 亚洲在久久综合| 国产视频首页在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲精品自拍成人| a级毛片黄视频| 中文字幕另类日韩欧美亚洲嫩草| 高清av免费在线| 自线自在国产av| 国产有黄有色有爽视频| 久久久久久久久免费视频了| 国产无遮挡羞羞视频在线观看| 日韩av不卡免费在线播放| 久久 成人 亚洲| 欧美变态另类bdsm刘玥| 少妇的丰满在线观看| 一区二区三区激情视频| kizo精华| 中文字幕最新亚洲高清| 免费黄频网站在线观看国产| 国产精品无大码| 中文字幕精品免费在线观看视频| 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看| 国产在线一区二区三区精| 午夜日本视频在线| 国产1区2区3区精品| 亚洲久久久国产精品| av网站在线播放免费| 97在线人人人人妻| 黄片无遮挡物在线观看| 亚洲精品国产av成人精品| 捣出白浆h1v1| 中文字幕高清在线视频| 亚洲一区中文字幕在线| 纯流量卡能插随身wifi吗| 一本久久精品| 国产精品久久久久久久久免| 欧美老熟妇乱子伦牲交| 午夜日本视频在线| 黑人欧美特级aaaaaa片| 晚上一个人看的免费电影| 精品酒店卫生间| 十分钟在线观看高清视频www| www日本在线高清视频| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 成人漫画全彩无遮挡| 男人舔女人的私密视频| 大陆偷拍与自拍| 亚洲欧洲日产国产| 久久久久久久大尺度免费视频| 国产一区二区三区综合在线观看| 日韩大片免费观看网站| 国产精品一区二区精品视频观看| 亚洲男人天堂网一区| 最新在线观看一区二区三区 | 美国免费a级毛片| bbb黄色大片| 曰老女人黄片| 男女午夜视频在线观看| 亚洲av欧美aⅴ国产| svipshipincom国产片| 韩国精品一区二区三区| 九草在线视频观看| 久久精品久久久久久噜噜老黄| 成年美女黄网站色视频大全免费| 成人影院久久| a级毛片黄视频| 80岁老熟妇乱子伦牲交| 人成视频在线观看免费观看| 国产精品三级大全| 高清不卡的av网站| 亚洲精品中文字幕在线视频| 男女床上黄色一级片免费看| 波多野结衣一区麻豆| 国产免费视频播放在线视频| 国产精品香港三级国产av潘金莲 | 99九九在线精品视频| 中文字幕亚洲精品专区| 看免费成人av毛片| 777米奇影视久久| 国产精品免费视频内射| 晚上一个人看的免费电影| 亚洲第一区二区三区不卡| 国产精品亚洲av一区麻豆 | 亚洲国产精品国产精品| 久久久亚洲精品成人影院| xxx大片免费视频| 亚洲精品国产区一区二| 国产一区二区激情短视频 | 亚洲国产中文字幕在线视频| 一区二区三区激情视频| 高清视频免费观看一区二区| 日本vs欧美在线观看视频| 一区二区三区乱码不卡18| 国产野战对白在线观看| 亚洲av中文av极速乱| 两个人看的免费小视频| 日日啪夜夜爽| 你懂的网址亚洲精品在线观看| 国产精品国产三级专区第一集| 久久人人爽av亚洲精品天堂| 国产亚洲av片在线观看秒播厂| 国产成人精品无人区| 中文字幕高清在线视频| 国产精品麻豆人妻色哟哟久久| 午夜av观看不卡| 一二三四中文在线观看免费高清| 伊人久久国产一区二区| 久久99一区二区三区| 91精品国产国语对白视频| 十八禁高潮呻吟视频| 天堂中文最新版在线下载| 国产99久久九九免费精品| 极品少妇高潮喷水抽搐| 国产极品天堂在线| 天美传媒精品一区二区| 国产精品麻豆人妻色哟哟久久| 亚洲一区二区三区欧美精品| av不卡在线播放| 蜜桃在线观看..| 成人三级做爰电影| 久久人人爽人人片av| 国产精品av久久久久免费| 国产一区亚洲一区在线观看| 欧美亚洲日本最大视频资源| 日本黄色日本黄色录像| 久久久久国产一级毛片高清牌| 麻豆精品久久久久久蜜桃| 在线天堂最新版资源| 国产精品 欧美亚洲| 国产 精品1| 男女之事视频高清在线观看 | 涩涩av久久男人的天堂| 国产 一区精品| 国产免费一区二区三区四区乱码| 国产不卡av网站在线观看| 日本色播在线视频| 美女福利国产在线| 国产av一区二区精品久久| 哪个播放器可以免费观看大片| 美国免费a级毛片| 精品酒店卫生间| 亚洲精品国产一区二区精华液| 亚洲av成人不卡在线观看播放网 | 日韩av不卡免费在线播放| 一级毛片电影观看| 一级爰片在线观看| 国产精品无大码| 色播在线永久视频| 欧美人与善性xxx| 欧美日韩一级在线毛片| 最近中文字幕高清免费大全6| 在线观看一区二区三区激情| 又大又爽又粗| 欧美日韩av久久| 欧美最新免费一区二区三区| 国产高清国产精品国产三级| 建设人人有责人人尽责人人享有的| 99re6热这里在线精品视频| 亚洲美女视频黄频| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| 精品国产超薄肉色丝袜足j| 亚洲精华国产精华液的使用体验| 中文字幕色久视频| 国产黄色视频一区二区在线观看| 国产男女超爽视频在线观看| 欧美精品av麻豆av| 亚洲精品一区蜜桃| 国产成人精品无人区| 99久国产av精品国产电影| 欧美黑人欧美精品刺激| svipshipincom国产片| www.自偷自拍.com| 纵有疾风起免费观看全集完整版| 精品国产国语对白av| 1024香蕉在线观看| 国产精品 欧美亚洲| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久二区二区91 | 啦啦啦在线免费观看视频4| 亚洲国产毛片av蜜桃av| 两性夫妻黄色片| 激情视频va一区二区三区| 一级毛片黄色毛片免费观看视频| 中文字幕最新亚洲高清| 欧美av亚洲av综合av国产av | 日本欧美国产在线视频| 午夜福利免费观看在线| 亚洲色图综合在线观看| 亚洲,欧美精品.| 制服人妻中文乱码| 国产一卡二卡三卡精品 | 国语对白做爰xxxⅹ性视频网站| 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 男人舔女人的私密视频| 中文字幕人妻熟女乱码| 久久久久久人人人人人| av福利片在线| 中文字幕亚洲精品专区| 亚洲熟女精品中文字幕| 在线观看www视频免费| 欧美在线黄色| 久久精品亚洲av国产电影网| 亚洲三区欧美一区| 91国产中文字幕| 国产精品国产三级国产专区5o| 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 51午夜福利影视在线观看| 五月天丁香电影| 欧美在线一区亚洲| 91精品国产国语对白视频| 亚洲在久久综合| xxxhd国产人妻xxx| 精品一区二区三卡| 亚洲国产中文字幕在线视频|