• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于遺傳EM 算法的航班延誤狀態(tài)空間模型

    2011-05-05 22:55:32陳海燕1王建東1濤2
    關(guān)鍵詞:南京航空航天大學(xué)中國民航計算機(jī)科學(xué)

    陳海燕1 王建東1 徐 濤2

    (1.南京航空航天大學(xué)計算機(jī)科學(xué)與技術(shù)學(xué)院,南京,210016,中國;2.中國民航大學(xué)計算機(jī)科學(xué)與技術(shù)學(xué)院,天津,300300,中國)

    INTRODUCTION

    As a result of excessive demand for air transportation,the flight delay becomes an urgent problem that exacerbates national transportation bandwidth limitations.Over the past decade,researches were focused on analyzing flight delay factors,predicting delay and propagation,and mitigating delays and other issues[1-4].Deterministic models are commonly used in delay prediction.For example,one of the models is to estimate delays according to flight schedule.Models like this usually ignore random factors such as unexpected events and queuing.Prediction models based on random density functions of seasonal trends,daily propagation and daily delay[5-6],that to a certain extend reflect the overall patterns of flight delays,are insufficient in capturing variations in individual flight delay.

    Real-time prediction of flight delay is essential in the state estimation process for a dynamic system.Flight operation process is monitored in order to collect data in real time,which provides an opportunity to apply dynamic data-driven application system(DDDAS)[7]that can dynamically employ prediction to control and guide the measurements,and in reverse,can dynamically steer the prediction based on the measurements.DDDAS promises more accurate analysis and prediction,more precise controls,and more reliable outcomes,which can improve advance prediction capabilities of prediction systems.The challenge in the problem remains in establishment of the delay state-space model,which is the foundation in applying the dynamic data-driven approach.P.Wang[8]presented a simple recursive model based on delay propagation. In the model,P.Wang demonstrated a linear relationship a-mong system states while ignored the effective pattern of uncertainties.In this paper,a recursive model is further improved with the use of an explicit expression to calculate flight delay caused by random factors.Delay information is feedback to the state-space model as the system input.In order to search for maximum likelihood estimates of parameters in the model,the genetic algorithm(GA)is combined with the traditional expectation-maximization(EM)algorithm to avoid the local maximum problem.Performance comparison between the model and the genetic EM algorithm is given as well.

    1 STATE-SPACE MODEL OF FLIGHT DELAY

    1.1 Delay propagation of flight

    From departure at an airport to arrival at the destination, an aircraftaccomplishes a flight task.For efficiency and cost considerations,an aircraft should perform multiple tasks consecutively each day.Assume d denotes a departure event and a an arrival event.T hen the discrete event sequence of an aircraft performs in a day can be written as d1a1d2a2…dnan,where the state of the next event only depends on the state of the current event,and not on the state of the past event.T he discrete events sequence is a Markov chain.T herefore,the relationship among states can be represented in a state-space model.

    1.2 State-space model of flight delay

    The state-space model of flight delay based on the recursive model[8]can be expressed as

    System model

    Measurement model

    where xidenotes the state variable,uithe system input,yithe measurement,wiand videnote the process and measurement noise,respectively,and both are random white noises.T he system model(1)describes the evolution of the state variables over the sequence,whereas the measurement model(2)represents how measurements relate to the state variables.If an aircraft accomplish n flight tasks,then we have i=1,…,2n.When i is an odd number,xidenotes a departure delay state or an arrival delay state,vise versa.

    Since the flight delay in this paper represents the difference between the actual flight time and the scheduled flight time.Random factors such as weather,baggage check-ins,and mechanical failures may result in a delayed flight.On the other hand,an early flight task completion is achievable through planning methods and strategies.Flight delays caused by these uncertainties can be added to the model as ui.Additionally,air turnaround time and ground turnaround time correspond to two uncorrelated processes.Values of uifor different models should be estimated in two delay states.However,the relationship between the uncertainties and the flight delays is not represented by any mathematical models,which leaves the calculation of uias a key problem in establishment of the state-space model.

    1.3 Modeling of system input

    In general,xiis the departure delay from an upstream airport,uiis represented as the delay in air.When ui<0,it is actually denoted as flight time compensation.Earlier statistics show that the longer itinerary duration a flight is to take,the more compensation the flight can obtain.And the longer itinerary duration impacts on the final status of the arrival delay.As a result,a more effective way to represent uiis given as follows

    where f sidenotes the scheduled flight time between airports,ri the delay of per scheduled flight time,or delay rate.Table 1 shows delay rates in percentage at different levels extracted from the historical flight data.

    Nearly 85%of flights obtain compensation in some levels,while 15%of flights end in flight delays.T he delay rates vary significantly in distribution,decreasing sharply as a function of the distance from the center.T he statistic result suggests us to use a finite mixture model to describethe delay rate distribution.Finite mixture distribution model[9]is a mathematical method to model the generic random phenomena.Long-term empirical results show the high adaptability of this method.T he density distribution g of delay rate is modeled as a function with m mixed components.The mixture density of the ith point is written as

    Table1 Percentages of delay rates at different levels

    where Θ= (αi,…,αm,θ1,…,θm)denotes the parameter vector,mixing weightofthe j th component, and ψj(ri|θj)the density function of the jth component depending on parameter θj.In this paper,we assume that g is a normal mixture model.And θj is denoted as θj= (μj,∑j),where μdenotes the mean and∑the covariance matrix.

    In the finite mixture model of data set r=(r1,r2,…,rn),riis assigned to the most possible component.Then,a label vector set of ri,z=(z1,z2,…,zn)is obtained.If ribelongs to the kth component,then zik=1 and the rest label variants are set to 0.Parameter vector Θ is estimated to obtain z.And the log-likelihood of Θ is given as follows

    2 PARAMETER ESTIMATION BASED ON GENETIC EM ALGORITHM

    The EM algorithm[10]is the most popular and effective method for parameter estimation.T he traditional EM algorithm is an iterative two-step procedure:E-step and M-step.T he E-step calculates the expectation of the log-likelihood on the observed data r and the current value of Θ.The M-step updates the corresponding estimate of Θ.After a certain number of iterations,the algorithm obtains the local optimal value of Θ.In order to avoid the local maximum problem associated with the traditional EM algorithm,calculation mechanism of GA can be applied to EM to find the global optimum.The combination of GA and EM is known as genetic EM algorithm[11].

    In this paper,the fitness function used in the genetic EM algorithm is the log-likelihood function defined in Eq.(5)and calculation stops when improvement of the fitness function value decreases below a given threshold.The procedure of the genetic EM algorithm is shown as follows

    3 CASESTUDYAND VALIDATION

    T he flight operation data used in this case study is provided by a domestic airline.Information like arrival delay,upstream delay propagation and delay rate is extracted from the experimental data which is also divided into several groups categorized by operating date,testing set(only one set),and training set(excepting the testing set).Parameters are estimated using the genetic EM algorithm on the training set.The fitness of the model is validated on the testing set.

    3.1 Density estimation of delay rate

    Density estimation of delay rate is implemented in Matlab7.1.The density distribution of the original delay rate is shown in Fig.1,where the distribution represents a mixture of normal distributions rather than a single normal distribution.Assuming component number m=1,2,3,4,we obtain one single model and three mixture models after parameter estimation.As a result,Fig.2 shows a fitted distribution with two components.

    Fig.1 Density distribution of original delay rate

    Fig.2 Fitted distribution with two components

    3.2 Fitness test of model

    Since the normal mixture models are mixtures of normal distributions,general test methods cannot be directly applied to fitness test for the model.T herefore,a hypothesis test based on Kolmogorov-Smirnov method is used in the test with steps shown as follows.

    (1)Generate a number of random samples according to the density function of the mixture model,where the sample set is denoted as X1and the testing set is denoted as X2.

    (2)Give a null hypothesis H0:in which X1and X2are drawn from the same continuous distribution.

    (3)Run the Matlab function″(h,p)=ktest2(X1,X2)″to find whether the distributions are the same at the 5%significance level.If the significance level equals or exceeds the p-value then we have h=1,otherwise h=0.Reject H0if h=1 or accept the null hypothesis if h=0.

    T he Results from all four tests on these models are listed in T able 2.The null hypothesis is accepted when m=2.Therefore,for the case study,the normal mixture model with two components has the best fitness.

    Table2 Results of model tests

    3.3 Performance validation of genetic EM algorithm

    T he performance of model is validated in the calculation through the comparison between the genetic and the traditional EM algorithms.On the same stop criteria,the log-likelihood values produced in all iterations from the two EM algorithms with m=3 are collected and shown in Fig.3.In each step,the genetic EM algorithm achieves the better log-likelihood value,which represents the higher effectiveness.

    Fig.3 Log-likelihood values of genetic EM and traditional EM

    Additionally,the total iteration numbers of the two EM algorithms,denoted as m,are compared in T able 3.Results show that the iteration number of traditional EM algorithm increases significantly with larger m.T he iteration number increases slightly in the genetic EM algorithm.When the algorithm preparation time is ignored,the genetic EM algorithm can achieve the faster convergence and maintain the higher accuracy than the traditional EM algorithm.

    Table 3 Iteration Steps with increasing m

    4 CONCLUSION

    In this paper,a flight delay state-space model is proposed based on the delay propagation.In the model,delay from the upstream event is denoted as a current state,while the delay caused by other uncertainties is denoted as the system input.System inputs are produced using different models when two delay states are estimated.T he modeling process is demonstrated in detail.T he genetic EM algorithm is used to find the global optimal estimates of the parameters in the normal mixture model of random delay.Case study and model validation are carried out on real flight data.Results show that the model has an excellent fit to the real data in both the mixture density distribution calculation and the Kolmogorov-Smirnov test.In conclusion,the traditional EM algorithm can be optimized and become more efficient by using GA method in finding the global optimum.Most importantly,the flight delay state-space model proposed in this paper can make it possible to apply DDDAS to the air transportation industry in the near future.DDDAS architecture for flight delay prediction can be established based on this computational model,together with the advanced measurement infrastructure and information technology.

    ACKNOWLEDGEMENT

    Authors would highly appreciate the anonymous domestic airline,which provided historical flight information.

    [1] Abdelghany K F,Shah S S,Raina S,et al.A model for projecting flight delays during irregular operation conditions[J].Journal of Air Transport Management,2004,10(6):385-394.

    [2] Hsu C L,Hsu C C,Li H C.Flight delay propagation,allowing for behavioral response[J].International Journal of Critical Infrastructures,2007,3(3/4):301-326.

    [3] Ding Jianli,Yu Yuecheng,Wang Jiandong.A model forpredicting flight delayand delaypropagation based on parallel cellular automata[C]//ISECS International Colloquium on Computing,Communication,Control and Management.Washington D C,USA:IEEE,2009:70-73.

    [4] AhmadBeygi S,Cohn A,Lapp M.Decreasing airline delay propagation by re-allocating scheduled slack[J].IIE Transactions,2010,42(7):478-489.

    [5] Tu Y F,Ball M,Jank W.Estimating flight departure delay distributions—A statisticalapproach with long-term trend and short-term pattern[J].Journal of the American Statistical Association,2008,103(481):112-125.

    [6] Abdel-Aty M,Lee C,Bai Y Q,et al.Detecting periodic patterns of arrival delay[J].Journal of Air Transport Management,2007,13(6):355-361.

    [7] Darema F.Introduction to the ICCS2007workshop on dynamic data driven applications systems[C]//International Conference on Computational Science.Berlin, Heidelberg:Springer-Verlag Press,2007:955-962.

    [8] Wang P T R,Schaefer L A,Wojcik L A.Flight connections and theirimpacts on delay propagation[C]//Digital Avionics Systems Conference.Washington D C,USA:IEEE,2003,1(5.B.4):1-9.

    [9] McLachlan G,Peel D.Finite mixture models[M].New York:John Wiley,2000.

    [10]Dempster A,Laird N,Rubin D.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the RoyalStatisticalSociety:Series B(Methodological),1977,39(1):1-38.

    [11]Pernkopf F,Bouchaffra D.Genetic-based EM algorithm for learning gaussian mixture models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1344-1348.

    猜你喜歡
    南京航空航天大學(xué)中國民航計算機(jī)科學(xué)
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    通告
    探討計算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
    航空世界(2018年12期)2018-07-16 08:34:48
    淺談計算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
    電子制作(2017年2期)2017-05-17 03:55:01
    重慶第二師范學(xué)院計算機(jī)科學(xué)與技術(shù)專業(yè)簡介
    中國民航大學(xué)學(xué)報2016年分類索引
    欧美色欧美亚洲另类二区| 亚洲国产欧美人成| 国产高潮美女av| 国产精品野战在线观看| bbb黄色大片| 听说在线观看完整版免费高清| 男人舔奶头视频| 亚洲午夜理论影院| 99精品久久久久人妻精品| 日韩三级视频一区二区三区| 男人舔奶头视频| 又黄又粗又硬又大视频| 亚洲国产精品合色在线| 亚洲国产日韩欧美精品在线观看 | 亚洲精品一区av在线观看| 国产亚洲精品一区二区www| 丁香六月欧美| 蜜桃久久精品国产亚洲av| 亚洲五月婷婷丁香| a级毛片a级免费在线| 最新中文字幕久久久久 | 不卡av一区二区三区| 在线观看午夜福利视频| АⅤ资源中文在线天堂| 中文字幕人成人乱码亚洲影| 两个人的视频大全免费| 欧美日韩瑟瑟在线播放| 怎么达到女性高潮| 国产v大片淫在线免费观看| 亚洲成av人片免费观看| a级毛片a级免费在线| 黄色女人牲交| 亚洲自拍偷在线| 国产亚洲av高清不卡| 99精品在免费线老司机午夜| 国内精品久久久久久久电影| 亚洲av第一区精品v没综合| 亚洲美女视频黄频| 人妻夜夜爽99麻豆av| 国产午夜精品论理片| 免费看日本二区| 色精品久久人妻99蜜桃| 老汉色av国产亚洲站长工具| 国产野战对白在线观看| 国产黄片美女视频| 欧美最黄视频在线播放免费| 欧美丝袜亚洲另类 | 十八禁人妻一区二区| 国产午夜精品久久久久久| 无遮挡黄片免费观看| 在线a可以看的网站| 91老司机精品| 精品熟女少妇八av免费久了| 日本a在线网址| 美女黄网站色视频| 日本五十路高清| 一个人看的www免费观看视频| 国内精品久久久久精免费| 亚洲成a人片在线一区二区| 色播亚洲综合网| 免费高清视频大片| 国产野战对白在线观看| 在线视频色国产色| 国产精品综合久久久久久久免费| 国产毛片a区久久久久| 中文字幕高清在线视频| 美女被艹到高潮喷水动态| 成熟少妇高潮喷水视频| 免费观看的影片在线观看| av在线天堂中文字幕| 久久精品国产亚洲av香蕉五月| av在线蜜桃| 一个人看视频在线观看www免费 | 成人亚洲精品av一区二区| 亚洲色图 男人天堂 中文字幕| 免费看美女性在线毛片视频| 免费av毛片视频| 日本五十路高清| 久久香蕉精品热| 韩国av一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 1024手机看黄色片| 成人午夜高清在线视频| 日韩三级视频一区二区三区| 国产又色又爽无遮挡免费看| 三级国产精品欧美在线观看 | 国产一区二区在线av高清观看| 国产成人系列免费观看| 色哟哟哟哟哟哟| 99国产精品一区二区三区| 亚洲在线观看片| 又爽又黄无遮挡网站| 久久午夜亚洲精品久久| 欧美性猛交╳xxx乱大交人| 91麻豆精品激情在线观看国产| 在线观看一区二区三区| 日本与韩国留学比较| 欧美精品啪啪一区二区三区| 最近最新中文字幕大全电影3| 99热6这里只有精品| www.www免费av| 国产精品av久久久久免费| 免费电影在线观看免费观看| 日本与韩国留学比较| 亚洲精品在线美女| 两性午夜刺激爽爽歪歪视频在线观看| 在线播放国产精品三级| 男人舔女人下体高潮全视频| 日本免费一区二区三区高清不卡| 久久久久国产精品人妻aⅴ院| 人妻丰满熟妇av一区二区三区| 99久久综合精品五月天人人| 日韩有码中文字幕| 午夜福利在线观看吧| 黄频高清免费视频| 国产av不卡久久| 国产一区在线观看成人免费| 亚洲 国产 在线| av天堂中文字幕网| 特级一级黄色大片| 天堂av国产一区二区熟女人妻| 法律面前人人平等表现在哪些方面| aaaaa片日本免费| 香蕉国产在线看| 色精品久久人妻99蜜桃| 日韩欧美免费精品| 国产黄a三级三级三级人| 黄色女人牲交| 18禁黄网站禁片免费观看直播| 成人国产一区最新在线观看| 亚洲国产高清在线一区二区三| 亚洲国产精品合色在线| 黑人操中国人逼视频| 久久久精品大字幕| 天堂影院成人在线观看| www国产在线视频色| 狂野欧美白嫩少妇大欣赏| 两性夫妻黄色片| 欧美成人一区二区免费高清观看 | 窝窝影院91人妻| 两个人看的免费小视频| www.精华液| www国产在线视频色| 午夜激情欧美在线| 麻豆成人午夜福利视频| 18美女黄网站色大片免费观看| 99riav亚洲国产免费| 18禁裸乳无遮挡免费网站照片| 可以在线观看的亚洲视频| 欧美一级毛片孕妇| 国产精品一区二区免费欧美| 国产精品 欧美亚洲| 久久久国产成人免费| 51午夜福利影视在线观看| 国产亚洲欧美在线一区二区| 亚洲av免费在线观看| 国产精品久久久人人做人人爽| 亚洲av成人不卡在线观看播放网| 成年女人看的毛片在线观看| 激情在线观看视频在线高清| 国产精品亚洲美女久久久| 看片在线看免费视频| 九色国产91popny在线| 国产成人啪精品午夜网站| 少妇的丰满在线观看| 黄色片一级片一级黄色片| 一本一本综合久久| 给我免费播放毛片高清在线观看| 99久久无色码亚洲精品果冻| 最近最新中文字幕大全免费视频| 国内毛片毛片毛片毛片毛片| cao死你这个sao货| 嫩草影院入口| 俄罗斯特黄特色一大片| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩精品亚洲av| 国产蜜桃级精品一区二区三区| 亚洲片人在线观看| 国产一区二区在线观看日韩 | 99久久综合精品五月天人人| 欧美中文日本在线观看视频| 很黄的视频免费| 99热6这里只有精品| 99热6这里只有精品| 黄色片一级片一级黄色片| 国产美女午夜福利| 国产美女午夜福利| 国产成人av教育| 最新美女视频免费是黄的| 欧美一级a爱片免费观看看| 成人亚洲精品av一区二区| 最新在线观看一区二区三区| 日本黄色片子视频| 免费看日本二区| 亚洲国产中文字幕在线视频| 欧美国产日韩亚洲一区| 中文字幕最新亚洲高清| 亚洲在线观看片| 一级毛片精品| 9191精品国产免费久久| 中文资源天堂在线| 久久精品国产综合久久久| 亚洲在线自拍视频| 成人欧美大片| 99久久99久久久精品蜜桃| 老司机深夜福利视频在线观看| 老司机深夜福利视频在线观看| 老熟妇乱子伦视频在线观看| 日本成人三级电影网站| 日本黄大片高清| 午夜福利高清视频| 最好的美女福利视频网| 五月伊人婷婷丁香| 热99在线观看视频| 美女黄网站色视频| 亚洲中文av在线| 制服丝袜大香蕉在线| 夜夜爽天天搞| 欧美乱妇无乱码| 国产麻豆成人av免费视频| 日本黄色片子视频| 蜜桃久久精品国产亚洲av| 国产精品一区二区免费欧美| 免费一级毛片在线播放高清视频| 欧美乱码精品一区二区三区| www日本在线高清视频| 在线观看66精品国产| 精品99又大又爽又粗少妇毛片 | 色av中文字幕| 黑人欧美特级aaaaaa片| 天堂av国产一区二区熟女人妻| 成人特级黄色片久久久久久久| 好男人电影高清在线观看| 亚洲自拍偷在线| 99久久精品热视频| 床上黄色一级片| 观看美女的网站| 性色avwww在线观看| 最近在线观看免费完整版| 色视频www国产| 法律面前人人平等表现在哪些方面| 淫妇啪啪啪对白视频| 国产亚洲精品av在线| 国产毛片a区久久久久| 国产99白浆流出| 亚洲乱码一区二区免费版| 精品国产美女av久久久久小说| 亚洲熟妇中文字幕五十中出| 偷拍熟女少妇极品色| 中国美女看黄片| 狂野欧美白嫩少妇大欣赏| 欧美另类亚洲清纯唯美| 亚洲在线自拍视频| 欧美日韩国产亚洲二区| 黑人巨大精品欧美一区二区mp4| 国产乱人视频| 亚洲片人在线观看| 国产午夜精品久久久久久| 国产高清有码在线观看视频| 男插女下体视频免费在线播放| 很黄的视频免费| 亚洲第一电影网av| 久久久久久久久中文| 国产精品98久久久久久宅男小说| 三级国产精品欧美在线观看 | 很黄的视频免费| 国内久久婷婷六月综合欲色啪| 啦啦啦韩国在线观看视频| 少妇熟女aⅴ在线视频| 亚洲中文字幕一区二区三区有码在线看 | 国产v大片淫在线免费观看| 亚洲在线观看片| 亚洲欧美日韩东京热| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品色激情综合| 观看美女的网站| tocl精华| 亚洲av电影不卡..在线观看| 国产激情欧美一区二区| 岛国在线观看网站| 12—13女人毛片做爰片一| 男人舔女人下体高潮全视频| 国产精品九九99| 嫩草影院入口| aaaaa片日本免费| 日本一本二区三区精品| 老司机深夜福利视频在线观看| 老汉色∧v一级毛片| 国产一区二区在线观看日韩 | 国产高清视频在线播放一区| 精品久久久久久久毛片微露脸| 18美女黄网站色大片免费观看| 麻豆成人午夜福利视频| 精品日产1卡2卡| 人人妻人人看人人澡| 国产精品久久久久久久电影 | 久久精品aⅴ一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 夜夜爽天天搞| 日本撒尿小便嘘嘘汇集6| 观看免费一级毛片| 少妇熟女aⅴ在线视频| 亚洲专区中文字幕在线| 久久天堂一区二区三区四区| 亚洲精品在线观看二区| 国产免费av片在线观看野外av| 精品国产乱码久久久久久男人| 1024手机看黄色片| 欧美国产日韩亚洲一区| 成人永久免费在线观看视频| 悠悠久久av| 国产欧美日韩一区二区三| 一夜夜www| 18禁黄网站禁片午夜丰满| 观看免费一级毛片| 又黄又爽又免费观看的视频| 国产精品影院久久| 天堂√8在线中文| 成人无遮挡网站| 精品久久蜜臀av无| 亚洲国产欧美网| 国产极品精品免费视频能看的| 日韩 欧美 亚洲 中文字幕| 国产成人精品无人区| 人妻久久中文字幕网| 成人国产综合亚洲| 一a级毛片在线观看| 性色av乱码一区二区三区2| 亚洲成a人片在线一区二区| 久久精品国产综合久久久| 久久久久亚洲av毛片大全| 久久精品综合一区二区三区| 在线观看免费午夜福利视频| 中文字幕久久专区| 国产一区二区三区视频了| 亚洲av免费在线观看| 欧美乱妇无乱码| 淫妇啪啪啪对白视频| 亚洲中文字幕一区二区三区有码在线看 | 成年女人永久免费观看视频| 午夜精品在线福利| 国产aⅴ精品一区二区三区波| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 久久久久九九精品影院| 国产又黄又爽又无遮挡在线| 熟女电影av网| 男女床上黄色一级片免费看| 一本一本综合久久| 国产探花在线观看一区二区| 黄色 视频免费看| 变态另类丝袜制服| 操出白浆在线播放| 少妇的逼水好多| 亚洲精品在线观看二区| 偷拍熟女少妇极品色| 美女高潮的动态| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 偷拍熟女少妇极品色| 亚洲成a人片在线一区二区| 欧美高清成人免费视频www| 亚洲 国产 在线| 国产一区二区三区在线臀色熟女| 操出白浆在线播放| 成人一区二区视频在线观看| 亚洲一区二区三区色噜噜| 1024香蕉在线观看| 18美女黄网站色大片免费观看| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 97人妻精品一区二区三区麻豆| 香蕉丝袜av| 女人被狂操c到高潮| 国产成+人综合+亚洲专区| 人人妻人人澡欧美一区二区| 国产精品av久久久久免费| 国产亚洲欧美98| 又黄又粗又硬又大视频| 精品久久久久久,| 制服丝袜大香蕉在线| 久久久国产成人精品二区| 国产精品99久久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 免费看美女性在线毛片视频| 欧美丝袜亚洲另类 | 国产免费男女视频| 亚洲国产精品999在线| 欧美成人性av电影在线观看| 色av中文字幕| 国产精品98久久久久久宅男小说| 九九久久精品国产亚洲av麻豆 | 婷婷丁香在线五月| 日本熟妇午夜| 精品国产三级普通话版| 在线观看午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 免费无遮挡裸体视频| 久久婷婷人人爽人人干人人爱| 这个男人来自地球电影免费观看| 真实男女啪啪啪动态图| 两个人的视频大全免费| 国产亚洲欧美在线一区二区| 老司机午夜十八禁免费视频| 国产熟女xx| 99re在线观看精品视频| 男女视频在线观看网站免费| 国产av一区在线观看免费| 熟女电影av网| 床上黄色一级片| 国产日本99.免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利欧美成人| 国模一区二区三区四区视频 | 国产主播在线观看一区二区| 在线观看日韩欧美| 美女被艹到高潮喷水动态| 国产高潮美女av| 亚洲av电影在线进入| 久久久国产成人精品二区| 曰老女人黄片| 精品乱码久久久久久99久播| 午夜精品久久久久久毛片777| 人人妻人人看人人澡| 一级a爱片免费观看的视频| 久久精品91无色码中文字幕| 亚洲在线自拍视频| 此物有八面人人有两片| 日日干狠狠操夜夜爽| 成人18禁在线播放| 国产午夜福利久久久久久| 久久久国产精品麻豆| 最新在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 最新中文字幕久久久久 | 亚洲精品456在线播放app | 欧美高清成人免费视频www| 亚洲精品一区av在线观看| 国产成人精品无人区| 久久午夜综合久久蜜桃| 国产高清视频在线播放一区| 国内毛片毛片毛片毛片毛片| 法律面前人人平等表现在哪些方面| 成年女人看的毛片在线观看| a级毛片a级免费在线| 校园春色视频在线观看| 999久久久精品免费观看国产| 一个人免费在线观看的高清视频| 成熟少妇高潮喷水视频| 国产极品精品免费视频能看的| 中文字幕熟女人妻在线| 蜜桃久久精品国产亚洲av| 日韩人妻高清精品专区| 这个男人来自地球电影免费观看| 亚洲成av人片在线播放无| 少妇丰满av| 成年人黄色毛片网站| 韩国av一区二区三区四区| 久久精品国产亚洲av香蕉五月| 国产淫片久久久久久久久 | 久久国产乱子伦精品免费另类| 最近最新免费中文字幕在线| 国产激情欧美一区二区| 一级a爱片免费观看的视频| 桃红色精品国产亚洲av| 亚洲av片天天在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩高清专用| 两性午夜刺激爽爽歪歪视频在线观看| 国产私拍福利视频在线观看| 亚洲人成伊人成综合网2020| 老司机在亚洲福利影院| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 两个人视频免费观看高清| 国内精品久久久久精免费| 亚洲国产精品sss在线观看| 国产亚洲av嫩草精品影院| 亚洲一区二区三区不卡视频| 午夜免费观看网址| 在线免费观看不下载黄p国产 | 一二三四在线观看免费中文在| 国产精品日韩av在线免费观看| 熟女少妇亚洲综合色aaa.| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影| 午夜精品一区二区三区免费看| 97人妻精品一区二区三区麻豆| 亚洲色图 男人天堂 中文字幕| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 精品久久久久久成人av| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o| 少妇的逼水好多| 一进一出好大好爽视频| 美女高潮的动态| 身体一侧抽搐| 免费人成视频x8x8入口观看| 一区二区三区国产精品乱码| 日韩欧美一区二区三区在线观看| 很黄的视频免费| 国产极品精品免费视频能看的| 两个人视频免费观看高清| 真人做人爱边吃奶动态| 日韩欧美一区二区三区在线观看| 国产亚洲欧美98| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| netflix在线观看网站| 亚洲精品色激情综合| 校园春色视频在线观看| 日韩精品青青久久久久久| 桃红色精品国产亚洲av| 亚洲国产精品合色在线| 久久久久久大精品| 国产成人av激情在线播放| 国产一区在线观看成人免费| 麻豆成人午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 国产精品女同一区二区软件 | 欧美最黄视频在线播放免费| 国产免费av片在线观看野外av| 性欧美人与动物交配| 精品电影一区二区在线| 这个男人来自地球电影免费观看| 老司机深夜福利视频在线观看| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| avwww免费| 国产单亲对白刺激| 成人国产一区最新在线观看| 国产亚洲精品久久久com| 亚洲午夜精品一区,二区,三区| 亚洲狠狠婷婷综合久久图片| 精品国产乱子伦一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲精品456在线播放app | 亚洲欧美日韩无卡精品| 国产美女午夜福利| 999久久久精品免费观看国产| 色精品久久人妻99蜜桃| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| 一二三四社区在线视频社区8| xxx96com| 国产精品一区二区三区四区久久| 亚洲在线观看片| 国产私拍福利视频在线观看| 精品久久久久久成人av| 亚洲欧美日韩无卡精品| 久久久久性生活片| 日韩免费av在线播放| 真人一进一出gif抽搐免费| 亚洲人成网站在线播放欧美日韩| 欧美在线一区亚洲| 亚洲va日本ⅴa欧美va伊人久久| 听说在线观看完整版免费高清| 99久久精品一区二区三区| 国产精品一区二区三区四区久久| 亚洲欧洲精品一区二区精品久久久| 在线观看一区二区三区| 99久国产av精品| 亚洲国产精品sss在线观看| 老司机午夜十八禁免费视频| 大型黄色视频在线免费观看| av女优亚洲男人天堂 | 麻豆av在线久日| 欧美成人免费av一区二区三区| 人人妻,人人澡人人爽秒播| 成人av在线播放网站| 999精品在线视频| 给我免费播放毛片高清在线观看| 九九在线视频观看精品| 国模一区二区三区四区视频 | 日本a在线网址| 日韩国内少妇激情av| 国产黄色小视频在线观看| 久久精品亚洲精品国产色婷小说| 舔av片在线| 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 欧美日本视频| 偷拍熟女少妇极品色| 国产伦一二天堂av在线观看| 嫩草影院精品99| 欧美乱码精品一区二区三区| 亚洲性夜色夜夜综合| 中文资源天堂在线| 在线观看美女被高潮喷水网站 | 免费看a级黄色片| 97超级碰碰碰精品色视频在线观看| 国产精品影院久久| 国产亚洲欧美98| 在线视频色国产色| 亚洲欧美精品综合久久99| 国产一区在线观看成人免费| 人妻久久中文字幕网| 久久亚洲精品不卡| 国产av一区在线观看免费| 午夜免费观看网址| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 国产成人av激情在线播放| 亚洲精品美女久久av网站| 日日摸夜夜添夜夜添小说| 久久久国产精品麻豆| 亚洲国产日韩欧美精品在线观看 | 视频区欧美日本亚洲| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 成人国产综合亚洲| 久久久久国内视频|