• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于遺傳EM 算法的航班延誤狀態(tài)空間模型

    2011-05-05 22:55:32陳海燕1王建東1濤2
    關(guān)鍵詞:南京航空航天大學(xué)中國民航計算機(jī)科學(xué)

    陳海燕1 王建東1 徐 濤2

    (1.南京航空航天大學(xué)計算機(jī)科學(xué)與技術(shù)學(xué)院,南京,210016,中國;2.中國民航大學(xué)計算機(jī)科學(xué)與技術(shù)學(xué)院,天津,300300,中國)

    INTRODUCTION

    As a result of excessive demand for air transportation,the flight delay becomes an urgent problem that exacerbates national transportation bandwidth limitations.Over the past decade,researches were focused on analyzing flight delay factors,predicting delay and propagation,and mitigating delays and other issues[1-4].Deterministic models are commonly used in delay prediction.For example,one of the models is to estimate delays according to flight schedule.Models like this usually ignore random factors such as unexpected events and queuing.Prediction models based on random density functions of seasonal trends,daily propagation and daily delay[5-6],that to a certain extend reflect the overall patterns of flight delays,are insufficient in capturing variations in individual flight delay.

    Real-time prediction of flight delay is essential in the state estimation process for a dynamic system.Flight operation process is monitored in order to collect data in real time,which provides an opportunity to apply dynamic data-driven application system(DDDAS)[7]that can dynamically employ prediction to control and guide the measurements,and in reverse,can dynamically steer the prediction based on the measurements.DDDAS promises more accurate analysis and prediction,more precise controls,and more reliable outcomes,which can improve advance prediction capabilities of prediction systems.The challenge in the problem remains in establishment of the delay state-space model,which is the foundation in applying the dynamic data-driven approach.P.Wang[8]presented a simple recursive model based on delay propagation. In the model,P.Wang demonstrated a linear relationship a-mong system states while ignored the effective pattern of uncertainties.In this paper,a recursive model is further improved with the use of an explicit expression to calculate flight delay caused by random factors.Delay information is feedback to the state-space model as the system input.In order to search for maximum likelihood estimates of parameters in the model,the genetic algorithm(GA)is combined with the traditional expectation-maximization(EM)algorithm to avoid the local maximum problem.Performance comparison between the model and the genetic EM algorithm is given as well.

    1 STATE-SPACE MODEL OF FLIGHT DELAY

    1.1 Delay propagation of flight

    From departure at an airport to arrival at the destination, an aircraftaccomplishes a flight task.For efficiency and cost considerations,an aircraft should perform multiple tasks consecutively each day.Assume d denotes a departure event and a an arrival event.T hen the discrete event sequence of an aircraft performs in a day can be written as d1a1d2a2…dnan,where the state of the next event only depends on the state of the current event,and not on the state of the past event.T he discrete events sequence is a Markov chain.T herefore,the relationship among states can be represented in a state-space model.

    1.2 State-space model of flight delay

    The state-space model of flight delay based on the recursive model[8]can be expressed as

    System model

    Measurement model

    where xidenotes the state variable,uithe system input,yithe measurement,wiand videnote the process and measurement noise,respectively,and both are random white noises.T he system model(1)describes the evolution of the state variables over the sequence,whereas the measurement model(2)represents how measurements relate to the state variables.If an aircraft accomplish n flight tasks,then we have i=1,…,2n.When i is an odd number,xidenotes a departure delay state or an arrival delay state,vise versa.

    Since the flight delay in this paper represents the difference between the actual flight time and the scheduled flight time.Random factors such as weather,baggage check-ins,and mechanical failures may result in a delayed flight.On the other hand,an early flight task completion is achievable through planning methods and strategies.Flight delays caused by these uncertainties can be added to the model as ui.Additionally,air turnaround time and ground turnaround time correspond to two uncorrelated processes.Values of uifor different models should be estimated in two delay states.However,the relationship between the uncertainties and the flight delays is not represented by any mathematical models,which leaves the calculation of uias a key problem in establishment of the state-space model.

    1.3 Modeling of system input

    In general,xiis the departure delay from an upstream airport,uiis represented as the delay in air.When ui<0,it is actually denoted as flight time compensation.Earlier statistics show that the longer itinerary duration a flight is to take,the more compensation the flight can obtain.And the longer itinerary duration impacts on the final status of the arrival delay.As a result,a more effective way to represent uiis given as follows

    where f sidenotes the scheduled flight time between airports,ri the delay of per scheduled flight time,or delay rate.Table 1 shows delay rates in percentage at different levels extracted from the historical flight data.

    Nearly 85%of flights obtain compensation in some levels,while 15%of flights end in flight delays.T he delay rates vary significantly in distribution,decreasing sharply as a function of the distance from the center.T he statistic result suggests us to use a finite mixture model to describethe delay rate distribution.Finite mixture distribution model[9]is a mathematical method to model the generic random phenomena.Long-term empirical results show the high adaptability of this method.T he density distribution g of delay rate is modeled as a function with m mixed components.The mixture density of the ith point is written as

    Table1 Percentages of delay rates at different levels

    where Θ= (αi,…,αm,θ1,…,θm)denotes the parameter vector,mixing weightofthe j th component, and ψj(ri|θj)the density function of the jth component depending on parameter θj.In this paper,we assume that g is a normal mixture model.And θj is denoted as θj= (μj,∑j),where μdenotes the mean and∑the covariance matrix.

    In the finite mixture model of data set r=(r1,r2,…,rn),riis assigned to the most possible component.Then,a label vector set of ri,z=(z1,z2,…,zn)is obtained.If ribelongs to the kth component,then zik=1 and the rest label variants are set to 0.Parameter vector Θ is estimated to obtain z.And the log-likelihood of Θ is given as follows

    2 PARAMETER ESTIMATION BASED ON GENETIC EM ALGORITHM

    The EM algorithm[10]is the most popular and effective method for parameter estimation.T he traditional EM algorithm is an iterative two-step procedure:E-step and M-step.T he E-step calculates the expectation of the log-likelihood on the observed data r and the current value of Θ.The M-step updates the corresponding estimate of Θ.After a certain number of iterations,the algorithm obtains the local optimal value of Θ.In order to avoid the local maximum problem associated with the traditional EM algorithm,calculation mechanism of GA can be applied to EM to find the global optimum.The combination of GA and EM is known as genetic EM algorithm[11].

    In this paper,the fitness function used in the genetic EM algorithm is the log-likelihood function defined in Eq.(5)and calculation stops when improvement of the fitness function value decreases below a given threshold.The procedure of the genetic EM algorithm is shown as follows

    3 CASESTUDYAND VALIDATION

    T he flight operation data used in this case study is provided by a domestic airline.Information like arrival delay,upstream delay propagation and delay rate is extracted from the experimental data which is also divided into several groups categorized by operating date,testing set(only one set),and training set(excepting the testing set).Parameters are estimated using the genetic EM algorithm on the training set.The fitness of the model is validated on the testing set.

    3.1 Density estimation of delay rate

    Density estimation of delay rate is implemented in Matlab7.1.The density distribution of the original delay rate is shown in Fig.1,where the distribution represents a mixture of normal distributions rather than a single normal distribution.Assuming component number m=1,2,3,4,we obtain one single model and three mixture models after parameter estimation.As a result,Fig.2 shows a fitted distribution with two components.

    Fig.1 Density distribution of original delay rate

    Fig.2 Fitted distribution with two components

    3.2 Fitness test of model

    Since the normal mixture models are mixtures of normal distributions,general test methods cannot be directly applied to fitness test for the model.T herefore,a hypothesis test based on Kolmogorov-Smirnov method is used in the test with steps shown as follows.

    (1)Generate a number of random samples according to the density function of the mixture model,where the sample set is denoted as X1and the testing set is denoted as X2.

    (2)Give a null hypothesis H0:in which X1and X2are drawn from the same continuous distribution.

    (3)Run the Matlab function″(h,p)=ktest2(X1,X2)″to find whether the distributions are the same at the 5%significance level.If the significance level equals or exceeds the p-value then we have h=1,otherwise h=0.Reject H0if h=1 or accept the null hypothesis if h=0.

    T he Results from all four tests on these models are listed in T able 2.The null hypothesis is accepted when m=2.Therefore,for the case study,the normal mixture model with two components has the best fitness.

    Table2 Results of model tests

    3.3 Performance validation of genetic EM algorithm

    T he performance of model is validated in the calculation through the comparison between the genetic and the traditional EM algorithms.On the same stop criteria,the log-likelihood values produced in all iterations from the two EM algorithms with m=3 are collected and shown in Fig.3.In each step,the genetic EM algorithm achieves the better log-likelihood value,which represents the higher effectiveness.

    Fig.3 Log-likelihood values of genetic EM and traditional EM

    Additionally,the total iteration numbers of the two EM algorithms,denoted as m,are compared in T able 3.Results show that the iteration number of traditional EM algorithm increases significantly with larger m.T he iteration number increases slightly in the genetic EM algorithm.When the algorithm preparation time is ignored,the genetic EM algorithm can achieve the faster convergence and maintain the higher accuracy than the traditional EM algorithm.

    Table 3 Iteration Steps with increasing m

    4 CONCLUSION

    In this paper,a flight delay state-space model is proposed based on the delay propagation.In the model,delay from the upstream event is denoted as a current state,while the delay caused by other uncertainties is denoted as the system input.System inputs are produced using different models when two delay states are estimated.T he modeling process is demonstrated in detail.T he genetic EM algorithm is used to find the global optimal estimates of the parameters in the normal mixture model of random delay.Case study and model validation are carried out on real flight data.Results show that the model has an excellent fit to the real data in both the mixture density distribution calculation and the Kolmogorov-Smirnov test.In conclusion,the traditional EM algorithm can be optimized and become more efficient by using GA method in finding the global optimum.Most importantly,the flight delay state-space model proposed in this paper can make it possible to apply DDDAS to the air transportation industry in the near future.DDDAS architecture for flight delay prediction can be established based on this computational model,together with the advanced measurement infrastructure and information technology.

    ACKNOWLEDGEMENT

    Authors would highly appreciate the anonymous domestic airline,which provided historical flight information.

    [1] Abdelghany K F,Shah S S,Raina S,et al.A model for projecting flight delays during irregular operation conditions[J].Journal of Air Transport Management,2004,10(6):385-394.

    [2] Hsu C L,Hsu C C,Li H C.Flight delay propagation,allowing for behavioral response[J].International Journal of Critical Infrastructures,2007,3(3/4):301-326.

    [3] Ding Jianli,Yu Yuecheng,Wang Jiandong.A model forpredicting flight delayand delaypropagation based on parallel cellular automata[C]//ISECS International Colloquium on Computing,Communication,Control and Management.Washington D C,USA:IEEE,2009:70-73.

    [4] AhmadBeygi S,Cohn A,Lapp M.Decreasing airline delay propagation by re-allocating scheduled slack[J].IIE Transactions,2010,42(7):478-489.

    [5] Tu Y F,Ball M,Jank W.Estimating flight departure delay distributions—A statisticalapproach with long-term trend and short-term pattern[J].Journal of the American Statistical Association,2008,103(481):112-125.

    [6] Abdel-Aty M,Lee C,Bai Y Q,et al.Detecting periodic patterns of arrival delay[J].Journal of Air Transport Management,2007,13(6):355-361.

    [7] Darema F.Introduction to the ICCS2007workshop on dynamic data driven applications systems[C]//International Conference on Computational Science.Berlin, Heidelberg:Springer-Verlag Press,2007:955-962.

    [8] Wang P T R,Schaefer L A,Wojcik L A.Flight connections and theirimpacts on delay propagation[C]//Digital Avionics Systems Conference.Washington D C,USA:IEEE,2003,1(5.B.4):1-9.

    [9] McLachlan G,Peel D.Finite mixture models[M].New York:John Wiley,2000.

    [10]Dempster A,Laird N,Rubin D.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the RoyalStatisticalSociety:Series B(Methodological),1977,39(1):1-38.

    [11]Pernkopf F,Bouchaffra D.Genetic-based EM algorithm for learning gaussian mixture models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1344-1348.

    猜你喜歡
    南京航空航天大學(xué)中國民航計算機(jī)科學(xué)
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    通告
    探討計算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
    航空世界(2018年12期)2018-07-16 08:34:48
    淺談計算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
    電子制作(2017年2期)2017-05-17 03:55:01
    重慶第二師范學(xué)院計算機(jī)科學(xué)與技術(shù)專業(yè)簡介
    中國民航大學(xué)學(xué)報2016年分類索引
    日本欧美视频一区| 久久人妻福利社区极品人妻图片| 亚洲熟女毛片儿| 欧美日韩av久久| 亚洲欧美清纯卡通| 天天躁日日躁夜夜躁夜夜| 国产日韩一区二区三区精品不卡| 嫁个100分男人电影在线观看| 桃红色精品国产亚洲av| 久久性视频一级片| 黄频高清免费视频| 久久久久久久久久久久大奶| 汤姆久久久久久久影院中文字幕| 中文精品一卡2卡3卡4更新| 少妇猛男粗大的猛烈进出视频| 在线观看www视频免费| 亚洲精品久久成人aⅴ小说| 久久人妻福利社区极品人妻图片| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| 亚洲精品中文字幕在线视频| kizo精华| 一区二区三区精品91| 亚洲欧洲日产国产| 一二三四在线观看免费中文在| 午夜免费成人在线视频| 日本91视频免费播放| 97在线人人人人妻| 精品人妻一区二区三区麻豆| 亚洲全国av大片| 日韩中文字幕欧美一区二区| 丝袜脚勾引网站| 亚洲午夜精品一区,二区,三区| 老司机在亚洲福利影院| 午夜两性在线视频| 999久久久精品免费观看国产| 热re99久久精品国产66热6| 国产精品国产三级国产专区5o| 12—13女人毛片做爰片一| 午夜精品国产一区二区电影| 久久人人97超碰香蕉20202| 日本91视频免费播放| 久久久水蜜桃国产精品网| 亚洲国产精品一区二区三区在线| 日韩人妻精品一区2区三区| av网站免费在线观看视频| 亚洲七黄色美女视频| 国产亚洲精品久久久久5区| 男女下面插进去视频免费观看| 99国产综合亚洲精品| 纵有疾风起免费观看全集完整版| 成在线人永久免费视频| 51午夜福利影视在线观看| cao死你这个sao货| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美精品自产自拍| 亚洲av国产av综合av卡| 菩萨蛮人人尽说江南好唐韦庄| 熟女少妇亚洲综合色aaa.| 久久久久久久精品精品| 美女福利国产在线| 日本av手机在线免费观看| 欧美另类一区| 国产高清videossex| 久久青草综合色| 久久影院123| 色播在线永久视频| 9191精品国产免费久久| 在线 av 中文字幕| 秋霞在线观看毛片| 每晚都被弄得嗷嗷叫到高潮| 精品亚洲乱码少妇综合久久| 国产xxxxx性猛交| 亚洲成人国产一区在线观看| www.av在线官网国产| 男女床上黄色一级片免费看| 99国产精品免费福利视频| 国产一区二区三区综合在线观看| www.av在线官网国产| 国产av精品麻豆| 亚洲激情五月婷婷啪啪| 久9热在线精品视频| tocl精华| 十分钟在线观看高清视频www| 免费不卡黄色视频| 夫妻午夜视频| av国产精品久久久久影院| 免费在线观看视频国产中文字幕亚洲 | av不卡在线播放| 97精品久久久久久久久久精品| 少妇精品久久久久久久| videos熟女内射| a 毛片基地| 男人舔女人的私密视频| 精品人妻在线不人妻| 男女床上黄色一级片免费看| 免费高清在线观看日韩| 亚洲精华国产精华精| 69av精品久久久久久 | 欧美成狂野欧美在线观看| av福利片在线| 国产区一区二久久| 成年女人毛片免费观看观看9 | 久久久精品免费免费高清| 日本91视频免费播放| 久热这里只有精品99| 国产欧美亚洲国产| 免费观看人在逋| 嫁个100分男人电影在线观看| 亚洲天堂av无毛| 高清av免费在线| 777米奇影视久久| 久久女婷五月综合色啪小说| 亚洲人成77777在线视频| 男女下面插进去视频免费观看| 如日韩欧美国产精品一区二区三区| 老司机午夜十八禁免费视频| www.熟女人妻精品国产| 窝窝影院91人妻| 一级a爱视频在线免费观看| www.自偷自拍.com| 搡老岳熟女国产| 99国产精品免费福利视频| 久久女婷五月综合色啪小说| 午夜福利在线观看吧| 国产精品偷伦视频观看了| av网站在线播放免费| 国精品久久久久久国模美| a级毛片黄视频| 国产视频一区二区在线看| 免费女性裸体啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频 | 一边摸一边抽搐一进一出视频| 无遮挡黄片免费观看| 久久国产精品大桥未久av| 国产一区二区三区综合在线观看| 亚洲一区二区三区欧美精品| 精品一区二区三区四区五区乱码| 夜夜夜夜夜久久久久| 精品少妇久久久久久888优播| 亚洲精品中文字幕在线视频| 午夜福利,免费看| 亚洲人成电影观看| 亚洲第一欧美日韩一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人手机| www.自偷自拍.com| 五月开心婷婷网| 亚洲伊人久久精品综合| 搡老熟女国产l中国老女人| 韩国精品一区二区三区| 色94色欧美一区二区| bbb黄色大片| 国产成人a∨麻豆精品| 欧美日韩亚洲高清精品| 亚洲中文av在线| 精品国产一区二区久久| 午夜日韩欧美国产| 国产精品久久久久久精品古装| 99精品欧美一区二区三区四区| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 男人添女人高潮全过程视频| 欧美精品一区二区大全| 国产成人一区二区三区免费视频网站| 日日爽夜夜爽网站| 亚洲国产成人一精品久久久| 一本一本久久a久久精品综合妖精| 亚洲av国产av综合av卡| 伦理电影免费视频| 国产精品国产三级国产专区5o| h视频一区二区三区| 亚洲av日韩在线播放| 精品欧美一区二区三区在线| 国产精品久久久久久精品电影小说| 波多野结衣av一区二区av| 丝袜美腿诱惑在线| 亚洲精品乱久久久久久| 欧美日韩国产mv在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 黄色视频不卡| 成人黄色视频免费在线看| 亚洲精品久久午夜乱码| 不卡一级毛片| 亚洲精品美女久久久久99蜜臀| 一进一出抽搐动态| 精品国产国语对白av| 黑人巨大精品欧美一区二区蜜桃| 精品人妻在线不人妻| 亚洲久久久国产精品| 久久久国产成人免费| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区| 国产精品香港三级国产av潘金莲| 在线观看一区二区三区激情| 亚洲一码二码三码区别大吗| 亚洲国产欧美在线一区| 色婷婷久久久亚洲欧美| 下体分泌物呈黄色| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花| 亚洲精品久久成人aⅴ小说| 美女脱内裤让男人舔精品视频| 国产欧美日韩一区二区精品| 在线观看免费高清a一片| av线在线观看网站| 国产在线视频一区二区| 波多野结衣一区麻豆| 搡老乐熟女国产| 9热在线视频观看99| 日韩 欧美 亚洲 中文字幕| 香蕉丝袜av| 十分钟在线观看高清视频www| 免费日韩欧美在线观看| 午夜免费观看性视频| 母亲3免费完整高清在线观看| 日本wwww免费看| 国产av国产精品国产| 婷婷成人精品国产| 亚洲精品久久成人aⅴ小说| 欧美日本中文国产一区发布| 久久女婷五月综合色啪小说| 欧美精品一区二区免费开放| 国产免费视频播放在线视频| 国产成人欧美| 十八禁网站网址无遮挡| 桃红色精品国产亚洲av| 中文字幕av电影在线播放| 十八禁高潮呻吟视频| 高清黄色对白视频在线免费看| 欧美国产精品一级二级三级| 亚洲午夜精品一区,二区,三区| 午夜福利乱码中文字幕| 中亚洲国语对白在线视频| 亚洲avbb在线观看| 亚洲一区中文字幕在线| 丝袜喷水一区| 少妇裸体淫交视频免费看高清 | 久热这里只有精品99| 日韩人妻精品一区2区三区| 亚洲国产精品一区三区| 婷婷成人精品国产| 国产一区二区三区在线臀色熟女 | 少妇猛男粗大的猛烈进出视频| 飞空精品影院首页| 五月开心婷婷网| 欧美日韩福利视频一区二区| xxxhd国产人妻xxx| 精品国产超薄肉色丝袜足j| 精品亚洲乱码少妇综合久久| 久久久久精品人妻al黑| 久久久久久久久久久久大奶| 高清av免费在线| 老司机在亚洲福利影院| 精品一区二区三卡| 久久国产精品大桥未久av| 首页视频小说图片口味搜索| 美女福利国产在线| 久久久精品区二区三区| 国产在线免费精品| 国产精品秋霞免费鲁丝片| 国产免费视频播放在线视频| 一边摸一边抽搐一进一出视频| 嫩草影视91久久| 宅男免费午夜| 最新的欧美精品一区二区| 精品一区在线观看国产| 少妇 在线观看| 精品一区二区三卡| 欧美精品一区二区大全| 最新在线观看一区二区三区| 一区二区三区乱码不卡18| av线在线观看网站| 精品国产乱码久久久久久男人| 99香蕉大伊视频| 国产高清videossex| 精品福利观看| 国产又爽黄色视频| 国产三级黄色录像| 国产极品粉嫩免费观看在线| 亚洲av片天天在线观看| 精品人妻一区二区三区麻豆| 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品国产三级国产专区5o| 人妻一区二区av| 电影成人av| 99热网站在线观看| 国产一区二区 视频在线| 美国免费a级毛片| 伊人久久大香线蕉亚洲五| 国产一卡二卡三卡精品| 超色免费av| 久久久久久久久免费视频了| 午夜两性在线视频| 青春草视频在线免费观看| 老鸭窝网址在线观看| 成人国产av品久久久| 欧美黑人欧美精品刺激| 最近最新中文字幕大全免费视频| 成年女人毛片免费观看观看9 | 久久精品国产亚洲av香蕉五月 | 国产一级毛片在线| 国产av一区二区精品久久| 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 欧美 日韩 精品 国产| 91成年电影在线观看| 免费不卡黄色视频| av国产精品久久久久影院| 91成人精品电影| 在线看a的网站| 欧美另类一区| 制服诱惑二区| 桃花免费在线播放| 亚洲欧美日韩高清在线视频 | 丁香六月欧美| 999久久久国产精品视频| 国产免费现黄频在线看| 精品国产一区二区久久| 国产成人av激情在线播放| 国产日韩欧美视频二区| 国产在线观看jvid| 黄色视频不卡| 亚洲美女黄色视频免费看| 美女扒开内裤让男人捅视频| 色婷婷久久久亚洲欧美| 搡老岳熟女国产| 国产成人精品无人区| 亚洲综合色网址| 曰老女人黄片| 欧美97在线视频| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看 | 丰满少妇做爰视频| 国产xxxxx性猛交| 亚洲精华国产精华精| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 99国产精品一区二区蜜桃av | 中文字幕人妻丝袜制服| 男女国产视频网站| 12—13女人毛片做爰片一| 亚洲男人天堂网一区| 亚洲精品国产av蜜桃| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| 王馨瑶露胸无遮挡在线观看| 在线观看人妻少妇| 亚洲精华国产精华精| 日日夜夜操网爽| 97在线人人人人妻| 亚洲欧美一区二区三区黑人| 久久影院123| av线在线观看网站| 香蕉丝袜av| 久久午夜综合久久蜜桃| av线在线观看网站| 国产福利在线免费观看视频| 欧美精品av麻豆av| 日韩制服丝袜自拍偷拍| 纵有疾风起免费观看全集完整版| 久久99热这里只频精品6学生| 91成人精品电影| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 国产欧美日韩一区二区三 | 2018国产大陆天天弄谢| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 高清在线国产一区| 亚洲国产成人一精品久久久| 高清黄色对白视频在线免费看| 青春草亚洲视频在线观看| 国产在线一区二区三区精| 电影成人av| 一级毛片精品| 天天影视国产精品| 久久香蕉激情| 老司机影院成人| 免费观看av网站的网址| 亚洲欧美日韩高清在线视频 | 国产日韩欧美亚洲二区| 亚洲精华国产精华精| 91精品伊人久久大香线蕉| tube8黄色片| 99国产精品一区二区蜜桃av | 各种免费的搞黄视频| 午夜福利视频在线观看免费| 日本wwww免费看| 热re99久久精品国产66热6| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 一本大道久久a久久精品| 99精国产麻豆久久婷婷| 啦啦啦在线免费观看视频4| 深夜精品福利| 国产男女内射视频| 国产日韩欧美在线精品| 国产极品粉嫩免费观看在线| 妹子高潮喷水视频| 欧美精品人与动牲交sv欧美| 国产精品熟女久久久久浪| a级片在线免费高清观看视频| 亚洲国产欧美在线一区| 亚洲 国产 在线| 一区在线观看完整版| 不卡av一区二区三区| 最近中文字幕2019免费版| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 精品一区在线观看国产| h视频一区二区三区| 亚洲人成电影观看| 色婷婷久久久亚洲欧美| 美女脱内裤让男人舔精品视频| 啦啦啦在线免费观看视频4| 欧美午夜高清在线| 国产成人啪精品午夜网站| 乱人伦中国视频| 青草久久国产| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 亚洲色图综合在线观看| 另类亚洲欧美激情| 午夜久久久在线观看| 国产日韩欧美在线精品| 麻豆国产av国片精品| 曰老女人黄片| 久久久欧美国产精品| 精品久久久久久电影网| 蜜桃国产av成人99| 欧美精品人与动牲交sv欧美| 在线观看舔阴道视频| 黄片小视频在线播放| 交换朋友夫妻互换小说| 黄片播放在线免费| 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月 | 国产精品欧美亚洲77777| 久久影院123| 1024香蕉在线观看| 窝窝影院91人妻| 午夜福利在线免费观看网站| 在线十欧美十亚洲十日本专区| 国产精品久久久久久人妻精品电影 | 可以免费在线观看a视频的电影网站| 美女中出高潮动态图| 亚洲欧洲日产国产| 91精品三级在线观看| 黄色毛片三级朝国网站| 日韩欧美免费精品| 久热爱精品视频在线9| 国产一区二区三区av在线| 999久久久国产精品视频| 国产成人免费观看mmmm| 人妻 亚洲 视频| 黄片播放在线免费| 黑丝袜美女国产一区| 老司机深夜福利视频在线观看 | 成人av一区二区三区在线看 | 国产精品影院久久| 超色免费av| 国产精品一区二区精品视频观看| 成年人午夜在线观看视频| 欧美黄色片欧美黄色片| 精品久久蜜臀av无| 好男人电影高清在线观看| 久久精品亚洲av国产电影网| 色播在线永久视频| 久久久久网色| 久久女婷五月综合色啪小说| 91老司机精品| 两个人免费观看高清视频| 女人精品久久久久毛片| 丝袜在线中文字幕| 国产精品偷伦视频观看了| 欧美成人午夜精品| 美女大奶头黄色视频| 国产高清国产精品国产三级| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 亚洲第一欧美日韩一区二区三区 | 一本色道久久久久久精品综合| 动漫黄色视频在线观看| 国产福利在线免费观看视频| 国产免费一区二区三区四区乱码| 一二三四社区在线视频社区8| 亚洲情色 制服丝袜| 亚洲国产精品999| 国产人伦9x9x在线观看| 午夜免费观看性视频| 亚洲avbb在线观看| 男女无遮挡免费网站观看| 久久久久视频综合| 精品亚洲乱码少妇综合久久| 三级毛片av免费| 老司机靠b影院| 国产精品偷伦视频观看了| 精品福利观看| 国产免费福利视频在线观看| 亚洲专区字幕在线| 91av网站免费观看| 国产在视频线精品| 香蕉丝袜av| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 欧美xxⅹ黑人| 国产亚洲一区二区精品| 国产麻豆69| 久热这里只有精品99| 窝窝影院91人妻| 男女免费视频国产| 国产成人欧美| 国产男人的电影天堂91| 亚洲男人天堂网一区| 女人爽到高潮嗷嗷叫在线视频| 1024视频免费在线观看| 韩国精品一区二区三区| 欧美另类一区| 国产精品一区二区在线观看99| 97人妻天天添夜夜摸| 久9热在线精品视频| 国产日韩欧美在线精品| 亚洲欧美日韩高清在线视频 | 99久久精品国产亚洲精品| 另类亚洲欧美激情| netflix在线观看网站| 美女大奶头黄色视频| 午夜精品国产一区二区电影| 免费久久久久久久精品成人欧美视频| 黄色视频不卡| a 毛片基地| 成年人黄色毛片网站| 亚洲成人免费av在线播放| 亚洲国产精品一区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品在线美女| 久久久久视频综合| 精品少妇黑人巨大在线播放| 亚洲专区字幕在线| 如日韩欧美国产精品一区二区三区| 丁香六月天网| 精品一区二区三区av网在线观看 | 亚洲av国产av综合av卡| 国产精品影院久久| 成人18禁高潮啪啪吃奶动态图| 国产av精品麻豆| 国产视频一区二区在线看| 免费不卡黄色视频| 免费在线观看完整版高清| 亚洲欧美清纯卡通| 亚洲美女黄色视频免费看| 欧美精品高潮呻吟av久久| 高潮久久久久久久久久久不卡| 日本a在线网址| 国产精品久久久久久精品古装| 精品欧美一区二区三区在线| 在线天堂中文资源库| 手机成人av网站| 国产成人av教育| 热99久久久久精品小说推荐| 欧美日韩国产mv在线观看视频| 亚洲人成电影观看| 欧美精品高潮呻吟av久久| 久久久久久久精品精品| 欧美在线一区亚洲| 伊人久久大香线蕉亚洲五| √禁漫天堂资源中文www| 久久女婷五月综合色啪小说| 亚洲熟女毛片儿| 少妇的丰满在线观看| 亚洲精品美女久久av网站| 下体分泌物呈黄色| 日韩制服骚丝袜av| 亚洲第一青青草原| 99国产精品一区二区三区| 美女主播在线视频| 久久久精品免费免费高清| 久久精品国产综合久久久| 国产精品成人在线| 男人添女人高潮全过程视频| 男男h啪啪无遮挡| 久久久久国内视频| 国产亚洲精品第一综合不卡| 日本av手机在线免费观看| av网站免费在线观看视频| 亚洲精品一区蜜桃| 久久人人爽av亚洲精品天堂| 亚洲一码二码三码区别大吗| www.自偷自拍.com| 久久热在线av| 亚洲国产精品一区二区三区在线| 18禁观看日本| 制服人妻中文乱码| 肉色欧美久久久久久久蜜桃| 亚洲精品中文字幕在线视频| 国产亚洲午夜精品一区二区久久| 亚洲性夜色夜夜综合| 亚洲精品中文字幕在线视频| www.精华液| 欧美日韩亚洲综合一区二区三区_| 美女视频免费永久观看网站| svipshipincom国产片| 国产有黄有色有爽视频| 成人av一区二区三区在线看 | 国产亚洲欧美在线一区二区| 欧美成人午夜精品| 亚洲综合色网址| 午夜福利在线免费观看网站| 精品国产超薄肉色丝袜足j|