• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溫度變化下基于蘭姆波的復(fù)合材料結(jié)構(gòu)損傷識別

    2011-05-05 22:55:28嚴(yán)
    關(guān)鍵詞:蘭姆南京航空航天大學(xué)宇航

    嚴(yán) 剛 周 麗

    (南京航空航天大學(xué)航空宇航學(xué)院,南京,210016,中國)

    INTRODUCTION

    Composite structures have been widely used in structural components of aerospace vehicles.However,composite structures are vulnerable to damages,especially the invisible low-impact damage,leading to significant reduction of strength and stability.T herefore,it is important and urgent to develop structural health monitoring system to monitor the composite structures online and continuously to detect the internal damages at an early stage to prevent catastrophic failure[1].

    Currently,for health monitoring of composite structures,a promising approach is to excite diagnostic Lamb wave into the structures using actuators.By analyzing the transmitting Lamb wave signals,the characteristic information about the hidden damage can be extracted and obtained[2-3].Among Lamb wave-based damage detection and identification approaches,many use the time of flights(T oFs)of the scattered waves to identify the damage.By extracting the time arrival of the Lamb waves scattered by damage,the damage location can be identified using the relation among distances,wave velocities and T oFs of the scattered waves[4-6].T his kind of methods needs to subtract the Lamb wave signals before damage(baseline)from those after damage to obtain the damage-scattered wave signals.However,in real application,the environment,such as temperature,vibration and noise,can greatly influence the Lamb wave propagation in the structure.Under such circumstance,even in the undamaged state,the Lamb wave signals would be significantly different from the baseline signals.Thus it would lead to incorrect judgment and suspicious identification if use the subtracted signals as the scattered signals to identify the damage under environmental effects.

    Another kind of Lamb wave-based methods can be categorized as pattern recognition-based methods[7-10].By extracting the damage features from the received Lamb waves in time,frequency or time-frequency domains through signal and information processing techniques,the damages can be classified and identified by pattern recognition.According to the training samples and learning algorithms,the pattern recognition-based methods can be further classified as unsupervised and supervised methods.In unsupervised methods,the training samples are only from the structure under undamaged state,while in the supervised methods,the training samples are from both the undamaged state and the damaged state.Generally,it is difficult to obtain training samples from different damage scenarios beforehand,thus unsupervised methods are more advantageous for low level damage detection in structural health monitoring.

    T his paper aims to study the effect of temperature changes on Lamb wave propagation and proposes a two-step method for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.An unsupervised pattern recognition method,statistical outlier analysis,is combined with a probabilistic damage imaging algorithm to detect and identify the damage,while considering the effect of temperature changes.First,the statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within the monitoring area or are only affected by temperature changes.If the damage existence is determined,then the probabilistic damage imaging algorithm is adopted to fuse information collected from multiple actuator-sensor paths to form diagnostic image to identify the location of damage.Experimental study on a stiffened composite panel with random temperature changes isperformed to demonstrate the effectiveness of the proposed method.

    1 DAMAGE DETECTION AND IDENTIFICATION APPROACH

    1.1 Damage index

    For damage detection, damage features should be extracted from the sensed signals to indicate the presence and progress of damage.Most of the damage features are represented by damage index comparing the dynamic response parameters in operational state with those in undamaged state.For Lamb wave-based damage detection methods,a useful damage index with simple signal processing is usually defined in the frequency domain as

    where VB is the referenced Lamb wave signal sensed in undamaged state,and VOthe Lamb wave signal in an arbitrary operational state,FFT the Fourier transform of the signals,and[f0,ft]is the frequency range of the excited Lamb wave signal.

    Under ideal condition,the meaning of the damage index defined by Eq.(1)is that,if there is no damage in one actuator-sensor path,VOis exactly the same as VB,DI=0;Else if there is damage in that path,VO is different from VB,DI=X,X∈(0,1),indicating the occurrence of damage.However,in real applications,the operational environment surrounding the structure,such as temperature changes,will greatly influence the Lamb wave propagation in the structure.Under such circumstance,even in the undamaged state,the wave signals at an arbitrary time will be significantly differentfrom the referenced baseline signal,i.e.,DI≠ 0.It is difficult to distinguish if the change of Lamb wave signals is introduced by damage or environment.

    T o overcome this drawback,in this paper damage index defined in Eq.(1)is modified from a statistical point to consider the environmental effect.Let VBibe the Lamb wave signal of the ith observation(i=1,…,M)in the undamaged state.One of these measurements(i= 1)is adopted as a baseline reference and the damage index DIBunder undamaged state is evaluated for the remaining(M-1)measurements as

    Let VOjbe the Lamb wave signal of j th observation(j=1,…,N)in the operational state.The damage indices under operational state are evaluated for the N measurements as

    A statistical outlier analysis is performed to compare the damage indices under operational state with those under undamaged state to detect the presence of damage.A Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.

    1.2 Statistical outlier analysis

    In statistics,an outlier is an observation that is significantly different from the rest of the population and the outlier is believed to be generated by an alternative mechanism.Outlier analysis can be considered as a special class of pattern recognition,which classifies the abnormal data or state from the normal ones.For structures,outlier is normally related to a damaged state,and outlier analysis has emerged as a robust unsupervised learning pattern recognition tool for damage detection[11].

    In this study,for determining whether an observation of damage indices in an operational state is an outlier,namely,the change of Lamb wave signals is induced by damage rather than temperature changes,a proper damage threshold value DIthshould be calculated using the damage indices under undamaged state.In a sensor network,if the calculated damage index in an actuator-sensor path under operational state is less than DIth,it can be considered that the change of sensed Lamb wave signals is introduced by temperature changes;Otherwise,it can be deduced that damage occurs in or near that actuator-sensor path,thus the presence of damage could be detected.

    A Monte Carlo procedure is employed with experimentalmeasurements to determine the damage threshold value.Its main steps are as follows[12]:

    Step 1 In the undamaged state,randomly apply temperature changes to the structure,and randomly obtain M sets of Lamb wave signals in each actuator-sensor path.Select one measurement as reference,and compute the damage indices of the rest M-1 sets of Lamb wave signals in each actuator-sensor path according to Eq.(2).

    Step 2 Save the maximum of the M-1 damage indices in each actuator-sensor path as DImaxto obtain a population of NkDImax,Nkis the number of actuator-sensor paths in a sensor network.

    Step 3 Assess that which distribution the maximum damage indices DImaxunder temperature changes come from,and estimate the probability distribution function(PDF)from this NkDImax population.From the estimated PDF,the damage threshold value,DIth,can be established with a certain confidence level(99.9%in this study).

    1.3 Probabilistic damage imaging

    Because of the complexity of composite structure and impact damage,the interaction between Lamb wave and impact damage in different directions and actuator-sensor paths may different.It is more reasonable to fuse information collected from multiple actuator-sensor paths rather than single path to identify the damage.In this study,after the presence of damage is determined by the statistical outlier analysis,a probabilistic damage imaging algorithm is adopted to use damage-sensitive features of all actuator-sensor paths to identify the location of damage.

    For a sensor network with Nkactuator-sen-sor paths in total,the estimation probability value of damage presence P at position(x,y)can be written as[13]

    is the ratio of the sum of the distances from the imaging point(x,y)to the actuator(xa,ya)and to the sensor(xs,ys)to the distance between the actuator and sensor.pk(x,y)is the estimation of probability of the presence of damage from the kth actuator-sensor path and Akis the damagesensitive feature in the kth path.βis a scaling parameter which controls the size of the affected zone of the actuator-sensorpaths[14].In this study,β is set as 1.07.

    In the original probabilistic damage imaging method proposed by Hay et al[13-14],the presence of damage is assumed to be the exclusive reason for the changes in the Lamb wave signals between the reference and presentoperational states.They used the correlation of Lamb wave signals in two different states(signal difference coefficient)as the damage features.However,as aforementioned,the operational environment surrounding the structure,such as temperature changes,will influence the Lamb wave propagation in the structure.Under such circumstance,even in the undamaged state,the wave signals at an arbitrary time would be significantly different from the baseline signals.The aim of the proposed twostep method is to consider the environmental influences to improve this imaging approach.Only after the presence of damage is determined by the statistical outlier analysis,the imaging algorithm is adopted to display probabilities of the presence of damage within the monitoring area.T he damage indices under damaged state are used as the damage features in Eq.(4)to generate the diagnostic damage image,and the damage is assumed to be presented in the area with the highest probability of presence.

    2 EXPERIMENTAL STUDY

    2.1 Experiment setup

    T o demonstrate and verify the damage detection and identification method proposed in this study,an experimental structural health monitoring system is established to perform experimental studies.The overall test configuration of the experimental system is shown in Fig.1(a).The test setup consists of a stiffened composite panel,a NI PXI-5442 arbitrary function generator,a NI PXI-6115 data acquisition(DAQ)board,and a KH-7600 wideband amplifier.

    Fig.1 Test setup and sensor network placement

    On the back surface of the stiffened composite panel,12 PZT transducers denoted by S1 to S12 are mounted to form a sensor network to monitor the damage in a region with a dimension of 150 mm×180 mm,as illustrated in Fig.1(b).The diameter of the PZT transducer is 12 mm and the thickness is 1 mm.Each PZT transducer can be acted as both actuator and sensor,thus there are totally 66 independent actuator-sensor paths.However,S1 and S3 partially debonded during the following impact test,thus there are only 45 effective actuator-sensor paths.Table 1 lists the path numbers and corresponding actuators and sensors.A LabVIEW-based software is developed to control the waveform generator to generate the excitation signals at a sampling rate of 40 MHz.In the following experiments,the signal amplified by KH-7600 drives one PZT actuator to generate transient Lamb waves into the stiffened composite panel alternatively,and the response wave signals are then received by other PZT sensors,and saved by the NI PXI-6115 DAQ board,whose sampling rate is set at 10 MHz.During the experimental study,limited by the experimental condition,hair dryer is adopted to randomly heat up the monitoring area of the stiffened composite panel to simulate temperature changes.T he temperature range applied by the hair dryer is about 25—80°C in this study.However,the proposed method can be extended to other temperature distribution.

    Table1 Path numbers and corresponding actuators and sensors

    2.2 Damage detection result

    To determine whether there existed damage in the structure during operation,a Monte Carlo method aforementioned is first performed to determine the damage threshold value in the undamaged state.Under the room temperature,a set of Lamb waves at each actuator-sensor path is measured as the baseline reference as VB1described in Eq.(2).T hen hair dryer is adopted to randomly heat up the monitoring area of the stiffened composite panel,meanwhile,10 sets of Lamb waves are obtained at each actuator-sensor path.

    In this study,for damage detection and identification,the function generatorgenerates a tone-burst,narrowband modulated sinusoidal input voltage signal and applies it to the PZT sensor according to

    where Q is the amplitude of the excitation signal,Npthe number of peaks in the waveform,fcthe center frequency and H(t)the unit step function.In the experiment,the parameters are selected as:Q=6 V,Np=5 and fc=75 kHz.Fig.2(a)shows two typical measurements and their subtraction from S2 to S5 under two different temperatures in the undamaged state.T heir Fourier transform are shown in Fig.2(b).From Fig.2,it can be clearly seen that temperature changes has an important influence on the propagation of Lamb waves,leading to phase and amplitude changes of the received signals in both time and frequency domains.It would inevitably lead to false judgment and suspicious identification if use the subtracted signal as the damage-scattered signal or use features from these two sets of wave signals directly to detect and identify the damage under temperature changes.

    Fig.2 Typical measurements and Fourier transforms underdifferenttemperatures in undamaged state

    Then the damage indices of the 10 sets of Lamb waves are calculated according to Eq.(2)and save the maximum DImaxin each actuator-sensor path to obtain a population of 45 DImax.Fig.3 shows the maximum of the damage indices DImax at all 45 actuator sensor paths.Distribution plot is used to assess which distribution the damage indices DImaxcome from.Fig.4(a)shows a normal distribution plot.It can be seen that thedata points fall near the line,demonstrating it is reasonable to assume that the data come from a normal distribution.A Jarque-Beta test is also performed by using MAT LAB function″jbtest″.The test results accept the null hypothesis that the data come from a normal distribution.T he PDF of the normal distribution is then estimated from this 45 DImaxpopulation as illustrated in Fig.4(b).T he threshold value,DIth=0.233,is established with a 99.9%confidence level as illustrated in Fig.3.

    Fig.3 Maximum damage indices at all actuator-sensor paths in undamaged state

    Fig.4 Normal distribution plots

    Next,an impact test is performed to introduce low-velocity impact damage in the stiffened composite panel.A drop-weight impacting device with energy of about 20 J is controlled to impact at the position illustrated in Fig.1(b).After impact,the same as the test procedure under undamaged state,10 sets of Lamb waves are obtained at each actuator-sensor path,and hair dryer is used to randomly heat up the monitoring area of the stiffened composite panel.Fig.5 shows a typical measurement and its Fourier transform from S2 to S5 under damaged state compared with the ones under undamaged state.T he damage indices of the 10 sets of Lamb waves under damaged state are calculated according to Eq.(3).To eliminate the difference induced by temperature change,the 10 sets of damage indices is averaged in each actuator-sensor path.Fig.6 shows the averaged damage indices at all 45 actuator-sensor paths.T he damage threshold value with 99.9%confidence is also illustrated in Fig.6.It can be clearly observed that the damage indices in 10 actuator-sensor paths are greater than the damage threshold value,and it can be deduced that damage occurred in the monitoring area.

    Fig.5 Typical measurements and Fourier transforms under different temperatures in damaged state

    Fig.6 Averaged damage indices at all actuator-sensor paths in damaged state

    2.3 Damage identification result

    Fig.7 Images for probability of presence of damage

    After damage is detected by the statistical outlier analysis,the probabilistic damage imaging algorithm is used to identify the location of damage.Fig.7(a)illustrates the damage image constructed by Eq.(4)using the averaged damage indices as the damage-sensitive feature shown in Fig.6 after the stiffened composite panel is impacted.In the image,the higher the pixel value is,the higher the probability that the damage locates.With a proper threshold value,the estimated damage location is shown in Fig.7(b).T he impact damage is examined by ultrasonic C-scan,the shape of the inside damage is nearly a circle with diameter of about 30 mm.The size of the damage is highlighted by a bold circular line in Fig.7(b)for comparison.The identified center location of damage using the maximum probability is about 1.7 cm from the actual center location of the impact damage.This identification result is within a reasonable range,considering the complexity of the stiffened composite panel,demonstrating the effectiveness of the proposed method.

    3 CONCLUSION

    This paper proposes a two-step method for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.A statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.After the damage is detected,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuatorsensor paths to identify the location of damage.Experimental results demonstrate that the proposed method gives reasonable accuracy for damage detection and identification.The statistical outlier analyses successfully detect the damage existence and provid a useful tool to overcome the effect of temperature changes.T he deviation between the damage location identified by the maximum probability value of the presence of damage and the actual one is within a reasonable range.However,the influence of damage extent is not included in the imaging algorithm.

    [1] Boller C.Next generation structural health monitoring and its integration into aircraft design[J].International Journal of Systems Science,2000,31(11):1333-1349.

    [2] Su Z,Ye L,Lu Y.Guided Lamb waves for identification of damage in composite structures:a review[J].Journal of Sound and Vibration,2006,295(3/5):753/780.

    [3] Giurgiutiu V,Cuc A.Embedded non-destructive evaluation for structural health monitoring,damage detection,and failure prevention[J].The Shock and Vibration Digest,2005,37(2):83-105.

    [4] Lemistre M,Balageas D.Structural health monitoring system based on diffracted Lamb waves analysis by multiresolution processing[J].Smart Materials and Structures,2001,10(3):504-511.

    [5] Kehlenbach M,Das S.Identifying damage in plates by analyzing Lamb wave propagation characteristics[C]//Proceedings of Smart Nondestructive Evaluation for Health Monitoring of Structural and Biological Systems.San Diego,USA:[s.n.],2002:364-375.

    [6] Su Z,Ye L.Fundamental Lamb mode-based delamination detection for CF/EP composite laminates using distributed piezoelectrics[J].Structural Health Monitoring,2004,3(1):43-68.

    [7] Sohn H,Park G,Wait J R,et al.Wavelet-based active sensing for delamination detection in composite structures[J].SmartMaterials and Structures,2004,13(1):153-160.

    [8] Worden K,Manson G.The application of machine learning to structural health monitoring[J].Philosophical Transactions of the Royal Society A,2007,365(1851):515-537.

    [9] Cheung A,Cabrera C,Sarabandi P,et al.The application of statistical pattern recognition methods for damage detection to field data[J].Smart Materials and Structures,2008,17:065023.

    [10]Banerjee S,Ricci F,Monaco E,et al.A wave propagation and vibration-based approach for damage identification in structural components[J].Journal of Sound and Vibration,2009,322(1/2):167-183.

    [11]Worden K,Manson G,Fieller N R J.Damage detection using outlier analysis[J].Journal of Sound and Vibration,2000,229(3):647-667.

    [12]Park S,Inman D J,Yun C B.An outlier analysis of MFC-based impedance sensing dataforwireless structural health monitoring of railroad tracks[J].Engineering Structures,2008,30(10):2792-2799.

    [13]Hay T R,Royer R L,Gao H,et al.A comparison of embedded sensor Lamb wave ultrasonic tomography approaches for material loss detection [J].Smart Materials and Structures,2006,15(4):946-951.

    [14]Wang D,Ye L,Lu Y,et al.Probability of the presence of damage estimated from an active sensor network in a composite panel of multiple stiffeners[J].Composites Science and Technology,2009,69(13):2054-2063.

    猜你喜歡
    蘭姆南京航空航天大學(xué)宇航
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    掃帚也有夢想
    莎譯史之蘭姆體系:從“莎士比亞”的譯名說起
    翻譯界(2018年2期)2018-03-05 07:55:38
    我的宇航夢
    小主人報(2015年4期)2015-09-14 02:50:29
    我的宇航夢
    小主人報(2015年2期)2015-03-01 12:30:54
    我的宇航夢
    小主人報(2015年3期)2015-02-28 20:41:54
    蘭姆凹陷穩(wěn)頻工作點自動識別技術(shù)
    精品国产一区二区三区四区第35| 十八禁高潮呻吟视频| 亚洲精品久久午夜乱码| 一级黄色大片毛片| 国产成+人综合+亚洲专区| 亚洲av电影在线观看一区二区三区| 青青草视频在线视频观看| 精品一区二区三区四区五区乱码| 成人手机av| 久久久精品免费免费高清| 精品久久久久久电影网| 精品一区二区三卡| av线在线观看网站| 国产精品久久久久成人av| 亚洲av成人一区二区三| 水蜜桃什么品种好| 国产免费av片在线观看野外av| 国产欧美亚洲国产| 久久久国产成人免费| 国产男女内射视频| 91九色精品人成在线观看| 亚洲欧美激情在线| 国产真人三级小视频在线观看| 高清视频免费观看一区二区| 日本黄色日本黄色录像| 亚洲一码二码三码区别大吗| 少妇裸体淫交视频免费看高清 | 丝袜美腿诱惑在线| 中文字幕人妻熟女乱码| 久久人人爽av亚洲精品天堂| 狂野欧美激情性bbbbbb| 亚洲国产看品久久| 亚洲黑人精品在线| 婷婷丁香在线五月| 国产av国产精品国产| 色老头精品视频在线观看| 精品人妻一区二区三区麻豆| 巨乳人妻的诱惑在线观看| 国产日韩一区二区三区精品不卡| 热re99久久精品国产66热6| 一区二区三区四区激情视频| 精品一区二区三区av网在线观看 | 免费黄频网站在线观看国产| 午夜福利视频在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产毛片av蜜桃av| 亚洲精品一区蜜桃| 日本五十路高清| 久久精品aⅴ一区二区三区四区| 亚洲精品久久成人aⅴ小说| 男女午夜视频在线观看| 黄片小视频在线播放| 在线看a的网站| 日本wwww免费看| 亚洲国产中文字幕在线视频| 日韩 亚洲 欧美在线| 波多野结衣av一区二区av| 日韩熟女老妇一区二区性免费视频| 久9热在线精品视频| 免费av中文字幕在线| 老司机深夜福利视频在线观看 | 一区二区av电影网| 日日摸夜夜添夜夜添小说| 热99国产精品久久久久久7| 嫩草影视91久久| 亚洲第一青青草原| 国产欧美日韩一区二区精品| 久久国产亚洲av麻豆专区| 日韩中文字幕欧美一区二区| 精品一区二区三卡| 免费人妻精品一区二区三区视频| 国产高清videossex| 免费日韩欧美在线观看| 日韩精品免费视频一区二区三区| 国产免费福利视频在线观看| 国产97色在线日韩免费| 免费在线观看视频国产中文字幕亚洲 | 精品亚洲成a人片在线观看| 国产精品.久久久| 国产一区二区三区av在线| 男女高潮啪啪啪动态图| 欧美日韩av久久| 欧美黑人精品巨大| 亚洲七黄色美女视频| 精品久久久久久电影网| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠躁躁| 国产精品.久久久| av超薄肉色丝袜交足视频| 欧美另类一区| www日本在线高清视频| 99久久人妻综合| 天天添夜夜摸| 最新在线观看一区二区三区| 淫妇啪啪啪对白视频 | 美女中出高潮动态图| 久久国产精品大桥未久av| 少妇人妻久久综合中文| 无限看片的www在线观看| 韩国精品一区二区三区| 亚洲国产精品一区二区三区在线| 日本wwww免费看| 中文字幕av电影在线播放| 久久久久国产精品人妻一区二区| 久久天堂一区二区三区四区| 久久九九热精品免费| 午夜激情久久久久久久| 动漫黄色视频在线观看| 大香蕉久久网| 汤姆久久久久久久影院中文字幕| 精品第一国产精品| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 色婷婷av一区二区三区视频| 夜夜骑夜夜射夜夜干| av在线app专区| 天堂中文最新版在线下载| 性少妇av在线| 王馨瑶露胸无遮挡在线观看| avwww免费| 欧美老熟妇乱子伦牲交| 伊人亚洲综合成人网| 777米奇影视久久| av电影中文网址| 久久狼人影院| 又大又爽又粗| 91老司机精品| 99久久人妻综合| 午夜福利在线免费观看网站| 国产区一区二久久| 侵犯人妻中文字幕一二三四区| 日本欧美视频一区| 午夜福利免费观看在线| 夫妻午夜视频| 亚洲三区欧美一区| 老司机影院毛片| 久久这里只有精品19| 国产成人免费无遮挡视频| 精品亚洲乱码少妇综合久久| 国内毛片毛片毛片毛片毛片| 亚洲综合色网址| 97精品久久久久久久久久精品| h视频一区二区三区| cao死你这个sao货| 男女国产视频网站| 飞空精品影院首页| www.av在线官网国产| 色婷婷av一区二区三区视频| 国产精品久久久久久精品电影小说| 丁香六月天网| 亚洲av欧美aⅴ国产| 国产亚洲欧美精品永久| 我的亚洲天堂| 久久精品久久久久久噜噜老黄| 日韩精品免费视频一区二区三区| 狠狠精品人妻久久久久久综合| 国产成人欧美| 性色av一级| 岛国在线观看网站| 欧美精品亚洲一区二区| 欧美日韩黄片免| tube8黄色片| kizo精华| 国内毛片毛片毛片毛片毛片| 国产色视频综合| 日韩中文字幕视频在线看片| 午夜免费鲁丝| 国产成+人综合+亚洲专区| 老熟妇仑乱视频hdxx| 亚洲国产看品久久| 一二三四社区在线视频社区8| 超色免费av| 久久综合国产亚洲精品| 国产精品久久久av美女十八| 丝袜人妻中文字幕| 一级毛片精品| 美女中出高潮动态图| 亚洲精华国产精华精| 国产精品亚洲av一区麻豆| 老司机影院成人| 精品视频人人做人人爽| 国产一区二区三区av在线| 国产亚洲精品一区二区www | 国产成人a∨麻豆精品| 老熟女久久久| 亚洲国产精品一区二区三区在线| 国产一区二区 视频在线| 欧美 日韩 精品 国产| 国产免费现黄频在线看| 免费在线观看黄色视频的| 精品卡一卡二卡四卡免费| av在线app专区| 国产一区二区三区在线臀色熟女 | 蜜桃国产av成人99| 亚洲国产日韩一区二区| 午夜成年电影在线免费观看| 欧美亚洲日本最大视频资源| 欧美激情高清一区二区三区| av天堂久久9| 老司机靠b影院| 久久国产精品大桥未久av| 国产片内射在线| 妹子高潮喷水视频| a级片在线免费高清观看视频| 亚洲欧美成人综合另类久久久| 王馨瑶露胸无遮挡在线观看| 久久毛片免费看一区二区三区| 久久久精品国产亚洲av高清涩受| 午夜福利影视在线免费观看| 青春草视频在线免费观看| 青草久久国产| 一本综合久久免费| 日本黄色日本黄色录像| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| 男女下面插进去视频免费观看| 国产高清videossex| 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品1区2区在线观看. | 人妻 亚洲 视频| 99精国产麻豆久久婷婷| 国产精品秋霞免费鲁丝片| 久久99热这里只频精品6学生| 国产一级毛片在线| 欧美变态另类bdsm刘玥| 亚洲人成77777在线视频| 国产亚洲精品久久久久5区| 美女大奶头黄色视频| 亚洲色图 男人天堂 中文字幕| 日本wwww免费看| 日日爽夜夜爽网站| 另类精品久久| 亚洲第一av免费看| 美女脱内裤让男人舔精品视频| 中文字幕人妻熟女乱码| 欧美另类亚洲清纯唯美| 下体分泌物呈黄色| 天天影视国产精品| 十八禁网站免费在线| 久久天躁狠狠躁夜夜2o2o| www.熟女人妻精品国产| 婷婷色av中文字幕| av在线app专区| 老汉色av国产亚洲站长工具| 十八禁高潮呻吟视频| 亚洲国产日韩一区二区| av福利片在线| 亚洲av成人一区二区三| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩一区二区三 | 欧美日韩亚洲高清精品| 中文字幕人妻丝袜一区二区| 老鸭窝网址在线观看| 欧美精品av麻豆av| 欧美乱码精品一区二区三区| 国产高清视频在线播放一区 | 大陆偷拍与自拍| 人人妻人人澡人人爽人人夜夜| 亚洲精华国产精华精| 精品一区二区三区四区五区乱码| 狂野欧美激情性xxxx| 欧美另类亚洲清纯唯美| 国产成人免费无遮挡视频| 久久国产精品影院| videos熟女内射| 亚洲国产日韩一区二区| 最近最新中文字幕大全免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产av成人精品| 十八禁高潮呻吟视频| 日韩熟女老妇一区二区性免费视频| 欧美日韩一级在线毛片| av一本久久久久| 欧美精品高潮呻吟av久久| 国产区一区二久久| 国产精品一区二区在线观看99| 欧美激情高清一区二区三区| 啪啪无遮挡十八禁网站| 欧美成狂野欧美在线观看| 人人妻人人澡人人看| 精品国产乱子伦一区二区三区 | 亚洲精品一区蜜桃| 精品少妇黑人巨大在线播放| 黄片大片在线免费观看| 亚洲欧洲日产国产| 成年人午夜在线观看视频| 99国产极品粉嫩在线观看| 一个人免费在线观看的高清视频 | 日韩制服骚丝袜av| 国产一区二区 视频在线| 亚洲午夜精品一区,二区,三区| 国产91精品成人一区二区三区 | 成年女人毛片免费观看观看9 | 国产成人av教育| 亚洲午夜精品一区,二区,三区| 国产又色又爽无遮挡免| 法律面前人人平等表现在哪些方面 | 人人妻,人人澡人人爽秒播| 久久人妻福利社区极品人妻图片| 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 欧美成狂野欧美在线观看| 亚洲av成人一区二区三| 亚洲成av片中文字幕在线观看| 十分钟在线观看高清视频www| 精品卡一卡二卡四卡免费| 欧美黑人精品巨大| 国产日韩欧美亚洲二区| 老司机亚洲免费影院| 欧美av亚洲av综合av国产av| 国产主播在线观看一区二区| 亚洲精品美女久久av网站| 亚洲精品日韩在线中文字幕| 欧美大码av| 亚洲午夜精品一区,二区,三区| 999精品在线视频| 人妻一区二区av| 国产成人影院久久av| 成年女人毛片免费观看观看9 | 大陆偷拍与自拍| 这个男人来自地球电影免费观看| 国产97色在线日韩免费| 精品国产乱子伦一区二区三区 | 国产亚洲欧美在线一区二区| 亚洲国产欧美一区二区综合| 性少妇av在线| 欧美国产精品va在线观看不卡| 波多野结衣av一区二区av| 女性生殖器流出的白浆| 香蕉丝袜av| 国产成人一区二区三区免费视频网站| 免费在线观看视频国产中文字幕亚洲 | 黑人欧美特级aaaaaa片| 国产区一区二久久| 亚洲第一欧美日韩一区二区三区 | 满18在线观看网站| 日韩一卡2卡3卡4卡2021年| 王馨瑶露胸无遮挡在线观看| 亚洲专区中文字幕在线| 亚洲精品国产精品久久久不卡| 亚洲精品日韩在线中文字幕| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费视频网站a站| 国产精品自产拍在线观看55亚洲 | 亚洲av电影在线进入| 天堂中文最新版在线下载| 亚洲欧美一区二区三区黑人| 老司机午夜十八禁免费视频| 黄片播放在线免费| a级毛片黄视频| 日韩欧美国产一区二区入口| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 啦啦啦在线免费观看视频4| 久久人人97超碰香蕉20202| 国产一区二区三区在线臀色熟女 | cao死你这个sao货| www.精华液| 热re99久久精品国产66热6| 美女脱内裤让男人舔精品视频| 一级片'在线观看视频| 一级a爱视频在线免费观看| 国产欧美日韩精品亚洲av| 最黄视频免费看| 大片免费播放器 马上看| 每晚都被弄得嗷嗷叫到高潮| 女人久久www免费人成看片| 国产一区二区三区综合在线观看| 这个男人来自地球电影免费观看| svipshipincom国产片| 老熟妇乱子伦视频在线观看 | 久久精品aⅴ一区二区三区四区| 国产精品偷伦视频观看了| 在线观看免费高清a一片| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 国内视频| 久久午夜综合久久蜜桃| 999久久久国产精品视频| 中亚洲国语对白在线视频| 人人妻人人添人人爽欧美一区卜| 欧美 日韩 精品 国产| 欧美日韩中文字幕国产精品一区二区三区 | 我要看黄色一级片免费的| av欧美777| 十分钟在线观看高清视频www| 97精品久久久久久久久久精品| 大型av网站在线播放| 一区二区三区乱码不卡18| 久久人妻福利社区极品人妻图片| 黑人操中国人逼视频| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 精品人妻在线不人妻| 爱豆传媒免费全集在线观看| 丝袜喷水一区| 久9热在线精品视频| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 另类精品久久| 黄片大片在线免费观看| 美女视频免费永久观看网站| 91国产中文字幕| 一级黄色大片毛片| tocl精华| 精品国产超薄肉色丝袜足j| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 亚洲av日韩在线播放| 9热在线视频观看99| 久久精品国产亚洲av高清一级| 成年人午夜在线观看视频| 天堂中文最新版在线下载| 老熟妇乱子伦视频在线观看 | 我的亚洲天堂| 国产在线免费精品| 啦啦啦在线免费观看视频4| 午夜福利在线免费观看网站| 老司机影院成人| 伊人亚洲综合成人网| 欧美精品亚洲一区二区| 黄片大片在线免费观看| 在线观看www视频免费| 欧美黄色片欧美黄色片| 亚洲国产中文字幕在线视频| 午夜免费观看性视频| 丰满人妻熟妇乱又伦精品不卡| 精品国产一区二区三区四区第35| 十分钟在线观看高清视频www| 老熟女久久久| 亚洲av男天堂| 久久狼人影院| 多毛熟女@视频| 深夜精品福利| 久久青草综合色| 91成年电影在线观看| 亚洲av片天天在线观看| 国产av精品麻豆| 色老头精品视频在线观看| 男女下面插进去视频免费观看| 精品少妇一区二区三区视频日本电影| 中亚洲国语对白在线视频| 欧美国产精品va在线观看不卡| 亚洲精华国产精华精| 黑人巨大精品欧美一区二区mp4| 亚洲熟女精品中文字幕| 成人av一区二区三区在线看 | 激情视频va一区二区三区| av超薄肉色丝袜交足视频| 国产精品免费视频内射| 亚洲人成77777在线视频| 女人精品久久久久毛片| 国产成人一区二区三区免费视频网站| 亚洲欧美清纯卡通| 人妻 亚洲 视频| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区mp4| 亚洲九九香蕉| 美女福利国产在线| 日本欧美视频一区| 两性夫妻黄色片| a级毛片黄视频| 日韩视频一区二区在线观看| 青春草亚洲视频在线观看| 欧美变态另类bdsm刘玥| 一进一出抽搐动态| 一边摸一边抽搐一进一出视频| 久久av网站| 日韩三级视频一区二区三区| 中文字幕av电影在线播放| 香蕉丝袜av| 老司机深夜福利视频在线观看 | 中国国产av一级| 欧美老熟妇乱子伦牲交| 国产1区2区3区精品| 日韩熟女老妇一区二区性免费视频| 热re99久久国产66热| 男女之事视频高清在线观看| 国产精品久久久久久精品电影小说| 国产精品成人在线| 老熟妇仑乱视频hdxx| 十分钟在线观看高清视频www| 午夜影院在线不卡| 人妻久久中文字幕网| 80岁老熟妇乱子伦牲交| 久久国产精品人妻蜜桃| 国产精品九九99| 亚洲av片天天在线观看| 精品免费久久久久久久清纯 | 男女床上黄色一级片免费看| 女人爽到高潮嗷嗷叫在线视频| 精品国产一区二区三区久久久樱花| 水蜜桃什么品种好| 国产黄频视频在线观看| 91成人精品电影| 亚洲国产欧美在线一区| 亚洲成人国产一区在线观看| 91老司机精品| 国产有黄有色有爽视频| 国产精品久久久久久精品电影小说| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| cao死你这个sao货| 天堂俺去俺来也www色官网| 精品国产一区二区久久| 国产成人系列免费观看| 国产精品一区二区免费欧美 | 国产区一区二久久| 另类亚洲欧美激情| 一级片'在线观看视频| 国产精品二区激情视频| 在线观看免费高清a一片| 交换朋友夫妻互换小说| 99热全是精品| 性少妇av在线| 韩国精品一区二区三区| 午夜成年电影在线免费观看| 亚洲,欧美精品.| 搡老熟女国产l中国老女人| 在线看a的网站| 国产成人欧美| 免费不卡黄色视频| 亚洲成人国产一区在线观看| 国产av国产精品国产| 最近最新中文字幕大全免费视频| 日韩一区二区三区影片| 免费看十八禁软件| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 精品人妻在线不人妻| 欧美少妇被猛烈插入视频| 久久久久精品人妻al黑| 91九色精品人成在线观看| a在线观看视频网站| 老司机靠b影院| 大片电影免费在线观看免费| 亚洲第一青青草原| 亚洲专区字幕在线| 男女边摸边吃奶| 伊人久久大香线蕉亚洲五| 可以免费在线观看a视频的电影网站| 人妻一区二区av| 99久久综合免费| 久久免费观看电影| 国产一级毛片在线| 成年女人毛片免费观看观看9 | 国产熟女午夜一区二区三区| 国产精品麻豆人妻色哟哟久久| 美女扒开内裤让男人捅视频| 久久精品人人爽人人爽视色| 岛国在线观看网站| 国产国语露脸激情在线看| 国产精品久久久av美女十八| 亚洲色图综合在线观看| 欧美激情高清一区二区三区| 亚洲精品国产区一区二| 菩萨蛮人人尽说江南好唐韦庄| 欧美老熟妇乱子伦牲交| 99国产精品99久久久久| 久久久久国内视频| 亚洲 国产 在线| 成人影院久久| 亚洲精品国产精品久久久不卡| 国产精品99久久99久久久不卡| 亚洲美女黄色视频免费看| 日韩视频在线欧美| 久久久久久久久免费视频了| 久久99一区二区三区| 动漫黄色视频在线观看| 99热网站在线观看| 亚洲第一av免费看| 91精品国产国语对白视频| 99国产综合亚洲精品| 婷婷色av中文字幕| 99香蕉大伊视频| av欧美777| 久久久久久久久免费视频了| 亚洲一码二码三码区别大吗| 啦啦啦啦在线视频资源| 亚洲av男天堂| 一二三四社区在线视频社区8| 一本久久精品| 成人黄色视频免费在线看| 亚洲少妇的诱惑av| 精品国产乱子伦一区二区三区 | 一区二区三区乱码不卡18| 交换朋友夫妻互换小说| 午夜免费成人在线视频| 午夜成年电影在线免费观看| 99国产综合亚洲精品| 又紧又爽又黄一区二区| 成年女人毛片免费观看观看9 | 日日摸夜夜添夜夜添小说| 男女边摸边吃奶| 午夜视频精品福利| 久久ye,这里只有精品| 久久女婷五月综合色啪小说| 妹子高潮喷水视频| 国产精品亚洲av一区麻豆| 欧美激情极品国产一区二区三区| 欧美国产精品va在线观看不卡| 亚洲精华国产精华精| 97在线人人人人妻| 人人澡人人妻人| 久久精品国产亚洲av高清一级| www.自偷自拍.com| 淫妇啪啪啪对白视频 | 看免费av毛片| 免费看十八禁软件| 天天影视国产精品| 亚洲av片天天在线观看| 欧美日韩视频精品一区| 国产主播在线观看一区二区|