• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction*

    2014-07-18 11:56:14康世民,常杰,范娟
    關(guān)鍵詞:世民

    One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction*

    KANG Shimin (康世民), CHANG Jie (常杰)**and FAN Juan (范娟)
    The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

    A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions: 200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated catalyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g?1, 0.78 mmol·g?1, 2.18 mmol·g?1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zirconia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.

    red liquor solids, sulfonated solid catalyst, carbonization, esterification

    1 INTRODUCTION

    Carbon-based sulfonated catalyst is becoming a research hotspot recently, which is widely used in biodiesel production [1-4], hydrolysis of cellulose [5], and some other organic synthesis [6, 7]. There are two ways for the synthesis of carbon-based sulfonated catalyst: (1) hydroxyethylsulfonic acid [6], p-toluenesulfonic acid [7] etc. were adapted as the sulfonating agents in hydrothermal conditions, using furaldehyde, glucose etc. as carbon sources; (2) sulfonation of carbon-based precursor with concentrated sulfuric acid (H2SO4), while the precursor was often obtained by carbonization of biomass at high temperatures [3, 4, 8]. However, these sulfonation agents are usually expensive, while the carbonization of biomass for precursor preparation resulted in additional cost. Besides, a few studies on directly incomplete carbonization of low molecular mass compounds (e.g. naphthalene, C10H8) by concentrated H2SO4were reported, but it was found that the sulfonated species on these catalysts were totally lost in the reuse [9]. One possible reason of this instability was due to the low molecular mass of the raw materials, the products of which may be partly dissolved in organic solvents even after carbonization.

    Red liquor solid (RLS) is a papermaking byproduct, which is often considered as a low value added material, and the main organic constituent in red liquor is lignosulfonate, a phenolic macromolecular polymer. Besides, biodiesel has received a great deal of attention as an alternative candidate for conventional fossil fuel, and catalytic esterification synthesis of biodiesel by solid acid (e.g. ion exchange resin, molecular sieve, sulfated zirconia) was widely studied [2, 3, 8, 10-14]. Oleic acid is a free fatty acid, and catalytic esterification of oleic acid can be a model process for biodiesel production. The object of this work was to synthesize sulfonated catalyst from macromolecule RLS by one step: the RLS was directly carbonized and sulfonated by concentrated H2SO4, without a carbon-based precursor preparation process at high temperatures. Catalytic effect of the RLS derived sulfonated catalyst for esterification of oleic acid was tested.

    2 EXPERIMENTAL

    2.1 Materials

    The RLS was dried powders of the red liquor, with magnesium lignosulfonate as the main organic constituent. Methyl oleate (standard reagent, purity of 99%) and oleic acid (purity of 85%) were obtained from Aladdin-Reagent Co., Ltd., Shanghai, China. Concentrated H2SO4(95%-98%, by mass) was obtained from Kaixin Chemical Reagent Co., Ltd. from the market. HZSM-5 molecular sieve was obtained from Tianjin Kaimeisite Technology Co. Strong-acid 732 resin was obtained from Shanghai Lingfeng Chemical Reagent Co., which was a strong acidic styrene type cation exchange resin with a diameter of 0.4-0.6 mm. Sulfated zirconia was synthesized according to Yee et al. [12].

    2.2 Catalyst preparation

    Concentrated H2SO4(100 ml) and 5 g of RLSwere mixed into a 250 ml round-bottomed flask into an oil bath with temperature of 200 °C. The sulfonating reaction was continued for 12 h with a certain mixing speed. After the reaction, the concentrated H2SO4solution was diluted and filtered. The H2SO4recovered after filtration of the solid can be reused for repeated sulfonation. Black precipitate was collected and washed with hot deionized water (~80 °C) until impurities such as sulfate ions were no longer detected in the washing water. The black precipitate was then dried at 75 °C to form the sulfonated catalyst (SC) (about 1.4 g).

    2.3 Characterization

    The obtained sulfonated carbon catalyst was characterized by X-ray diffraction (XRD) (D8 Advance, Bruker), thermogravimetry (TG) and derivative thermogravimetry (DTG) (TGAQ 5000, TA Instruments Co., USA), Fourier transform infrared spectroscopy (FTIR) (Nexus 670, Nicolet), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) (S-3700N, Hitachi, Japan), X-ray photoelectron spectroscopy (XPS) (Kratos AXis Ultra, Shimadzu, Japan), Brunauer-Emmett-Teller (BET) surface area (ASAP 2020 V3.03 H, Micromeritics), and elemental analyzer (elementar Vario EL III, Germany).

    The total SO3H + COOH and SO3H + COOH + OH contents were estimated from the exchange of Na+in aqueous NaCl and NaOH solutions, respectively. The densities of SO3H groups were estimated based on the sulfur content determined from sample compositions obtained by elemental analysis and XPS analysis [5].

    2.4 Catalytic activity test

    Methyl oleate production was performed in a stirred 25 ml round-bottomed flask at 65 °C for 4 h. 0.05 g of solid acid catalyst was added to 1 g of oleic acid and 8 ml of methanol. The yield of methyl oleate was analyzed by the external method through gas chromatography [Shimadzu QP 2010 Plus equipped, with Rxi-5ms column (30 m×0.25 mm×0.25 μm)]. The temperature of the injector was set at 270 °C, the oven temperature was started at 200 °C for 2 min, heated at a rate of 10 °C·min?1to 275 °C, and then held for 5 min. A standard curve was obtained by correlating the peak area with the concentration of a series of methyl oleate solutions, and then the content of methyl oleate after reaction was calculated according to the peak area and the standard curve.

    2.5 Catalyst regeneration

    Regeneration Method 1: the 3rd time reused catalyst was dipped into 10% H2SO4solution for about 10 h (including sonic oscillation for 1 h) and washed with pure water. Subsequently, the catalyst was dried and resupplied for the next experimental run. The regenerated catalyst was labeled as regenerated SC-1.

    Regeneration Method 2: the 3rd time reused catalyst was regenerated according to Refs. [15, 16]. Briefly, it was dipped into 150 °C concentrated H2SO4for 12 h, and then it was washed and, dried, and resupplied for the next experimental run. This regenerated catalyst was labeled as regenerated SC-2.

    3 RESULTS AND DISCUSSION

    3.1 Characterization of catalyst

    The SC exists as solid particles, and the surface topography is shown by SEM spectra image in Fig. 1. The XRD pattern (Fig. 2) shows a broad diffraction peak in a 2θ range of 20°-30°, and the wide-angle pattern matches well with that previously report for non-graphitic carbon [5]. This indicates that the RLS can not be completely graphitized by concentrated H2SO4carbonization at such a low temperature (200 °C). FT-IR spectrum (Fig. 3) shows that the SC owns the aromatic structure (1610, 1420 cm?1), OH group (3410 cm?1), SO3H group (1170, 1040 cm?1) and C O group (1713 cm?1). Compared with the FT-IR spectrum of SC and RLS, the SO3H group on the SC can be derived from

    Figure 1 SEM spectra of SC

    Figure 2 XRD pattern of SC

    Figure 3 FT-IR spectrum of SC and RLS

    both the RLS and concentrated H2SO4, while the C O group is probably produced by concentrated H2SO4oxidation of OH and CH groups. From the TG and derivative thermogravimetry (DTG) curves (Fig. 4), the sample mass decreased with increasing temperature, and the mass loss before 200 °C is moderate, which maybe caused by the loss of water adsorbed on the SC. As shown in Fig. 5, the results of XPS analysis show the sulphur (S) exists in the forms of SO3H groups and other groups, and the S 2p region in XPS spectrum indicates that about 68% S exists in the form of SO3H group (168 eV). There are two binding energy peaks for the carbon: the peak at 285 eV corresponds to the elemental carbon, which is the substrate of the catalyst; while the small peak at 289 eV corresponds to COOH groups (Fig. 5). Elemental analysis (Table 1), ash test (Table 1), XPS analysis, and cation-exchange experiments (Table 2) reveal that the sample composition is (CH0.68O0.65S0.026)An(A is ash, with a mass content of 0.74%), and the amounts of SO3H, COOH, and phenolic OH groups bonded to the carbon skeleton are 0.74 mmol·g?1, 0.78 mmol·g?1, 2.18 mmol·g?1, respectively.

    Figure 4 TG and DTG curves of SC

    The element content on and near the surface of fresh SC was detected by EDS analysis (Table 3). Compared with the elemental analysis data in Table 1,the results show that the S, O contents on and near the surface are higher than the contents on the whole fresh SC, while the C content on and near the surface is lower than that on the whole fresh SC. These results indicate that the fresh SC is made up of C enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. According to the above discussion, a schematic structure of SC is proposed as shown in Fig. 6.

    Table 1 Ash content and elementary analysis by elemental analyzer

    Table 2 Cation-exchange values and specific surface area

    3.2 Catalytic activity

    Figure 5 The XPS spectrum of SC

    Table 3 Surface elementary analysis of SCs (fresh, 3rd time reused, and regenerated) by EDS

    Figure 6 The proposed schematic structure of SC

    The catalytic effects for methyl oleate production are shown in Fig. 7. The yield of the control experiments is lower than 1%, while the yield with fresh SC addition reaches about 85%. And the fresh SC shows much higher yield than that of all the other traditional solid acid catalysts (sulfated zirconia, 732 cation exchange resin, and HZSM-5 molecular sieve). Compared with Table 2 and Fig. 7, there seems no relations between catalytic activity and BET specific surface area, cation-exchange capacity for different catalysts. The possible reasons of the strong SC catalytic activity are discussed: (1) The SC possesses three different

    acidic functional groups (OH, COOH, SO3H), there may be synergic action among the three acidic functional groups though the SO3H group is often considered as the major catalytic active sites, while those traditional solid acid catalysts usually contain single acidic functional groups; (2) there was a large content of OH group (2.18 mmol·L?1) in the SC, which can incorporate both the two polar reactants (methanol and oleic acid) to the catalyst surface, and then acceleratethe esterification reaction.

    Figure 7 The yield of methyl oleate produced with or without catalysts

    Figure 8 The proposed sulfonated catalyst deactivation and regeneration mechanism, and the deactivation mechanism were a revision according to Fraile et al. [17]

    However, the SC catalytic activity decreases with more recycles (Fig. 7), which is coincided with the results of catalysts produced by two procedures (high temperature carbonization, and then sulfonation) reported by Chen and Fang [3], Rao et al. [14], and Fraile et al [17]. The SO3H and the COOH contents decreased from 1.52 to 0.65 mmol·g?1after the 3rd time reuse (Table 2). The reuse experiments caused deactivation should be related to the leaching of SO3H groups from polycyclic aromatic hydrocarbons and/or formation of sulfonate esters according to the former reports [3, 14, 17]. The S content on and near the 3rd time reused SC surface (3.25%, by mass) was 11.6% lower than that on the fresh SC (3.68%, by mass), however, the catalytic activity was almost deactivated after the 3rd time reuse, that indicated the small portion leaching of S was not the main deactivation reasons. These results also indicate that the carbon based sulfonated catalysts produced by direct sulfonation and carbonization from macromolecule polymer may own better stabilities than that from low molecular mass compounds, as compared with the results reported by Hara et al [9].

    In regeneration Method 1, 10% H2SO4was used to regenerate the catalyst from the 3rd time reuse. After the catalyst regeneration with 10% H2SO4, the SO3H and COOH contents are back to 1.05 mmol·g?1(Table 2), and more than half of the catalytic activity is recovered, and the catalytic activity is much better than that of 732 cation exchange resin (Fig. 7). On the other hand, the S content on and near the 3rd time reused SC surface after regeneration is only slightly changed (from 3.25% to 3.28%, by mass Table 3). However, few papers on the carbon based sulfonated catalyst regeneration mechanism in this area were reported in the past works. In this paper, the possible SC deactivation and regeneration mechanism are proposed as shown in Fig. 8. Considering the change of cationexchange values (the SO3H and COOH contents) and S contents among different samples (the fresh SC, the 3rd time reused SC, and regenerated SC-1), the main deactivation of the SC should be the formation of sulfonate esters and carbonic esters, similar to the resultsthat reported by Fraile et al [17]. The probable reason for the regeneration results is that the sulfonate methyl esters and carboxylic acid methyl esters on the SC were hydrolyzed, and the SO3H and COOH groups were regained by 10% H2SO4regeneration, as H2SO4is a well know ester hydrolysis catalyst. This deactivation and regeneration mechanism suggests that the carbon based sulfonated catalysts can be deactivated in alcohol involved reactions, e.g. esterification, and these kinds of deactivated catalysts can be simply regenerated by dilute acid treatment.

    However, the regeneration Method 1 was not effective enough though most of the catalytic activity can be recovered, so regeneration Method 2 was developed. As shown in Fig. 7, compared with the fresh SC, the regenerated SC-2 showed almost the same catalytic activity. Compared with regeneration Method 1, the regeneration Method 2 showed efficient recovery of catalytic activity but had complicated process conditions. Since the SC is produced from a low-cost raw material with a simple procedure, and can be regeneratable, it can probably compete with commercial catalysts (such as strong-acid 732 cation exchange resin) for the esterification of fatty acids into biodiesel. Further improvement on catalytic stability and simplify of regeneration Method 2 are required before this SC can be considered on an industrial scale.

    4 CONCLUSIONS

    A carbon based sulfonated catalyst containing SO3H, COOH, OH groups was produced by one step from low value-added RLS in a moderate condition, with a composition of (CH0.68O0.65S0.026)An. Catalytic activity for methyl oleate production was tested, and the fresh catalyst showed higher catalytic activity in esterification of oleic acid compared to traditional solid acid catalysts. The catalyst deactivated gradually after recycles usage, and the catalytic activity of the reused catalyst can be mostly regained by regeneration Method 1 and fully regained by regeneration Method 2, respectively. The deactivation and regeneration mechanisms of catalyst were proposed. Considering the somewhat low leaking degree of the S species from RLS derived sulfonated catalyst, further work on catalyst produced by direct sulfonation and carbonization of some other macromolecular polymers seems promising.

    REFERENCES

    1 Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M., “Biodiesel made with sugar catalyst”, Nature, 480, 178 (2005).

    2 Lou, W.Y., Zong, M.H., Duan, Z.Q., “Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts”, Bioresour. Technol., 99 (18), 8752-8758 (2008).

    3 Chen, G., Fang, B., “Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production”, Bioresour. Technol., 102 (3), 2635-2640 (2011).

    4 Shu, Q., Gao, J., Liao, Y., Wang, J., “Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst”, Chin. J. Chem. Eng., 19 (1), 163-168 (2011).

    5 Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M., “Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups”, J. Am. Chem. Soc., 130 (38), 12787-12793 (2008).

    6 Liang, X., Zeng, M., Qi, C., “One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization”, Carbon, 48 (6), 1844-1848 (2010).

    7 Zhang, W., Tao, H., Zhang, B., Ren, J., Lu, G., Wang, Y., “One-pot synthesis of carbonaceous monolith with surface sulfonic groups and its carbonization/activation”, Carbon, 49 (6), 1811-1820 (2011).

    8 Shu, Q., Nawaz, Z., Liao, Y., Zhang, Q., Wang, D., Wang, J., “Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: Reaction and separation”, Bioresour. Technol., 101 (3), 5374-5384 (2010).

    9 Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Hayashi, S., Domen, K., “A carbon material as a strong protonic acid”, Angew Chem. Int. Ed., 43 (22), 2955-2958 (2004).

    10 Gan, M., Pan, D., Ma, L., Yue, E., Hong, J. “The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C Catalyst”, Chin. J. Chem. Eng., 17 (1), 83-87 (2009)

    11 Li, J., Fu, Y.J., Qu, X.J., Wang, W., Luo, M., Zhao, C.J., Zu, Y.G.,“Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge) seed oil using ion exchange resin as heterogeneous catalyst”, Bioresour. Technol., 108, 112-118 (2012).

    12 Yee, K.F., Lee, K.T., Ceccato, R., Abdullah, A.Z., “Production of biodiesel from Jatropha curcas L. oil catalyzed by SO42- /ZrO2 catalyst: Effect of interaction between process variables”, Bioresour. Technol., 102 (5), 4285-4289 (2011).

    13 Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T., Yonemoto, T., “Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst”, Bioresour. Technol., 98 (2), 416-421 (2007).

    14 Rao, B.V.S.K., Mouli, K.C., Rambabu, N., Dalai, A.K., Prasad, R.B.N., “Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production”, Catal. Commun., 14 (1), 20-26 (2011).

    15 Yang, X., Wan, J., “Preparation of carbon- based solid acid catalyst and its catalytic performance”, Modern Chemical Industry, 31 (10), 34-37 (2011). (in Chinese)

    16 Zhao, Y., Wan, J., “Hydrolysis saccharification of OCC by a sulfonated carbon solid-acid catalyst”, Modern Chemical Industry, 30 (9), 40-44 (2010). (in Chinese)

    17 Fraile, J.M., García-Bordejé, E., Roldán, L., “Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: Evidences for sulfonic esters formation”, J. Catal., 289, 73-79 (2012).

    2012-11-27, accepted 2013-04-17.

    * Supported by the State Key Development Program for Basic Research of China (2013CB228104, 2010CB732205), Ph. D Programs Foundation of Ministry of Education of China (20120172110011), and the National High Technology Research and Development Program of China (2012AA051801).

    ** To whom correspondence should be addressed. E-mail: changjie@scut.edu.cn

    猜你喜歡
    世民
    “石頭表哥”尹世民
    8年前的“小姨托孤”,如今有了最暖的結(jié)局
    A multilayer network diffusion-based model for reviewer recommendation
    濺蝕過程中紅壤團聚體周轉(zhuǎn)路徑的定量表征
    黃科院田世民、呂錫芝、張雷入選水利青年拔尖人才
    人民黃河(2022年4期)2022-04-07 09:03:16
    理發(fā)師
    科教新報(2021年21期)2021-07-21 15:38:12
    清華大學(xué)有所神秘學(xué)院
    科教新報(2020年23期)2020-07-21 22:49:18
    清華大學(xué)有所神秘學(xué)院
    科教新報(2020年22期)2020-06-11 08:48:29
    最后的麥子
    小說月刊(2016年5期)2016-05-06 16:42:27
    倫敦塔世民酒店 不走尋常路
    酒店精品(2016年4期)2016-04-29 00:44:03
    久久韩国三级中文字幕| kizo精华| 欧美精品高潮呻吟av久久| 91成人精品电影| 在线观看一区二区三区激情| 中国美白少妇内射xxxbb| 九九在线视频观看精品| 观看av在线不卡| 一级片'在线观看视频| 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 亚洲久久久国产精品| 欧美精品一区二区大全| av又黄又爽大尺度在线免费看| 久久6这里有精品| 国产精品国产三级国产专区5o| 大又大粗又爽又黄少妇毛片口| 成人亚洲精品一区在线观看| 如日韩欧美国产精品一区二区三区 | 久久av网站| 男的添女的下面高潮视频| 18禁裸乳无遮挡动漫免费视频| 国产免费视频播放在线视频| 久久久久久久大尺度免费视频| 中文资源天堂在线| 亚洲精品视频女| 一边亲一边摸免费视频| 少妇 在线观看| 亚洲第一av免费看| 国产免费福利视频在线观看| 国产成人精品婷婷| 欧美 亚洲 国产 日韩一| 亚洲国产精品国产精品| 少妇高潮的动态图| 欧美精品一区二区免费开放| 嫩草影院新地址| 秋霞在线观看毛片| 18+在线观看网站| 男人舔奶头视频| 高清av免费在线| 老司机亚洲免费影院| 国产高清三级在线| av天堂中文字幕网| 国产高清不卡午夜福利| 国模一区二区三区四区视频| 久久国产精品男人的天堂亚洲 | 日韩一区二区视频免费看| 亚洲国产欧美日韩在线播放 | 亚洲精品乱码久久久久久按摩| 国产一区二区在线观看日韩| 中文欧美无线码| av免费在线看不卡| 午夜激情久久久久久久| 欧美性感艳星| 亚洲成人手机| 国产老妇伦熟女老妇高清| 亚洲成人一二三区av| 热99国产精品久久久久久7| 欧美日韩av久久| 久久影院123| 亚洲av成人精品一区久久| 美女xxoo啪啪120秒动态图| 97超视频在线观看视频| 亚洲情色 制服丝袜| 狂野欧美激情性bbbbbb| 好男人视频免费观看在线| 国内精品宾馆在线| 熟妇人妻不卡中文字幕| 亚洲欧美清纯卡通| 老司机影院成人| 麻豆精品久久久久久蜜桃| 51国产日韩欧美| 少妇人妻精品综合一区二区| 久久久久久久久久久丰满| 日韩电影二区| 极品少妇高潮喷水抽搐| 三级国产精品片| 免费黄色在线免费观看| a 毛片基地| 国产爽快片一区二区三区| 欧美变态另类bdsm刘玥| av女优亚洲男人天堂| 另类精品久久| 丁香六月天网| 性高湖久久久久久久久免费观看| 汤姆久久久久久久影院中文字幕| 国产一区二区在线观看av| 2018国产大陆天天弄谢| 人妻人人澡人人爽人人| 久久久国产欧美日韩av| 久久亚洲国产成人精品v| 人人妻人人澡人人爽人人夜夜| 日韩一本色道免费dvd| 亚洲av日韩在线播放| 国产黄片美女视频| 久久99精品国语久久久| 欧美日韩精品成人综合77777| 又爽又黄a免费视频| 一本大道久久a久久精品| 最近2019中文字幕mv第一页| 99久久综合免费| 在线观看美女被高潮喷水网站| 纯流量卡能插随身wifi吗| 老司机影院成人| 性色avwww在线观看| 国产男人的电影天堂91| 久久久久视频综合| 插逼视频在线观看| 人人妻人人看人人澡| 99精国产麻豆久久婷婷| 亚洲天堂av无毛| 又粗又硬又长又爽又黄的视频| 国产综合精华液| 五月天丁香电影| 国产免费视频播放在线视频| 国产日韩欧美视频二区| 国产日韩欧美亚洲二区| 久久av网站| 大陆偷拍与自拍| 这个男人来自地球电影免费观看 | 乱人伦中国视频| 欧美精品高潮呻吟av久久| videos熟女内射| 成年人免费黄色播放视频 | 国产精品一区二区三区四区免费观看| 夫妻性生交免费视频一级片| 欧美日韩在线观看h| 日本vs欧美在线观看视频 | 亚洲精品456在线播放app| 嫩草影院入口| 美女cb高潮喷水在线观看| 哪个播放器可以免费观看大片| 国内揄拍国产精品人妻在线| 一级毛片电影观看| 国产精品久久久久久av不卡| 美女福利国产在线| 日本猛色少妇xxxxx猛交久久| 亚洲美女视频黄频| 国产欧美日韩综合在线一区二区 | 午夜激情久久久久久久| 国产成人免费观看mmmm| 街头女战士在线观看网站| 久久精品国产自在天天线| 91久久精品国产一区二区三区| 日本午夜av视频| 久久99热6这里只有精品| 少妇人妻精品综合一区二区| 乱码一卡2卡4卡精品| 久热这里只有精品99| 少妇熟女欧美另类| 久久国产精品男人的天堂亚洲 | 大片免费播放器 马上看| 国产精品久久久久久精品电影小说| 亚洲欧美日韩另类电影网站| 热re99久久国产66热| 高清av免费在线| 高清av免费在线| 最近手机中文字幕大全| 国产爽快片一区二区三区| 国产精品麻豆人妻色哟哟久久| 尾随美女入室| 亚洲成色77777| 美女大奶头黄色视频| 久久久亚洲精品成人影院| 亚洲欧洲日产国产| 日本午夜av视频| 啦啦啦视频在线资源免费观看| 精品久久久精品久久久| 免费看日本二区| 丁香六月天网| 在线天堂最新版资源| 精品午夜福利在线看| 黑人猛操日本美女一级片| 又粗又硬又长又爽又黄的视频| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 韩国高清视频一区二区三区| videos熟女内射| 日本欧美视频一区| 国产精品人妻久久久久久| a级片在线免费高清观看视频| 我的老师免费观看完整版| 日韩一本色道免费dvd| 日本av免费视频播放| av又黄又爽大尺度在线免费看| 久久久久久伊人网av| 人人妻人人澡人人看| 日产精品乱码卡一卡2卡三| 观看av在线不卡| 国产男人的电影天堂91| 亚洲色图综合在线观看| 国产精品久久久久成人av| 天堂俺去俺来也www色官网| 国产爽快片一区二区三区| 少妇被粗大的猛进出69影院 | 国产一区二区在线观看日韩| 熟女电影av网| 久久久久久伊人网av| 综合色丁香网| 精品人妻熟女av久视频| av线在线观看网站| 在线天堂最新版资源| 亚洲激情五月婷婷啪啪| a级一级毛片免费在线观看| 狂野欧美激情性bbbbbb| 国产精品国产三级国产专区5o| 熟妇人妻不卡中文字幕| 乱人伦中国视频| 国产深夜福利视频在线观看| 99热这里只有精品一区| 精品亚洲成a人片在线观看| 女人久久www免费人成看片| 日韩欧美 国产精品| 免费人妻精品一区二区三区视频| 亚洲情色 制服丝袜| 久久久久久人妻| 国产伦理片在线播放av一区| 最近中文字幕2019免费版| h日本视频在线播放| 日韩人妻高清精品专区| 一本—道久久a久久精品蜜桃钙片| 国产高清有码在线观看视频| 久久精品国产亚洲网站| 日本欧美视频一区| 国产av码专区亚洲av| 国产熟女午夜一区二区三区 | 一区在线观看完整版| 久久午夜综合久久蜜桃| 国产在视频线精品| 亚洲国产欧美日韩在线播放 | 国产一区二区在线观看日韩| 国产精品成人在线| 日韩成人av中文字幕在线观看| 国产视频内射| 国产伦在线观看视频一区| 国产极品天堂在线| 在线观看国产h片| 亚洲人与动物交配视频| 蜜桃在线观看..| 日本黄大片高清| 日本vs欧美在线观看视频 | 人人妻人人爽人人添夜夜欢视频 | 亚洲高清免费不卡视频| 国产91av在线免费观看| 日韩,欧美,国产一区二区三区| 国产欧美日韩综合在线一区二区 | 亚洲第一av免费看| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 亚洲av综合色区一区| 午夜福利网站1000一区二区三区| av国产久精品久网站免费入址| 久久久欧美国产精品| 十分钟在线观看高清视频www | 亚洲欧美一区二区三区黑人 | 最近中文字幕2019免费版| 一级毛片久久久久久久久女| 日韩欧美一区视频在线观看 | 国产精品国产av在线观看| 十分钟在线观看高清视频www | 汤姆久久久久久久影院中文字幕| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 热re99久久国产66热| 久久亚洲国产成人精品v| 国产精品人妻久久久影院| 亚洲人成网站在线播| 日产精品乱码卡一卡2卡三| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线| 美女内射精品一级片tv| 女人久久www免费人成看片| 久久久久人妻精品一区果冻| a级一级毛片免费在线观看| 七月丁香在线播放| 久久精品国产鲁丝片午夜精品| 如日韩欧美国产精品一区二区三区 | 9色porny在线观看| 少妇的逼水好多| 免费不卡的大黄色大毛片视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 欧美日韩一区二区视频在线观看视频在线| videossex国产| 久久久久久久久久成人| av天堂久久9| 男人添女人高潮全过程视频| 成人国产av品久久久| 日韩欧美一区视频在线观看 | 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 国产精品国产三级国产专区5o| 国产成人精品久久久久久| 久久 成人 亚洲| 熟女av电影| 欧美精品国产亚洲| 黄色欧美视频在线观看| 中国三级夫妇交换| 国产乱人偷精品视频| 精品国产乱码久久久久久小说| 水蜜桃什么品种好| 精品人妻偷拍中文字幕| 简卡轻食公司| 国产精品一区二区性色av| 毛片一级片免费看久久久久| 国产黄片美女视频| 免费观看无遮挡的男女| 国产精品一区二区三区四区免费观看| av国产精品久久久久影院| 色5月婷婷丁香| 伦理电影免费视频| 日韩精品免费视频一区二区三区 | 国产免费一级a男人的天堂| 一级毛片我不卡| 国产欧美亚洲国产| 视频中文字幕在线观看| 人人妻人人爽人人添夜夜欢视频 | 欧美一级a爱片免费观看看| 国产成人91sexporn| 女的被弄到高潮叫床怎么办| 久久精品国产自在天天线| 超碰97精品在线观看| 这个男人来自地球电影免费观看 | 欧美老熟妇乱子伦牲交| 在线观看国产h片| 99久久精品一区二区三区| av免费在线看不卡| 国产高清三级在线| 在线观看三级黄色| 欧美一级a爱片免费观看看| 成人国产av品久久久| 亚洲久久久国产精品| 啦啦啦在线观看免费高清www| 观看免费一级毛片| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂| 成人国产麻豆网| 三上悠亚av全集在线观看 | 国产精品麻豆人妻色哟哟久久| 日本vs欧美在线观看视频 | 国国产精品蜜臀av免费| 免费人成在线观看视频色| 美女国产视频在线观看| 日日啪夜夜爽| 七月丁香在线播放| 老女人水多毛片| 亚洲国产av新网站| 国产亚洲av片在线观看秒播厂| 亚洲综合色惰| 丁香六月天网| 少妇人妻久久综合中文| 在线观看人妻少妇| 最近最新中文字幕免费大全7| 国产91av在线免费观看| 日本wwww免费看| 51国产日韩欧美| 精品少妇黑人巨大在线播放| 中文欧美无线码| 丰满乱子伦码专区| 自线自在国产av| 精品国产一区二区三区久久久樱花| 91久久精品国产一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品久久久久久婷婷小说| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看 | 内地一区二区视频在线| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 国产视频内射| 免费大片黄手机在线观看| 爱豆传媒免费全集在线观看| 国产精品秋霞免费鲁丝片| 国产成人免费无遮挡视频| av在线app专区| 亚洲欧美精品专区久久| 插阴视频在线观看视频| 亚洲精品国产av成人精品| 国产老妇伦熟女老妇高清| 国产午夜精品一二区理论片| 中国三级夫妇交换| 国产69精品久久久久777片| 国产精品久久久久久久电影| 三级国产精品欧美在线观看| 97超视频在线观看视频| 99热全是精品| 亚洲欧美一区二区三区黑人 | 亚洲欧洲精品一区二区精品久久久 | 黑丝袜美女国产一区| 9色porny在线观看| 国产色婷婷99| 精品国产乱码久久久久久小说| 一级黄片播放器| 精品国产露脸久久av麻豆| 午夜免费鲁丝| 少妇的逼水好多| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 九九在线视频观看精品| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 99热网站在线观看| 纯流量卡能插随身wifi吗| 国产精品国产三级专区第一集| 女性被躁到高潮视频| 午夜福利,免费看| 男女边吃奶边做爰视频| 91成人精品电影| 国内揄拍国产精品人妻在线| 热re99久久精品国产66热6| av在线观看视频网站免费| 97精品久久久久久久久久精品| 国产熟女欧美一区二区| 国产av国产精品国产| av专区在线播放| 黑人高潮一二区| 国产无遮挡羞羞视频在线观看| 午夜精品国产一区二区电影| 免费人妻精品一区二区三区视频| 精品一区二区三区视频在线| 高清午夜精品一区二区三区| 久久人人爽av亚洲精品天堂| 王馨瑶露胸无遮挡在线观看| 国产在线男女| 菩萨蛮人人尽说江南好唐韦庄| 搡老乐熟女国产| 午夜影院在线不卡| 国产精品秋霞免费鲁丝片| 亚洲av免费高清在线观看| 插逼视频在线观看| 国产精品女同一区二区软件| 国产一区有黄有色的免费视频| 91在线精品国自产拍蜜月| 欧美变态另类bdsm刘玥| 精品一区二区免费观看| 麻豆乱淫一区二区| 天天操日日干夜夜撸| 嫩草影院入口| 亚洲性久久影院| 色哟哟·www| 亚洲精品中文字幕在线视频 | 在线观看免费日韩欧美大片 | a级毛色黄片| 夫妻性生交免费视频一级片| 人人妻人人添人人爽欧美一区卜| 精品一区二区三卡| 国产精品无大码| 丝袜脚勾引网站| 欧美日韩一区二区视频在线观看视频在线| 人人澡人人妻人| 国产成人精品一,二区| 亚洲综合色惰| 欧美3d第一页| 亚洲精品,欧美精品| 久久久久网色| 我的老师免费观看完整版| 国产精品嫩草影院av在线观看| 美女脱内裤让男人舔精品视频| 热re99久久国产66热| 看免费成人av毛片| 免费观看性生交大片5| 在线观看一区二区三区激情| 男人添女人高潮全过程视频| 国产欧美日韩综合在线一区二区 | 国产成人精品一,二区| 国产伦精品一区二区三区视频9| 91精品国产九色| 欧美精品一区二区免费开放| 黄色毛片三级朝国网站 | 欧美日韩视频高清一区二区三区二| 欧美97在线视频| 国产熟女午夜一区二区三区 | 国产精品久久久久久久久免| 国产一区二区三区综合在线观看 | 国产欧美日韩精品一区二区| 亚洲伊人久久精品综合| 18禁动态无遮挡网站| 国产精品无大码| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 天堂俺去俺来也www色官网| 男人狂女人下面高潮的视频| 亚洲精品自拍成人| 精品熟女少妇av免费看| 国产成人a∨麻豆精品| 插逼视频在线观看| 男人和女人高潮做爰伦理| 纵有疾风起免费观看全集完整版| 精品一区二区三区视频在线| 美女大奶头黄色视频| 在线免费观看不下载黄p国产| 国产精品福利在线免费观看| 欧美 日韩 精品 国产| 免费人妻精品一区二区三区视频| 国产精品国产三级国产专区5o| 一区二区三区精品91| 嘟嘟电影网在线观看| 国产 一区精品| 久久久久久人妻| 中国三级夫妇交换| 日韩视频在线欧美| 黑人猛操日本美女一级片| 国产成人一区二区在线| 观看美女的网站| 少妇高潮的动态图| 久久韩国三级中文字幕| 黄色配什么色好看| 精品久久久精品久久久| 高清黄色对白视频在线免费看 | 夫妻性生交免费视频一级片| 国产精品熟女久久久久浪| 中文天堂在线官网| 国产精品一二三区在线看| 精华霜和精华液先用哪个| 亚洲av在线观看美女高潮| 成人国产av品久久久| 日日摸夜夜添夜夜爱| 久久久久久久久久久免费av| 性色avwww在线观看| 交换朋友夫妻互换小说| 免费黄色在线免费观看| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 国产成人免费观看mmmm| 成人综合一区亚洲| 爱豆传媒免费全集在线观看| 国产淫语在线视频| 久久午夜综合久久蜜桃| 久久av网站| 国产成人免费无遮挡视频| 国产精品一区二区在线观看99| 免费观看的影片在线观看| 国产成人精品无人区| 成年人午夜在线观看视频| 亚洲精品视频女| 在线观看www视频免费| 中文欧美无线码| 内地一区二区视频在线| 亚洲怡红院男人天堂| 蜜桃久久精品国产亚洲av| 看非洲黑人一级黄片| 香蕉精品网在线| av播播在线观看一区| 久热久热在线精品观看| 久久久久精品久久久久真实原创| 国产乱人偷精品视频| xxx大片免费视频| 两个人免费观看高清视频 | 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 欧美激情国产日韩精品一区| 久久6这里有精品| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 美女大奶头黄色视频| 欧美丝袜亚洲另类| 久久精品久久久久久噜噜老黄| 新久久久久国产一级毛片| 亚洲国产欧美在线一区| 男女无遮挡免费网站观看| 亚洲精品色激情综合| 欧美变态另类bdsm刘玥| 日本av手机在线免费观看| 人妻制服诱惑在线中文字幕| 国产欧美另类精品又又久久亚洲欧美| 内地一区二区视频在线| 亚洲精品色激情综合| 丝袜喷水一区| 26uuu在线亚洲综合色| 欧美成人午夜免费资源| 一本色道久久久久久精品综合| 久久婷婷青草| 国产综合精华液| .国产精品久久| 老司机亚洲免费影院| 国产极品天堂在线| 国产精品一二三区在线看| 国产极品粉嫩免费观看在线 | 一级av片app| 极品人妻少妇av视频| 国产黄色免费在线视频| 三级国产精品片| 亚洲伊人久久精品综合| 国产日韩欧美在线精品| 久久人人爽人人爽人人片va| 国产无遮挡羞羞视频在线观看| 男女无遮挡免费网站观看| 夫妻午夜视频| 99久久精品一区二区三区| 国产一区二区三区av在线| 亚洲国产色片| 亚洲精品aⅴ在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区黑人 | 国产69精品久久久久777片| 99久久精品热视频| 蜜桃久久精品国产亚洲av| 大片电影免费在线观看免费| 97超碰精品成人国产| av在线播放精品| 插逼视频在线观看| 人妻少妇偷人精品九色| av播播在线观看一区| 国产在线一区二区三区精| 成人国产av品久久久| 亚洲av男天堂| 免费少妇av软件| 偷拍熟女少妇极品色| 日日啪夜夜撸| 久热久热在线精品观看| 免费不卡的大黄色大毛片视频在线观看| 97在线人人人人妻| a级毛片免费高清观看在线播放|