顧建軍,王曉明
(1.常熟理工學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,江蘇常熟 215500;2.無錫工藝職業(yè)技術(shù)學(xué)院基礎(chǔ)部,江蘇宜興 214206)
一類包含P(x)-Laplace算子的偏微分方程解的存在性
顧建軍1,王曉明2
(1.常熟理工學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,江蘇常熟 215500;2.無錫工藝職業(yè)技術(shù)學(xué)院基礎(chǔ)部,江蘇宜興 214206)
研究變指數(shù)Sobolev空間中一類包含P(x)-Laplace算子的非線性問題.利用變指數(shù)Lebesgue和Sobolev空間理論框架,驗證Palais-Smale緊性條件,并結(jié)合山路定理和變分法證明方程弱解的存在性.
P(x)-Laplace算子;變指數(shù)空間;Palais-Smale緊性條件;山路定理
包含具變指數(shù)增長條件的算子的微分方程和變分問題在數(shù)學(xué)物理,特別是彈性力學(xué)、流體動力學(xué)中有著重要的作用[1-3].變指數(shù)Lebesgue和Sobolev空間,即Lp(x)(Ω)和Wm,p(x)(Ω)空間理論的發(fā)展推動了對這些應(yīng)用的進一步研究.關(guān)于變指數(shù)空間理論可見文獻[4,5].
本文考慮以下問題:
其中Ω?RN,(N≥3)為具光滑邊界的有界區(qū)域,λ>0為實數(shù).令m(x)=max{p1(x),p2(x)}.我們將證明在廣義Sobolev空間W1,m(x)(Ω)中問題(Pλ)的非平凡弱解的存在性.在問題(Pλ)中當(dāng)p2(x)≡2時,算子退化為Δp(x)u=div((|?u|p(x)-2)?u),該問題近十年來已被廣泛地研究,并取得了一些好的結(jié)果[6-9].
下面給出一些記法及空間的定義及性質(zhì).
命題0.3[4,5]下列結(jié)論等價:
命題0.4[10]
命題0.5[4,5]
引理0.7[11](山路定理)令E為Banach空間,I∈C1(E,R),滿足Palais-Smale條件,設(shè)I(0)=0,且存在實數(shù)ρ>0及u,v∈E,使得
定理1.2的證明將主要依賴于驗證以下Palais-Smale緊性條件和利用山路定理.
定理2.1(驗證Palais-Smale條件)
設(shè)λ滿足定理2.1的條件.如{un}?E為一序列滿足以下條件:
由于m+<h-,有Jλ(tω)→-∞.
定理1.2的證明
由山路引理Jλ(u)取得極值β>α.Jλ'(un)→Jλ'(u),所以Jλ'(u)=0,為問題(Pλ)的一個弱解,又Jλ(u)>0,所以為非平凡弱解,證畢.
令G={g∈C([0,1],E):g(0)=0,g(1)=v},其中由定理2.2命題2),?v∈E,設(shè)
[1]Acerbi E,Mingione G.Regulary results for a class of functionals with nonstandard growth[J].Arch Rtional Mech Anal,2001,156: 121-140.
[2]Diening L.Theorical and numerical results for electrorheological fluids[D].Frieburg:University of frieburg,2002.
[3]Halsey T C.Electrorheological fluids[J].Science,1992,258:761-766.
[4]Fan X L,Zhao D.On the spacesLp(x)(Ω)andWm,p(x)(Ω)[J].J Math Anal Appl,2001,263:424-446.
[5]Kovacik O,Rakosnik J.On spacesLp(x)(Ω)andWm,p(x)(Ω)[J].Czechoslovak Math J,1991,41(4):592-618.
[6]Alves C O,Souto M A S.Existence of solutions for a class of problems involving the p(x)-Laplacian[J].Progress in Nonlinear Differential Equations and Their Applications,2005,66:17-32.
[7]Fan X L,Zhang Q H.Existence of solutions for p(x)-Laplacian Dirichlet problem[J].Non-linear Anal,2003,52:1843-1852.
[8]Fan X L,Zhang Q H,Zhao D.Eigenvalues of p(x)-Laplacian Dirichlet problem[J].J Math Anal Appl,2005,302:306-317.
[9]Zhang Q.A strong maximum principle for differential equations with nonstandard p(x)growth conditions[J].J Math Anal Appl, 2005,312:24-32.
[10]Cekic B,Mashiyev R A.Existence and localization results for p(x)-Laplacian via topological methods[J].Fixed Point Theory and Applications,2010,2010:1-7.http://www.hindawi.com/journals/fpta/2010/120646/cta/.
[11]Willem M.Minimax Theorems[M].Boston:Birkhauser,1996.
Existence of Solutions for a Class of Partial Differential Equations Involving p(x)-Laplace Type Operator
GU Jian-jun1,WANG Xiao-ming2
(1.School of Mathematics and Statistics,Changshu Institute of Technology,Changshu 215500,China; 2.Dept.of Basic Courses,Wuxi Institute of Arts&Technology,Yixing 214206,China)
This paper studies a class of nonlinear problems involving p(x)-Laplace type operator in variable exponent sobolev spaces.Our approach relies on the variable exponent theory of Lebesgue-Sobolev spaces,combined with Palais-Smale condition,mountain pass theorem and some adequate variational methods.
p(x)-Laplace operator;variable exponent spaces;Palais-Smale condition;mountain pass theorem
O175.2
A
1008-2794(2010)10-0019-05
2011-05-20
常熟理工學(xué)院青年教師科研啟動基金(ky2009107)資助項目.
顧建軍(1979—),男,江蘇揚州人,常熟理工學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院講師,碩士,研究方向:偏微分方程控制論.