吳澤九
(華東交通大學(xué)基礎(chǔ)科學(xué)學(xué)院,江西南昌 330013)
注:推論1中的結(jié)論(1)為文獻(xiàn)[2-3]中的結(jié)論,因此,定理1和推論1推廣與改進(jìn)了文獻(xiàn)[2-3]中的結(jié)果。
因此,(21)及(28)式等號成立,且(18),(19)全變成等式。
當(dāng)(19)變成等式時,由引理1,可假定λ1≠λ2=…=λn。由于Kjj-r≥0,Kii-r≥0及R-εAKAA≥0,當(dāng)(18)等號成立時,有
[1]GODDARD A J.Some remarks on the existence of spacelike hypersurfaces of constant mean curvature[J].Math Z,1991,206(1):333-339.
[2]AKUTAGAWAK.On space-like hypersurfaces with constant curvature in the de Sitter space[J].Math Z,1987,196(1):13-19.
[3]RAMANATHAN J.Complete spacelike hypersurfaces of constant mean curvature in a de Sitter space[J].Indiana Univ Math J,1987,36(2):349-359.
[4]ISHIHARA T.Maximal spacelike submanifolds of a pseudo-Riemannian Space of constant curvature[J].Michigan Math J,1988,35(3):345-352.
[5]ALENCAR H,DO C M.Hypersurfaces with constant mean curvature in spheres[J].Proc Amer Math Soc,1994,120(6):1223-1229.
[6]OMORI H.Isometric immersion of Riemmanian manifolds[J].J Math Soc Japan,1967,19(2):205-214.
[7]YAU S T.Harmonic functions on complete Riemmanian manifolds[J].Comm Pure andAppl Math,1975,28(2):201-228.
[8]LI H Z.Integral formulas for compact space-like hypersurfaces in de Sitter space and their applications to Goddard’s conjecture[J].Acta Mathematica Sinica,1998,14(2):285-288.
[9]吳澤九.共形平坦Lorentz空間具常平均曲率的一類超曲面[J].華東交通大學(xué)學(xué)報,2009,26(2):102-107.