• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于深空探測任務的先進通信與導航體制

    2011-01-08 08:31:26馮禮和平勁松
    航天器工程 2011年1期
    關鍵詞:勁松天文臺中國科學院

    馮禮和 平勁松

    (中國科學院上海天文臺,上海 200030)

    1 Introduction

    This paper is mainly based on a report submitted by NASA's Space Communication A rchitecture Working G roup (SCAWG), which provides space communication &navigation (C&N)architecture recommendations for 2005 -2030.The architecture is composed of four physical elements with overlapping network, security , RF spectrum, and navigation architectures(Fig.1).

    The top-level space C&N architecture w ill provide the necessary end-to-end data communication and navigation services to support science and exploration user spacecraft operating anywhere in the solar system——in the earth vicinity , lunar vicinity, Mars vicinity, and other regions (Fig.2).In the rest of this paper, we focus on the keyfeatures of the Lunar and Mars Relay Elements.

    Fig.1 C&N consisting of element and cross-cutting architectures

    Fig.2 Space communication architecture~2030:A network of networks

    2 Lunar relay element

    To fully understand the architecture of the lunar relay(LR)element, we must bear in mind that NASA's current lunar exploration strategy , which is aimed at sending astronauts back to the Moon before 2018, is highly complex and alw ays evolving.Hence the LR element architecture allow s flexible implementation to accommodate future changes in lunar exploration strategy, and response to the exploration and science requirements that are still evolving within NASA[1].

    First, the lunar space segment primarily provides two-w ay connectivity with Earth, and navigation tools for space-based and lunar surface users.Secondly, the lunar surface segment provides two-w ay connectivity and navigation aids to users in the vicinity of the lunar outpost by w ay of the lunar communications terminal(LCT), which provides wide area network (WAN)service and acts as an access point to the lunar relay satellite(LRS), and navigation beacons.Lastly, the supporting Earth round segment provides two-w ay space/ground connectivity with the LRS by means of the ground-based Earth element(GEE), and accommodates all user-service data and relay-satellite command/control with the LR M ission Operations Center (LM OC)[1].Fig.3 presents evolving LR element implementation concepts.

    The architecture of the LR element is more difficult to optimize than, for example, that of the Mars relay element.For extensive operation over long periods of time, and for better coverage of the lunar surface, orbiting LR satellites must stay in high-altitude orbits in order to minimize gravitational non-uniformity caused by mascons that may necessitate undesirable frequent adjustments of the orbits.However, simple solutions such as putting three satellites 120 degrees apart into the same high orbit, of which two w ould alw ays be above the lunar horizon to support line-of-sight relay communication, are not w orkable.

    It can be shown that circular orbits around the Moon above 1 200 km are unstable.At such altitudes, revolving satellites are not only under the influence of the Moon, but also constantly subject to the substantial gravitational pull of the massive Earth that is about 400 000 km aw ay.These nonnegligible forces can actually change the shape of an orbit from a circle to an elongated ellipse.As the eccentricity of the orbit gets increasingly large,the satellite w ould either crash into the lunar surface or fly away from the Moon altogether in a hyperbolic orbit. Depending on the specific orbit,such eventuality can happen“within tens of days”.Although stable circular lunar orbits do exist below an inclination of 39.6°, satellites in these orbits spend so much time near the equator that they are really unsuitable for lunar relay applications in which the poles must be continuously covered[2].

    In future exploration of the Moon, NASA w ill mainly focus on the polar regions for many reasons.Being alw ays hidden from the Sun, deep polar craters may contain ice that astronauts could unearth.The ice could then be turned into drinking water, or split into hydrogen and oxygen for rocket fuel and other uses.Hence these astronauts w ant to maintain unblocked communication links with the Earth via lunar relay satellites that w ould provide constant coverage of the strategically important polar regions.

    Fig.3 Evolving lunar relay element implementation concepts

    Jet Propulsion Laboratory (JPL)and some NASA space centers have investigated this problem in depth for many years since the first man landed on the Moon, and they have discovered a new class of stable high-altitude lunar orbits[3-5].T.Ely of JPL recommends spacing three LR satellites 120°apart in the same elliptical(eccentricity 0.6)orbit at an inclination of 51°, with the periapsis and apoapsis being approximately 700 and 8 000 km above the north and south lunar poles respectively(see Fig.4).The satellites revolve at much higher speeds past the much closer north pole, w hile they spend about 8 out of the 12-hour period moving slow ly over the south pole.Tw o of the three satellites in this configuration w ould alw ays be in radio line-of-sight from a south pole moonbase.While these highly-inclined, highly elliptical orbits are not only the most stable for LR satellites in C&N applications, but also the cheapest satellite configuration to put into operation[2].

    NASA proposed two different approaches[1]to satellite constellation designs for lunar communication and navigation.The first is based on the argument that“if one could save on the number of satellites, it might make sense to bias the coverage tow ards the hemisphere in which the coverage zone lies and sacrifice some coverage in the opposite hemisphere.” Since NASA w ants to focus on the lunar south pole, it is natural to bias the coverage tow ards the southern hemisphere, with a two-satellite polar configuration (similar to the one described in the previous paragraph)combined with three additional satellites evenly spaced in a circular equatorial orbit. This five-satellite configuration (also called“Cover Where You Go” constellation), similar to the one shown in Fig.4, provides continuous coverage of the lunar surface with the exception of the upper part of the northern lunar hemisphere.Furthermore,[2]it is pointed out that in this configuration, if we w ish to switch the orbit to cover the opposite pole (hemisphere), the satellites could be easily repositioned within the orbit.

    In the other NASA approach aiming at providing the greatest flexibility with a more robust constellation design, configurations with two polar orbital planes of identical size each having 3(or 4)satellites for a total of 6 (or 8)satellites are proposed.It is claimed that continuous, 100%lunar global coverage can be achieved with just six satellites, although better coverage with redundancy for enhanced reliability can be achieved with eight.

    Ref.[1]lists fifty specific orbit cases representing classes of lunar relay orbits studied in detail by NASA, with a total of 2 to 12 satellites distributed in 1~4 orbital planes.In the category of south pole partial coverage, NASA also analyzed configurations of LR satellites revolving in halo orbits at the Earth-Moon L1/L2/L4/L5 Lagrangian equilibrium points. In the restricted three-body problem in astronomy——the most famous being the Sun-Jupiter-asteroids ensemble——where a small body revolves around a much more massive one, there are two unstable equilibrium points L1/L2 lying very close to and on opposite sides of the small body along the line connecting the two bodies[6].It can be shown that stable circular haloorbits exist in which very small objects (such as satellites)can revolve in a plane perpendicular to the above-mentioned imaginary line.Since the orbits at L1/L2 have relatively large radii (assumed to be 38 000~68 000 km by NASA)compared to the Moon radius (about 1 738 km), if several evenly spaced satellites are moving in these orbits,there is alw ays one satellite that can be seen above the horizon from a south pole moonbase (see Fig.5).Hence the L1/L2 halo orbits are considered as two of the seven legitimate classes of LR satellites orbits in the SCAWG report.

    Fig.4 A six-satellite.“polar+equatorial” hybrid configuration for the LR element recommended by NASA.The polar and equatorial satellites are labeled Pn and En respectively

    NASA also studied halo orbits at two other stable equilibrium points L4/L5 lying ±60°from the small body , but they are not included for further consideration with no details provided.Lastly, NASA analyzed the inclined circular and polar circular classes with high-altitude orbits among the 50 listed orbits, despite the fact that such circular high orbits are generally unstable.

    3 Mars relay element

    Fig.5 A five-satellite L2 halo orbit (assumed radius:42 000 km).configuration show s that at the extreme end of the orbit, an LR satellite is about 34°above horizon when observed at a sount pole moonbase L1 halo orbits are similar to the present case.although distances for the LR satellites in L1 halo orbits to the Earth are smaller

    The Mars relay(M R)element is an evolving set of relay spacecraft in orbit at Mars.It provides relay telecommunications, navigation, and timing services to user spacecraft in the vicinity of Mars.Users supported include those on the Martian surface, in the Mars atmosphere, in Mars orbit, or on approach to Mars.As shown in Fig.6, M R satellites provide access links to users on or near Mars,and also establish trunk link line communications to ground-based Earth element.A user spacecraft and an Earth station can carry out store-and-forw ard command and telemetry services via this trunk link line.Furthermore, two or more user spacecraft may communicate among themselves though an M R element.

    Fig.6 Mars relay element overview

    Before the advent of the proposed M R element, conventional direct-to-Earth/direct-from-Earth(DTE/DFE)link services had many drawbacks.Since DTE/DFE communication was conducted over extremely long Earth-Mars distance of up to 400 million kilometers, the Mars-based telecommunication hardw are must be able to provide the required power, and so the mass and volume of the total system (including a large antenna)could be quite prohibitive.The operational cost and complexity could also be huge, as the antenna must alw ays be pointing accurately to the Earth.

    The new M R approach shifts most of the burden mentioned above from the landers, rovers and other smaller and lighter users on Mars to the Mars Relay satellites that have to become a lot bigger, heavier and much more complex.The user spacecraft only has to communicate with the M R Element over very short distances.The M R can also offer telecommunication services w hen the Earth is out of view.Significant advantages offered by M R over DTE/DFE w ould enable and greatly enhance Mars exploration activities.

    Satellite configurations recommended by NASA for the M R element seem to be relatively simple w hen compared with the LR element, as in this case a M R satellite is not affected by any nearby massive body that could make high-altitude orbits unstable, and the equivalent of the Earth-Moon L1/L2 halo orbits do not exist to harbor relay satellites.Instead, two longitudinally-offset relay satellites in an aerostationary orbit (radius:20 427 km)——the Mars equivalent of a geostationary orbit where the periods of rotation of the satellite and the planet are equal——w ould provide both communication and navigation capabilities.This minimal configuration w ill certainly not fully cover the surface of Mars, nor cover the regions far aw ay from the Mars equator.However, this simple constellation w ould probably suffice, but considering activities on Mars are usually restricted to regions near the equator, and would not be as frequent as those expected for the Moon ten to twenty years dow n the road.

    This mode of C&N operations is intended for fixed or slow ly mobile users (such as landers and rovers on the surface of Mars)without any high dynamics.Ranging data w ould be provided by the two aerostationary satellites in the form of a pseudorandom code through a two-w ay communication channel.To facilitate real-time precise position determination, it is desirable to have a database of terrain elevations, ideally coupled with timing data using an USO or a cesium/rubidium atomic clock[1].

    The above scenario of overlaying a constellation of dedicated relay satellites in an aerostationary orbit is considered as Phase 2 of a two-phase NASA plan, which w ould materialize probably in the decade prior to the first human mission to Mars.Initial elements of the M R in the preceding Phase 1 are hybrid science/relay orbiters that must satisfy both the mission's ow n science objectives and the provision of relay services to other Mars missions.NASA believes this approach provides an extremely cost-efficient means to establish relay infrastructure[1].Fig. 7 show s how the NASA plan w ill evolve in response to the evolving needs of exploration users, with M GS (Mars G lobal Surveyor 1997), ODY (Mars Odyssey 2001), M RO(Mars Reconnaissance O rbiter 2006), M STO(Mars Science and Telecommunications Orbiter 2011 -2013)and other future missions playing their important roles one after another, before the Mars aerostationary relay satellites w ould eventually take over.

    Fig.7 Mars relay element evolving strategy

    4 Extremely long baseline interferometry spacecraft tracking system located at the Earth-Moon L4/L5 Lagrangian points

    For deep-space missions, Very Long Baseline Interferometry (VLBI)techniques are usually employed to track spacecraft with extremely high precision[7-8].To avoid serious adverse effects of the Earth's troposphere and ionosphere on the received radio signals, it is desirable to put the receiving antennas and processing hardw are into space.The Japanese VSOP satellite is mankind's first successful space-V LBI project;however, it is mainly intended for astronomical applications and so has never been actual used in tracking spacecraft.

    Here we propose two alternatives.The first one (see Fig.8)puts the tracking hardw are and receiving antennas on C&N satellites revolving in the Earth-Moon L3/L4/L5 halo orbits, with an extremely long baseline of~600 000 km.The second one (see Fig.9)puts the tracking hardw are and receiving antennas on three evenly spaced C&N satellites in a geosynchronous orbit, with a shorter long baseline of~45 000 km.Since the resolution power of a V LBI/ELBI system is inversely proportion to its baseline length, these extremely long baselines w ould result in much better performances than those available with groundbased baselines of several thousands of kilometers.

    Fig.8 Space-based ELBI configuration with tarcking stations on C&N satellites located at Earth-Moon L3/L4/L5 Lagrangian equilibrium points.

    Fig.9 Space-based ELBI configuration with tarcking stations on C&N satellites evenly spaced in a geosynchronous orbit.

    [1]NASA.NASA space communication and navigation architecture recommendations for 2005 -2030[R].Final Report, by the Space Communication Architecture Working Group(SCAWG), May 15, 2006

    [2]NASA.A new paradigm for lunar orbits[EB/OL].Science@NASA.(2006-11-30).http://science.nasa.gov/headlines/y2006/30nov_highorbit.htm

    [3]Ely T A.Stable constellations of f rozen elliptical inclined lunar orbits[J].J.Ast ronautical Sciences, 2005,53(3):302-316

    [4]Ely T A, Lieb E.Constellations of elliptical inclined lunar orbits proving polar and global coverage[C]//AAS/AIAA Astrodynamics Specialist Conference. Lake Tahoe, CA, August, 2005, Paper AAS 05-343

    [5]Folta D, Guinn D. Lunar f rozen orbits[C]//AIAA/AAS Astrodynamics Specialist Conference, Keystone,CO, August, 2006, Paper AIAA 2006-6479.C. J.Kaufman, Rocky Mountain Research Lab., Boulder,CO, private communication, May 1995

    [6]Murray C D, Dermott S F.Solar system dynamics[M].British:Cambridge University Press, New York, NY,1999

    [7]Thorton C L, Border J S.Radiometric tracking techniques for deep space navigation[M].New York:John Wiley &Sons, Inc., 2003

    [8]Moyer T D.Formulation for observed and computed values of deep space network data types for navigation[M].New York:John Wiley &Sons, Inc., 2003

    猜你喜歡
    勁松天文臺中國科學院
    顧勁松
    藝術家(2024年2期)2024-04-15 08:19:20
    《中國科學院院刊》新媒體
    中國科學院院士
    ——李振聲
    天文臺就該這么看
    祝賀戴永久編委當選中國科學院院
    海爾與望遠鏡和天文臺的故事
    軍事文摘(2020年24期)2020-02-06 05:57:02
    Simulation and experimental research of digital valve control servo system based on CMAC-PID control method①
    天文臺
    余勁松
    《中國科學院院刊》創(chuàng)刊30周年
    夜夜躁狠狠躁天天躁| 国产熟女xx| 丰满人妻熟妇乱又伦精品不卡| 久9热在线精品视频| 午夜福利视频1000在线观看| a级毛片a级免费在线| 国产私拍福利视频在线观看| 亚洲真实伦在线观看| 日本免费一区二区三区高清不卡| 久久香蕉精品热| 日韩国内少妇激情av| 中文在线观看免费www的网站| 又爽又黄无遮挡网站| 欧美3d第一页| 在线观看免费午夜福利视频| 欧美成狂野欧美在线观看| 最近最新免费中文字幕在线| 中文字幕熟女人妻在线| 噜噜噜噜噜久久久久久91| 国产午夜精品久久久久久| 1024香蕉在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲美女黄片视频| 亚洲国产精品999在线| 2021天堂中文幕一二区在线观| 日韩人妻高清精品专区| 精品电影一区二区在线| 成人国产一区最新在线观看| 悠悠久久av| 好男人电影高清在线观看| 久久久久久九九精品二区国产| av在线蜜桃| 国产一区二区三区视频了| 国产一级毛片七仙女欲春2| 全区人妻精品视频| 成人特级黄色片久久久久久久| 久久香蕉精品热| 夜夜看夜夜爽夜夜摸| 午夜两性在线视频| av福利片在线观看| 手机成人av网站| 曰老女人黄片| 欧美精品啪啪一区二区三区| 国产精品99久久久久久久久| 亚洲专区字幕在线| 黑人欧美特级aaaaaa片| 欧美成人免费av一区二区三区| 欧美色欧美亚洲另类二区| 无人区码免费观看不卡| xxxwww97欧美| 97超级碰碰碰精品色视频在线观看| 99久久精品国产亚洲精品| 国产单亲对白刺激| 99久久综合精品五月天人人| 欧美极品一区二区三区四区| 亚洲第一电影网av| xxx96com| 一级毛片精品| 日韩欧美在线乱码| 一本综合久久免费| 岛国在线观看网站| 亚洲中文字幕日韩| 国产爱豆传媒在线观看| 国产精品久久久久久亚洲av鲁大| av中文乱码字幕在线| 国产精品久久久av美女十八| 亚洲片人在线观看| 免费电影在线观看免费观看| 深夜精品福利| 亚洲精品美女久久久久99蜜臀| 亚洲18禁久久av| 麻豆国产97在线/欧美| 久久久水蜜桃国产精品网| 久久久水蜜桃国产精品网| 视频区欧美日本亚洲| 黄色视频,在线免费观看| 男女之事视频高清在线观看| 久久久久久久精品吃奶| 亚洲国产精品成人综合色| 男女视频在线观看网站免费| 久久午夜亚洲精品久久| 99精品久久久久人妻精品| 熟女人妻精品中文字幕| 欧美日韩福利视频一区二区| bbb黄色大片| 久久久久性生活片| 国产精品亚洲av一区麻豆| 蜜桃久久精品国产亚洲av| 制服人妻中文乱码| 91麻豆av在线| 法律面前人人平等表现在哪些方面| 亚洲欧洲精品一区二区精品久久久| 欧美国产日韩亚洲一区| www.熟女人妻精品国产| 亚洲欧洲精品一区二区精品久久久| 中文字幕最新亚洲高清| 久久午夜综合久久蜜桃| 99精品在免费线老司机午夜| 国产午夜精品论理片| 亚洲午夜精品一区,二区,三区| h日本视频在线播放| 黄色成人免费大全| 人妻夜夜爽99麻豆av| 久久人人精品亚洲av| 五月伊人婷婷丁香| 久久天堂一区二区三区四区| 中文字幕人妻丝袜一区二区| 九色成人免费人妻av| 国产一区二区激情短视频| 我要搜黄色片| 又大又爽又粗| 欧美日韩福利视频一区二区| 久久性视频一级片| 99在线视频只有这里精品首页| 亚洲人成电影免费在线| 亚洲欧美激情综合另类| 免费在线观看成人毛片| 后天国语完整版免费观看| 热99re8久久精品国产| 国产日本99.免费观看| 欧美极品一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 男女那种视频在线观看| 免费观看精品视频网站| 一个人看的www免费观看视频| 成人特级黄色片久久久久久久| 国产一区二区三区视频了| 亚洲专区中文字幕在线| 成人三级黄色视频| 淫秽高清视频在线观看| 在线观看午夜福利视频| 桃红色精品国产亚洲av| 在线看三级毛片| 国产激情久久老熟女| netflix在线观看网站| 手机成人av网站| 国产爱豆传媒在线观看| 色噜噜av男人的天堂激情| 丰满的人妻完整版| 中文字幕熟女人妻在线| 最近最新免费中文字幕在线| 好男人在线观看高清免费视频| 欧美日韩一级在线毛片| 很黄的视频免费| 国产v大片淫在线免费观看| 国产 一区 欧美 日韩| 窝窝影院91人妻| 婷婷亚洲欧美| 亚洲成人久久性| 色在线成人网| 男女床上黄色一级片免费看| 免费人成视频x8x8入口观看| 香蕉丝袜av| 久久精品91无色码中文字幕| 国产成人aa在线观看| 日本在线视频免费播放| 成人欧美大片| 国内精品一区二区在线观看| 99久久久亚洲精品蜜臀av| 国产精品香港三级国产av潘金莲| 哪里可以看免费的av片| 国产精品女同一区二区软件 | 两人在一起打扑克的视频| 亚洲av电影不卡..在线观看| 人妻丰满熟妇av一区二区三区| 老熟妇乱子伦视频在线观看| 日韩欧美精品v在线| 五月玫瑰六月丁香| 国产精品av久久久久免费| 国产亚洲av嫩草精品影院| 成熟少妇高潮喷水视频| 成人一区二区视频在线观看| 小说图片视频综合网站| 男人舔奶头视频| 国产高清视频在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 非洲黑人性xxxx精品又粗又长| 性欧美人与动物交配| 啦啦啦观看免费观看视频高清| 国产熟女xx| 老汉色∧v一级毛片| 午夜a级毛片| 极品教师在线免费播放| 亚洲国产精品成人综合色| 国产成人av教育| 日韩欧美国产在线观看| 国产伦一二天堂av在线观看| 成人av一区二区三区在线看| avwww免费| 在线观看美女被高潮喷水网站 | 欧美日本视频| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美在线乱码| 一区二区三区激情视频| 亚洲av成人不卡在线观看播放网| 国产一区在线观看成人免费| 最近视频中文字幕2019在线8| 久久久久九九精品影院| 婷婷丁香在线五月| 成人精品一区二区免费| 熟女电影av网| 国产一区在线观看成人免费| 免费大片18禁| 成人av在线播放网站| 国产又黄又爽又无遮挡在线| 国产成+人综合+亚洲专区| 男人舔女人的私密视频| 久久久成人免费电影| 精品免费久久久久久久清纯| 国产精品美女特级片免费视频播放器 | 国产伦精品一区二区三区四那| 变态另类成人亚洲欧美熟女| 搡老岳熟女国产| 久久久久久大精品| 欧美成狂野欧美在线观看| 国产av一区在线观看免费| 欧美日韩国产亚洲二区| 久久精品人妻少妇| 久久久久久久久久黄片| 亚洲五月婷婷丁香| 午夜福利成人在线免费观看| 成人精品一区二区免费| 日韩中文字幕欧美一区二区| 99re在线观看精品视频| 极品教师在线免费播放| 国产麻豆成人av免费视频| 亚洲人成网站高清观看| 亚洲精品一卡2卡三卡4卡5卡| 99re在线观看精品视频| 免费观看人在逋| 女警被强在线播放| 中文字幕最新亚洲高清| 网址你懂的国产日韩在线| 午夜福利18| 亚洲熟妇熟女久久| 毛片女人毛片| 精品日产1卡2卡| 中文字幕久久专区| 身体一侧抽搐| 国产高清视频在线观看网站| 日韩高清综合在线| 91麻豆av在线| 亚洲午夜理论影院| av中文乱码字幕在线| 国产欧美日韩一区二区三| 村上凉子中文字幕在线| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| 久久九九热精品免费| 亚洲精品一卡2卡三卡4卡5卡| 国产久久久一区二区三区| 九色国产91popny在线| 在线观看免费视频日本深夜| 日韩欧美三级三区| 最近最新免费中文字幕在线| 亚洲国产精品久久男人天堂| 99国产精品一区二区三区| 国产爱豆传媒在线观看| 这个男人来自地球电影免费观看| 法律面前人人平等表现在哪些方面| 又黄又爽又免费观看的视频| 亚洲国产精品sss在线观看| 狠狠狠狠99中文字幕| 一本一本综合久久| 天堂网av新在线| 一进一出抽搐gif免费好疼| 老汉色av国产亚洲站长工具| tocl精华| 伦理电影免费视频| 免费av不卡在线播放| 无遮挡黄片免费观看| 91在线精品国自产拍蜜月 | 中亚洲国语对白在线视频| 亚洲欧美激情综合另类| 欧美绝顶高潮抽搐喷水| 日韩成人在线观看一区二区三区| 偷拍熟女少妇极品色| 在线看三级毛片| 免费在线观看视频国产中文字幕亚洲| 午夜免费成人在线视频| or卡值多少钱| 亚洲色图 男人天堂 中文字幕| 国产av麻豆久久久久久久| 99久久久亚洲精品蜜臀av| 麻豆国产97在线/欧美| 国产淫片久久久久久久久 | 亚洲激情在线av| 性色avwww在线观看| 日本在线视频免费播放| 精品福利观看| 国产又色又爽无遮挡免费看| 亚洲精华国产精华精| 国产高清videossex| 国产99白浆流出| 宅男免费午夜| 麻豆成人午夜福利视频| 又黄又粗又硬又大视频| 少妇丰满av| 成人无遮挡网站| 国产在线精品亚洲第一网站| 国产一区二区三区视频了| 九色成人免费人妻av| 亚洲国产色片| 国产激情欧美一区二区| 久久久久亚洲av毛片大全| 国产成人精品无人区| 久久伊人香网站| 1000部很黄的大片| 综合色av麻豆| 久久这里只有精品19| 国产精品99久久久久久久久| 国产一区二区在线观看日韩 | 亚洲性夜色夜夜综合| 免费看日本二区| 精品不卡国产一区二区三区| 久久精品影院6| 亚洲成a人片在线一区二区| 少妇熟女aⅴ在线视频| 国产私拍福利视频在线观看| 久久久色成人| 9191精品国产免费久久| 国产三级在线视频| 久久久久久久精品吃奶| 99热这里只有是精品50| 又粗又爽又猛毛片免费看| 精品久久久久久久毛片微露脸| 夜夜夜夜夜久久久久| 又黄又爽又免费观看的视频| 亚洲,欧美精品.| 日韩有码中文字幕| 又黄又粗又硬又大视频| 在线永久观看黄色视频| 1024手机看黄色片| 麻豆一二三区av精品| 亚洲乱码一区二区免费版| 亚洲无线在线观看| 嫁个100分男人电影在线观看| 久久久久久久久免费视频了| 精品国产超薄肉色丝袜足j| 黄片小视频在线播放| 51午夜福利影视在线观看| 法律面前人人平等表现在哪些方面| 欧美乱码精品一区二区三区| 国产精品综合久久久久久久免费| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 亚洲精品在线美女| 国产精品自产拍在线观看55亚洲| 亚洲av电影不卡..在线观看| 动漫黄色视频在线观看| 成在线人永久免费视频| 亚洲精品乱码久久久v下载方式 | 悠悠久久av| 中文字幕熟女人妻在线| 亚洲精品456在线播放app | 中文亚洲av片在线观看爽| 成年女人永久免费观看视频| 欧美黄色淫秽网站| 日本成人三级电影网站| 久久久久久大精品| 国内久久婷婷六月综合欲色啪| 免费在线观看影片大全网站| a级毛片a级免费在线| 亚洲欧美精品综合久久99| 亚洲国产高清在线一区二区三| 综合色av麻豆| 国内久久婷婷六月综合欲色啪| 国产乱人视频| 啪啪无遮挡十八禁网站| 久久久久久久久免费视频了| 日本五十路高清| 日本 欧美在线| 亚洲av中文字字幕乱码综合| av欧美777| 亚洲国产色片| 手机成人av网站| 床上黄色一级片| 校园春色视频在线观看| 午夜视频精品福利| 老鸭窝网址在线观看| 亚洲av中文字字幕乱码综合| 男女做爰动态图高潮gif福利片| 成人性生交大片免费视频hd| 国产免费男女视频| 欧美黑人欧美精品刺激| 国产97色在线日韩免费| 午夜两性在线视频| 听说在线观看完整版免费高清| 国产久久久一区二区三区| 91字幕亚洲| 国产成年人精品一区二区| 麻豆成人午夜福利视频| 一本综合久久免费| 精品国产美女av久久久久小说| 国产成人av教育| 九九在线视频观看精品| 久久久国产精品麻豆| 亚洲天堂国产精品一区在线| 日本与韩国留学比较| 亚洲成av人片免费观看| 少妇熟女aⅴ在线视频| 色吧在线观看| 久久久久性生活片| 日韩中文字幕欧美一区二区| 国产精品av久久久久免费| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 久久性视频一级片| 无限看片的www在线观看| 宅男免费午夜| 首页视频小说图片口味搜索| 全区人妻精品视频| 精品国产乱码久久久久久男人| 国产高清videossex| 亚洲真实伦在线观看| 成年人黄色毛片网站| 色老头精品视频在线观看| 国产欧美日韩精品亚洲av| 欧美中文综合在线视频| 人妻夜夜爽99麻豆av| 美女高潮喷水抽搐中文字幕| 国产亚洲av嫩草精品影院| 久久人妻av系列| 国产亚洲av高清不卡| 国产蜜桃级精品一区二区三区| 亚洲精品久久国产高清桃花| 国产精品永久免费网站| av福利片在线观看| 国产成人系列免费观看| 亚洲九九香蕉| 国产成人欧美在线观看| 在线国产一区二区在线| 精品人妻1区二区| 国产精品精品国产色婷婷| 美女 人体艺术 gogo| 真人做人爱边吃奶动态| 欧美一区二区精品小视频在线| 天堂动漫精品| 禁无遮挡网站| 日本一本二区三区精品| 女同久久另类99精品国产91| 国产欧美日韩一区二区三| 国模一区二区三区四区视频 | 在线免费观看不下载黄p国产 | 欧美日韩一级在线毛片| 国产精品1区2区在线观看.| 一个人免费在线观看的高清视频| 国产又黄又爽又无遮挡在线| 午夜免费成人在线视频| 99热这里只有精品一区 | 级片在线观看| 午夜福利18| 午夜免费激情av| 成人永久免费在线观看视频| 老汉色av国产亚洲站长工具| 天堂影院成人在线观看| 午夜福利18| 三级毛片av免费| 一二三四在线观看免费中文在| 精品久久久久久久毛片微露脸| 国产在线精品亚洲第一网站| 亚洲片人在线观看| 少妇的丰满在线观看| 日韩人妻高清精品专区| 国产精品久久视频播放| 国产精品亚洲美女久久久| 国产一区二区激情短视频| 两个人看的免费小视频| 国产精品香港三级国产av潘金莲| 久久久国产成人免费| 中文亚洲av片在线观看爽| av在线天堂中文字幕| 久久人妻av系列| 久久这里只有精品中国| 亚洲第一欧美日韩一区二区三区| 91字幕亚洲| 亚洲色图 男人天堂 中文字幕| 搞女人的毛片| 一进一出好大好爽视频| 精品99又大又爽又粗少妇毛片 | 他把我摸到了高潮在线观看| 人妻久久中文字幕网| 亚洲精品在线观看二区| 后天国语完整版免费观看| 国产精品亚洲一级av第二区| 亚洲aⅴ乱码一区二区在线播放| 99国产精品99久久久久| 亚洲精品美女久久久久99蜜臀| 级片在线观看| 久久精品aⅴ一区二区三区四区| 精品久久蜜臀av无| 我的老师免费观看完整版| 成人无遮挡网站| 白带黄色成豆腐渣| 久久久久久国产a免费观看| 人妻丰满熟妇av一区二区三区| 一进一出好大好爽视频| 午夜福利成人在线免费观看| 伊人久久大香线蕉亚洲五| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 丰满人妻一区二区三区视频av | 一本久久中文字幕| 亚洲自偷自拍图片 自拍| 久久久成人免费电影| av女优亚洲男人天堂 | 最新中文字幕久久久久 | 成人av在线播放网站| 香蕉久久夜色| 网址你懂的国产日韩在线| 亚洲18禁久久av| 美女高潮的动态| 精品人妻1区二区| 日本 av在线| 午夜福利视频1000在线观看| 成人精品一区二区免费| 精品国产三级普通话版| 精品熟女少妇八av免费久了| 中文资源天堂在线| 18禁国产床啪视频网站| 亚洲成人久久爱视频| 99国产精品一区二区三区| 日韩欧美三级三区| 在线看三级毛片| 超碰成人久久| 亚洲国产欧洲综合997久久,| 久久人妻av系列| 国产成年人精品一区二区| xxx96com| 美女高潮喷水抽搐中文字幕| 91老司机精品| 十八禁网站免费在线| 淫妇啪啪啪对白视频| 久久婷婷人人爽人人干人人爱| 久久伊人香网站| 日韩 欧美 亚洲 中文字幕| 欧美成人免费av一区二区三区| 精华霜和精华液先用哪个| 欧美黄色淫秽网站| 精品久久久久久,| 久久精品国产99精品国产亚洲性色| 亚洲国产精品999在线| 久久精品国产99精品国产亚洲性色| 久久久国产欧美日韩av| 桃色一区二区三区在线观看| 欧美日本亚洲视频在线播放| 免费看日本二区| www日本黄色视频网| 精品午夜福利视频在线观看一区| 美女午夜性视频免费| www.精华液| 巨乳人妻的诱惑在线观看| 精品午夜福利视频在线观看一区| 午夜福利欧美成人| 老司机福利观看| 日本 av在线| 国产av一区在线观看免费| 草草在线视频免费看| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 精品乱码久久久久久99久播| xxx96com| 国产欧美日韩精品亚洲av| 真人做人爱边吃奶动态| 欧美三级亚洲精品| 午夜福利在线观看吧| 老司机在亚洲福利影院| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 午夜免费激情av| 我的老师免费观看完整版| 亚洲成人久久爱视频| av中文乱码字幕在线| 欧美极品一区二区三区四区| 国产精品久久久人人做人人爽| 中文在线观看免费www的网站| 88av欧美| 成人一区二区视频在线观看| 久久精品综合一区二区三区| 一本综合久久免费| 欧美激情在线99| 亚洲人成网站在线播放欧美日韩| 男人和女人高潮做爰伦理| 此物有八面人人有两片| 亚洲欧美激情综合另类| av国产免费在线观看| svipshipincom国产片| 免费电影在线观看免费观看| 欧美一级a爱片免费观看看| 亚洲中文av在线| 无限看片的www在线观看| 免费人成视频x8x8入口观看| 在线观看66精品国产| 欧美成狂野欧美在线观看| 一进一出抽搐gif免费好疼| 夜夜夜夜夜久久久久| 一a级毛片在线观看| 国产av一区在线观看免费| 亚洲av成人av| 亚洲av成人一区二区三| 51午夜福利影视在线观看| 麻豆成人av在线观看| av女优亚洲男人天堂 | 十八禁人妻一区二区| av在线蜜桃| 亚洲人成电影免费在线| 亚洲精品一区av在线观看| 校园春色视频在线观看| 国产精品免费一区二区三区在线| 啦啦啦韩国在线观看视频| av在线天堂中文字幕| 老司机在亚洲福利影院| 男人和女人高潮做爰伦理| 人人妻,人人澡人人爽秒播|