• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Risk and Probability Considerations in Design of Major Infrastructure Systems

    2011-01-04 01:58:54Ang
    關(guān)鍵詞:指標(biāo)值斜拉橋不確定性

    A.H-S.Ang

    (The University of California in Irvine,CA,USA)

    1 Introduction

    The safety of an infrastructure system,such as a major bridge,is the primary responsibility of the structural engineer.To ensure safety requires technical information on the loadings and forces that can be expected(as well as unforeseen)over the useful life of the structure;technical information on the structural capacity and its responses(including dynamic)to extreme hazards are also required.This information invariably contains uncertainties,especially over the long life of a major system(e.g.,for 50-100 years).

    For practical purposes,uncertainties may be defined in two broad types;namely,those that are databased known as aleatory,and those that are knowledgebased known as the epistemic type.The aleatory type is represented primarily by the variability in observed data,whereas the epistemic type represents our inability to accurately model reality.

    In light of these uncertainties,there is some probability or risk of nonperformance(or even failure)of the system over its useful life-the loadings may vary significantly including forces from unforeseen or unexpect-ed natural hazards,and the capacity of the system may deteriorate more than those assumed during the design stage;therefore,the performance of the system may be assured only in terms of probability,whereas the consequences to nonperformance(or failure)are also difficult to estimate;thus,some measures of risk are generally unavoidable.Properly then,decisions on the appropriate level of safety for design ought to be based on avoiding or minimizing these risks.

    The thrust here is on a systematic procedure for handling the two types of uncertainties and developing the respective significances on the associated risk for formulating conservative(or risk-averse)design decisions,including safety levels for design.

    2 On Risk and Probability

    2.1 Basic Concept

    Under conditions of uncertainty,the results of theoretical analyses or any estimates will also contain uncertainties;these uncertainties are often just as important as the relevant results of interest.For example,the loadings may vary significantly including forces from unforeseen or unexpected natural hazards,and the capacity of the system may deteriorate more than those assumed during the design stage;therefore,over its life-time,the performance of a system may be assured only in terms of probability or reliability due to the variabiliies(aleatory uncertainties)in the loadings and structural capacities.Furthermore,there is also uncertainty in all estimates including the calculated failure probability;i.e.,due to the epistemic type of uncertainty,the true failure probability may be defined within a range of possible values.The effect of this latter uncertainty is also important,particularly in order to specify(conservatively)what is a tolerable failure probability for the design of the system.

    2.1.1 Modeling and Significance of Uncertainties

    Uncertainties may be classified broadly into two types as defined above;namely,the aleatory and the epistemic types.The aleatory type is not reducible as it is inherently part of the randomness or variability of nature-additional observational data or improvement in the data collection process may increase the accuracy of the degree of variability,but may not reduce it;in fact it may even increase the variability.On the other hand,the epistemic uncertainty can be reduced through the use of better or improved models of reality,or through more seasoned judgments of experts.In practice,the epistemic uncertainty may be limited to the inaccuracy in estimating the mean(or median)values.

    By separating the uncertainties into these two broad types,their respective significances in engineering applications can be delineated as follows:

    The probability of non-performance or failure of a system(or conversely its safety index)is associated with the aleatory variability,whereas the epistemic uncertainty will yield a range of possible calculated failure probabilities(or corresponding safety indices).

    That is,because of the epistemic type of uncertainty,the calculated failure probability or corresponding safety index becomes a random variable and thus would have a range of possible values with an associated probability distribution(e.g.,PDF)of its own.

    Observe that if the two types of uncertainties were combined into a total uncertainty,the calculated probability of failure would be its“best estimate”value(a single value).This best estimate value is,in fact,the mean value of the range of the possible failure probabilities mentioned above.

    2.1.2 Determination of Risk-Averse Safety Levels for Conservative Designs

    As indicated above,the epistemic uncertainty is represented by the range of the possible values of the failure probability with its distribution function(PDF).This distribution conveys complete information of the possible values of the failure probability.Similarly,the inverse of the failure probability distribution yields the corresponding distribution of the safety index.

    The probability distribution of the safety index is of special significance in the specification of the appropriate safety level for design.For risk averseness[1],a high percentile value may be specified,particularly for the conservative design of an important system,in order to minimize the effect of the epistemic uncertainty.For example,by selecting the 90%value within the range of possible safety indices,there is implicitly a 10%chance that the selected value may be inadequate.Observe,on the other hand,that the“best estimate”value(or mean value)of the safety index could be inadequate by a 50%probability.

    With a specified safety index(e.g.,the 90%value)the corresponding safety factor(SF)for working stress design,or corresponding load and resistance factors for ultimate strength(LRFD)design can be derived[2-3].

    3 A Numerical Illustration

    3.1 Design Evaluation of a Cable-Stayed Bridge

    In recent years,cable-stayed bridges have become one of the most popular type of long-span modern bridges in the world.The general concepts described above is applied to the review and evaluation of the design of a cable-stayed bridge in Korea[4],including a comparison with its minimum life-cycle cost design.For this latter purpose,several alternative designs of the bridge were considered in which the sections of the main members were increased or decreased relative to its standard design.Reliability analyses were then performed for each of the designs and the corresponding safety indices and expected life-cycle costs were estimated.

    Fig.1 shows the overall configuration of the cablestayed bridge in Korea under consideration,which consisted of a steel box type girder,2 sets of steel box type towers,and 68 sets of lock coiled type cables.

    Fig.1 Profile and 3-D model of the cable-stayed bridge圖1 斜拉橋立面和三維模型

    Also,F(xiàn)ig.1 shows the three dimensional model of the cable-stayed bridge[5],indicating the locations of the critical members.

    The bridge was designed according to the specification for long-span highway bridges in Korea[6].Seismic response analysis was performed by applying the acceleration time history to the elastic supporting points of all piers and abutments in the horizontal,lateral and vertical directions simultaneously.

    3.2 Probabilistic Reliability Analyses of the Bridge

    A reliability analysis was performed for each alternative design of the cable-stayed bridge under the lifetime maximum load;i.e.,under the combined dead load,D,live load,L,and earthquake load,E.The reliability analyses were performed with cable tensions,axial forces of the girders and towers,and bending moments using the first-order reliability method(FORM).

    The factors containing uncertainties include the maximum stresses in the critical members of the bridge structure(cable tensions,bending moments in the main girders,and tower forces).Appropriate probability distributions and statistical parameters were assumed and estimated for the ultimate capacities of the cables,the girders,and the towers.Also,coefficients of variations(c.o.v.)for the ultimate strength and all the member forces were prescribed to be between 10%-15%.These c.o.v.’s represent the respective aleatory uncertainties based on available data.

    3.2.1 Results of Reliability Analyses

    Reliability analysis was performed for the standard design of the bridge;similar analyses were also performed for the alternative designs with increased and decreased sections of the critical members as shown in Fig.1.Fig.2 shows the safety indices and failure probabilities of the critical members(girders,towers and cables)for the different designs.

    Fig.2 Failure probabilities and safety indices associated with aleatory uncertainties圖2 與偶然不確定性相關(guān)的失效概率和安全指數(shù)

    For the standard design(based on current code),the failure probabilities of the critical members are as follows:

    Girder:PF1=3.647E -03

    Tower:PF2=6.664E -05

    Cable:PF3=9.425E -05

    The failure probability of the bridge system is the union of the failure probabilities of the critical members,yielding therefore the system failure probability of PFS=3.807E -03,for the standard design.The corresponding safety index would be β =2.669.

    The above results assume that there are no errors(i.e.,epistemic uncertainties)in the estimation of the properties,such as ultimate capacities of the critical members,and of the maximum dead,live and seismic load effects.Clearly,there will be inaccuracies in these estimations,and thus epistemic uncertainties in the respective estimated mean(or median)values.These epistemic uncertainties may be expressed in terms of the respective c.o.v.’s,e.g.,the following reasonable values were prescribedfor the estimated mean structural capacity,ΔC=0.09;the estimated mean dead load,ΔD=0.10,and for the estimated median live and earthquake loads,ΔL= ΔE=0.20.

    3.2.2 Determination of Optimal Design

    In order to determine the optimal design based on minimum expected life-cycle cost(LCC),nine alternative designs were considered,including the standard one(based on current code),by increasing and decreasing the main member sections relative to the standard design.On this basis,the initial cost for each of the alternative designs can be determined as summarized in Table 1 .

    Table 1 Initial costs of alternative designs(in million USD)表1 各設(shè)計(jì)方案的初始成本 /百萬美元

    The initial cost for each of the alternative designs includes the design costs,construction costs and eventual load testing costs before use[7].The initial cost for the standard design of the bridge is based on information from construction reports in Korea.All of the initial costs for the standard design and those of the different alternative designs are shown in Table 1 (in US dollars).

    3.2.3 Expected Damage Cost

    The damage cost includes all the tangible and intangible economic losses resulting from a structural damage or failure of the cable-stayed bridge(including the cost associated with the closing of the bridge to traffic).Even though collapse of the bridge is highly unlikely under normal circumstances,the damage cost must include this cost as well as that of insurance[8].Therefore,the expected damage cost,CD,may consist of several components Cias follows:

    where,CFR=bridge replacement cost;CFL=loss of lives and equipment costs;CFH=cultural and historical costs;CFD=functional disruption costs;and CFEN=environmental and social costs.

    Specifically,in estimating the life-cycle cost of the cable-stayed bridge,the initial cost items,plus the maintenance cost and damage cost items as percentages of the initial cost can be summarized as shown in Table 2 .

    Table 2 Expected life-cycle cost items表2 預(yù)期生命周期成本

    All the above future damage cost items must be expressed in present worth.For this purpose,each potential future damage cost item would be multiplied by the Present Worth Factor(PVF),as follows[9],

    where,α =ln(1+q);q=annual discount rate;and L=lifetime of structure.

    This study assumes that the lifetime of the cablestayed bridge in question is 50 years and the annual discount rate is 4.0%.

    The initial costs and expected damage costs as de-scribed above are summarized in Table 2 .

    3.2.4 The Epistemic Uncertainties of Cost Items

    The estimate of the initial and maintenance costs,CI,CM,for each of the alternative designs in Table 1 may contain some uncertainty(epistemic type).It may be reasonable to assume that the actual initial and maintenance costs could vary by± 20%;or expressed in terms of c.o.v.’s ΔCI=ΔCM=0.20.

    Moreover,for each of the damage cost components in Eq.(1),the c.o.v.’s representing the respective epistemic uncertainties may be assumed to be those shown in Table 3 .

    Table 3 Epistemic uncertainties in damage cost items表3 損壞成本的認(rèn)知不確定性

    Based on the information assumed in Table 2 and Table 3 ,the expected damage cost would be

    from which the mean and variance of the expected total life-cycle cost(LCC),CT,become,

    4 Optimal Design and Safety Factor

    With the information summarized above,the LCC for all the nine alternative designs shown in Table 1 were evaluated;the results between the mean safety index,E(β),and the expected life-cycle cost,E(LCC),for each of the alternative designs due to the respective aleatory uncertainties are evaluated.These results are summarized graphically in Fig.3 which shows that the optimal design,with minimum E(LCC)is obtained at a mean safety index of E(β)=2.284.

    Finally,because of the epistemic uncertainties described in Sect.3.2.4 and summarized in Table 3 ,the true failure probability and corresponding safety index will,respectively,be random variables.In particular,the histogram of the safety index generated through Monte Carlo simulation with a sample size of 10,000 is portrayed in Fig.4.From this figure,the mean value,the 75%value,and the 90%value of the safety index β are denoted by the arrows and summarized in Table 4 for the optimal design of the cable-stayed bridge in Jindo,Korea.

    Fig.3 Mean value or percent LCC versus E(β)with epistemic uncertainties圖3 生命周期成本的平均值或百分?jǐn)?shù)與認(rèn)知不確定性的平均安全指標(biāo)值之間的關(guān)系

    Fig.4 Frequency diagram of β for optimal design due to epistemic uncertainties圖4 基于認(rèn)知不確定性的優(yōu)化設(shè)計(jì)安全指標(biāo)頻率圖

    Table 4 The mean value,75%value,and 90%value of the safety index表4 安全指標(biāo)值的平均,75%及90%的值

    The main results for the bridge can be summarized also as follows(including the respective failure probabilities):

    Safety indices: Failure probabilities:

    Mean β =2.281, Mean PF=1.112E -02,

    75% β =2.835, 25%PF=1.394E -02,

    90% β =3.324, 10%PF=1.627E -02.

    4.1 Safety Factor in Design

    The safety index is related to the failure probability as can be observed above.However,structural design is generally performed using safety factors,SF,in the case of working stress design,or load and resistance factors in the case of ultimate(or LRFD)design.For these purposes,the specified or required safety index,β,can be translated into the corresponding SF or load and resistance factors.

    In particular,the safety index,β,is related to the median safety factor,SFm,as follows:

    or conversely,

    where,ln stands for the natural logarithm;and ΩCand ΩQare,respectively,the total uncertainties(in terms of the c.o.v.’s)of the capacity and loadings.

    In the present case of the bridge in Korea,we may select(with appropriate conservativeness)the 90%β of 3.324.Then,according to Eq.(4),this is equivalent to a median safety factor(SFm)of around 3.00.

    Also,equivalent load and resistance factors may be derived through the first-order reliability method(FORM)for ultimate(or LRFD)design.

    4.2 Summary of Results of Illustrative Example

    The systematic procedure for handling uncertainties was illustrated with the evaluation of a cable-stayed bridge in Jindo,Korea under dead,live and earthquake loadings.Based on estimates of the aleatory uncertainties and reasonably realistic assumptions of the respective epistemic uncertainties,complete information(i.e.,distributions)of the failure probability and safety index,are obtained for the original design of the bridge and its minimum life-cycle cost design.This allows the specification of prescribed percentile values of the pertinent results including safety parameters for conservative designs.

    For the cable-stayed bridge in Jindo,Korea,the results indicated that the 90%value of the lifetime failure probability is 1.63E -02,or a 90%safety index of 3.324,which is equivalent to a safety factor of approximately 3.00.

    This analysis also shows that the current design code for cable-stayed bridges in Korea should yield bridge structures that are close to its respective optimal designs(i.e.,from the standpoint of minimum life-cycle cost).

    5 Conclusions

    In the presence of unavoidable uncertainties,it is not possible to ensure the complete safety of a major infrastructure system,such as a long-span bridge,particularly when it must include the threat of a natural hazard such as a strong-motion earthquake.

    Uncertainties may be categorized into the two broad types;one is data-based(aleatory)which is part of the randomness of natural phenomena whose significance can be expressed in terms of the probability of failure;the other is knowledge-based(epistemic)which is associated with imperfections in modeling and estimating reality and leads to a range of possible values of the failure probability.

    For practical applications,epistemic uncertainty may be limited to the imperfections in the estimation or predication of the mean(or median)values of the design variables and parameters.

    Because of the epistemic uncertainties,the calculated results such as failure probability,safety index,or risk,become random variables with respective distributions(or histograms).These distributions,such as for the safety index,allow the specifications of high percentile values to ensure sufficient risk averseness and minimize the effect of the epistemic uncertainty.For example,the 90%value(or the 95%value)of the safety index should provide some conservativeness in designs,which is particularly important for long span bridges or other major infrastructure systems.

    With reference to the illustrative cable-stayed bridge in Jindo,Korea,the current bridge design code in Korea appears to yield structures that are close to the safety level of the minimum life-cycle cost design.The 90%safety index for this bridge in Jindo,Korea of β =3.324 is equivalent to a median safety factor of SFm≈ 3.00.

    [1] Ang A H-S.Practical Assessments of Risk and Its Uncertainty[C].Kobe,Japan:Proc.IFIP Workshop,2006.

    [2] Ang A H-S,Tang W H.Probability Concepts in Engineering[M].2ndEdition.New York:John Wiley & Sons,Inc.,2007.

    [3] Ang A H-S,Tang W H.Probability Concepts in Engineering Planning and Design:Vol II[M].New York:John Wiley & Sons,Inc.,1984.

    [4] Han S H,Ang A H-S.Optimal Design of Cable-Stayed Bridges Based on Minimum Life-Cycle Cost[C].Seoul,Korea:Proceedings,IABMAS'08,2008.

    [5] Han S H,Shin J C.The stochastic finite element analysis and reliability analysis subjected to earthquake load[J].Journal of Computational Structural Engineering Institute of Korea,2005,18(1):29-42.

    [6] Korea Institute of Construction Technology.A Study on Design and Construction Method for Long Span Bridges[R].Report ID KICT/95-SE-111-64.Goyang-Si Gyeonggi-Do:Korea lnstitnte of Contruction Technology,1995.

    [7] Ang A H-S,De Leon D.Modeling and analysis of uncertainties for risk-informed decisions in infrastructures engineering[J].Journal of Structure& Infrastructure Engineering,2005,1(1):19-31.

    [8] Frangopol D M,Lin K Y.Life-cycle cost design of deteriorating structures[J].Journal of Structure Engineering,ASCE,1997,123(10):1390-1401.

    [9] Ang A H-S,Pires J,Lee J C.Reliability-based Optimal Aseismic Design of Reinforced Concrete Building,Year 2[R].Kajima:CUREe,1996.

    [10] Lee K M,Cho H N,Choi Y M.Life-cycle cost effective optimum design of steel bridges[J].Elsevier:Journal of Constructional Research,2004,60:1585 -1613.

    猜你喜歡
    指標(biāo)值斜拉橋不確定性
    法律的兩種不確定性
    法律方法(2022年2期)2022-10-20 06:41:56
    斜拉橋風(fēng)致振動(dòng)控制及其未來發(fā)展趨勢(shì)
    矮塔斜拉橋彈塑性地震響應(yīng)分析
    (112+216+112)m部分斜拉橋設(shè)計(jì)
    英鎊或繼續(xù)面臨不確定性風(fēng)險(xiǎn)
    中國外匯(2019年7期)2019-07-13 05:45:04
    淺談食品中大腸菌群檢測(cè)方法以及指標(biāo)值的對(duì)應(yīng)關(guān)系
    維修性定性要求評(píng)價(jià)指標(biāo)融合模型研究
    具有不可測(cè)動(dòng)態(tài)不確定性非線性系統(tǒng)的控制
    上地斜拉橋:天上滴落的水珠
    1995年—2013年地方預(yù)算內(nèi)財(cái)力、中央返還及上解情況
    亚洲成人久久性| 婷婷精品国产亚洲av| 欧美成人精品欧美一级黄| a级毛色黄片| 99riav亚洲国产免费| 婷婷六月久久综合丁香| 成人永久免费在线观看视频| 国产伦理片在线播放av一区 | 99精品在免费线老司机午夜| 97超碰精品成人国产| 成人午夜精彩视频在线观看| 日本一本二区三区精品| 婷婷色av中文字幕| 美女高潮的动态| 男人的好看免费观看在线视频| 午夜福利在线观看吧| 欧美色视频一区免费| 99在线视频只有这里精品首页| 好男人在线观看高清免费视频| 一本久久精品| 亚洲欧美日韩卡通动漫| 欧美性猛交╳xxx乱大交人| 九色成人免费人妻av| 九九久久精品国产亚洲av麻豆| 亚洲国产精品sss在线观看| 女同久久另类99精品国产91| 亚洲在久久综合| a级一级毛片免费在线观看| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品综合久久99| 最后的刺客免费高清国语| 好男人在线观看高清免费视频| 国产日本99.免费观看| 国产高清有码在线观看视频| 亚洲精品久久国产高清桃花| 国产探花极品一区二区| 亚洲国产色片| 最近视频中文字幕2019在线8| 亚洲欧洲日产国产| 国产成人精品婷婷| 久久久久久久久大av| 免费av毛片视频| 哪个播放器可以免费观看大片| 国产极品天堂在线| 国产精品无大码| 国产真实伦视频高清在线观看| 边亲边吃奶的免费视频| 搞女人的毛片| 又黄又爽又刺激的免费视频.| 美女 人体艺术 gogo| 日本爱情动作片www.在线观看| 哪里可以看免费的av片| 久久久久久久午夜电影| 亚洲欧洲日产国产| 国产男人的电影天堂91| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美在线乱码| 啦啦啦观看免费观看视频高清| 欧美另类亚洲清纯唯美| 欧美丝袜亚洲另类| 日本欧美国产在线视频| 99九九线精品视频在线观看视频| 亚洲18禁久久av| 自拍偷自拍亚洲精品老妇| 人妻夜夜爽99麻豆av| 大香蕉久久网| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲丝袜综合中文字幕| 中出人妻视频一区二区| 精品无人区乱码1区二区| 麻豆成人午夜福利视频| 久久久国产成人免费| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久末码| 老司机影院成人| 午夜爱爱视频在线播放| 麻豆成人午夜福利视频| 99riav亚洲国产免费| 免费搜索国产男女视频| 我要看日韩黄色一级片| 天堂√8在线中文| 黄色视频,在线免费观看| 亚洲国产欧洲综合997久久,| 亚洲成人中文字幕在线播放| 日韩av不卡免费在线播放| 在线观看66精品国产| 白带黄色成豆腐渣| 国产毛片a区久久久久| 国产激情偷乱视频一区二区| 亚洲在线观看片| 男女那种视频在线观看| 男女那种视频在线观看| 黄色欧美视频在线观看| 精品国内亚洲2022精品成人| 国产av麻豆久久久久久久| 国产在线男女| 中文资源天堂在线| 中文字幕久久专区| 亚洲av成人精品一区久久| 天堂网av新在线| 国内精品久久久久精免费| 久久久久久久亚洲中文字幕| 精品久久久久久久久久久久久| 蜜桃久久精品国产亚洲av| 级片在线观看| 亚洲av成人精品一区久久| av专区在线播放| 国产探花在线观看一区二区| 一级毛片aaaaaa免费看小| 国产午夜精品论理片| 国产一级毛片七仙女欲春2| 波多野结衣高清无吗| 男女下面进入的视频免费午夜| 久久久久久久久久黄片| 床上黄色一级片| or卡值多少钱| 亚洲欧美日韩卡通动漫| 国产亚洲av嫩草精品影院| 国产视频内射| 九九爱精品视频在线观看| 国产精品麻豆人妻色哟哟久久 | 国产黄片美女视频| av在线蜜桃| 又粗又爽又猛毛片免费看| 久久欧美精品欧美久久欧美| 免费看a级黄色片| 26uuu在线亚洲综合色| 亚洲综合色惰| 国产亚洲91精品色在线| www日本黄色视频网| 男人舔女人下体高潮全视频| 亚洲欧美成人综合另类久久久 | 婷婷色综合大香蕉| 国产 一区精品| 免费观看a级毛片全部| 高清日韩中文字幕在线| 久久久久久久久久黄片| av又黄又爽大尺度在线免费看 | 美女脱内裤让男人舔精品视频 | 久久精品久久久久久噜噜老黄 | www日本黄色视频网| 久久欧美精品欧美久久欧美| 亚洲精品乱码久久久久久按摩| 久久亚洲精品不卡| 中文字幕熟女人妻在线| 18禁在线无遮挡免费观看视频| 亚洲欧美清纯卡通| 国产日本99.免费观看| 晚上一个人看的免费电影| 九九爱精品视频在线观看| 日韩欧美在线乱码| 免费av观看视频| 成人高潮视频无遮挡免费网站| 一个人看的www免费观看视频| www.av在线官网国产| 成年版毛片免费区| 高清午夜精品一区二区三区 | 国产精品女同一区二区软件| 日本免费a在线| 欧美日韩乱码在线| 免费观看人在逋| 91在线精品国自产拍蜜月| 男插女下体视频免费在线播放| 99热6这里只有精品| 亚洲国产精品国产精品| 看片在线看免费视频| 黄色一级大片看看| 欧美+亚洲+日韩+国产| 久久这里只有精品中国| 成年女人永久免费观看视频| 成人午夜高清在线视频| 国产人妻一区二区三区在| 国产精品久久电影中文字幕| 日本一本二区三区精品| 麻豆成人av视频| 精品人妻偷拍中文字幕| 色综合亚洲欧美另类图片| 成人漫画全彩无遮挡| 99在线视频只有这里精品首页| a级毛色黄片| 国产日韩欧美在线精品| 欧美激情久久久久久爽电影| 欧美精品一区二区大全| 日韩欧美精品v在线| 亚洲精品粉嫩美女一区| 国模一区二区三区四区视频| 久久久久网色| 美女高潮的动态| 少妇的逼水好多| 久久久久久久久久成人| 全区人妻精品视频| 久久99精品国语久久久| 哪里可以看免费的av片| 免费看美女性在线毛片视频| videossex国产| 亚洲美女搞黄在线观看| 伦理电影大哥的女人| 亚洲精品乱码久久久久久按摩| 亚洲内射少妇av| 卡戴珊不雅视频在线播放| 久久久久九九精品影院| 秋霞在线观看毛片| 午夜精品国产一区二区电影 | 免费在线观看成人毛片| 又黄又爽又刺激的免费视频.| 少妇高潮的动态图| 天天躁夜夜躁狠狠久久av| 麻豆国产97在线/欧美| 在线观看午夜福利视频| 成年av动漫网址| 人人妻人人看人人澡| 日本黄大片高清| 久久久久久久久大av| 中国美女看黄片| 在线播放国产精品三级| 国产精品乱码一区二三区的特点| 我的老师免费观看完整版| 美女国产视频在线观看| 午夜亚洲福利在线播放| 99热全是精品| 真实男女啪啪啪动态图| 黄色一级大片看看| 国产高清不卡午夜福利| av福利片在线观看| 亚洲国产精品sss在线观看| 国产精品一区二区三区四区久久| 毛片一级片免费看久久久久| 乱系列少妇在线播放| 久久久久久久久久久丰满| 波多野结衣巨乳人妻| .国产精品久久| 久久99蜜桃精品久久| 噜噜噜噜噜久久久久久91| 人妻少妇偷人精品九色| 国产精品永久免费网站| 91精品国产九色| 国产在线精品亚洲第一网站| 中文字幕av在线有码专区| 久久久午夜欧美精品| 听说在线观看完整版免费高清| 又爽又黄无遮挡网站| 少妇熟女aⅴ在线视频| 国产免费一级a男人的天堂| 2021天堂中文幕一二区在线观| 色吧在线观看| 舔av片在线| 久久午夜福利片| 可以在线观看的亚洲视频| 99久国产av精品| 在线国产一区二区在线| 三级男女做爰猛烈吃奶摸视频| 国产高潮美女av| 男女下面进入的视频免费午夜| 天堂√8在线中文| 亚洲av第一区精品v没综合| 能在线免费看毛片的网站| 日韩一区二区三区影片| 天堂av国产一区二区熟女人妻| 国产精品乱码一区二三区的特点| 人妻夜夜爽99麻豆av| av国产免费在线观看| 国产一区二区激情短视频| 欧美激情在线99| 欧美色视频一区免费| 免费看日本二区| 99热精品在线国产| 久久久久国产网址| 麻豆久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 变态另类丝袜制服| 国产精品久久久久久av不卡| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品国产精品| 成人永久免费在线观看视频| 久久精品91蜜桃| 亚洲成人中文字幕在线播放| 精品久久国产蜜桃| 日韩高清综合在线| 久久久国产成人精品二区| 久久人妻av系列| 久久久久国产网址| 蜜臀久久99精品久久宅男| 日韩欧美精品v在线| 亚洲内射少妇av| 国产成人影院久久av| 非洲黑人性xxxx精品又粗又长| 国产av一区在线观看免费| 岛国毛片在线播放| 大型黄色视频在线免费观看| www.色视频.com| 欧美一区二区亚洲| 99在线视频只有这里精品首页| 国产精品永久免费网站| .国产精品久久| av免费观看日本| 在线观看美女被高潮喷水网站| 99riav亚洲国产免费| 最后的刺客免费高清国语| 干丝袜人妻中文字幕| 成人鲁丝片一二三区免费| 日韩视频在线欧美| 悠悠久久av| 国产精品,欧美在线| 狠狠狠狠99中文字幕| 国产中年淑女户外野战色| av在线老鸭窝| 成人高潮视频无遮挡免费网站| 亚洲av中文av极速乱| av又黄又爽大尺度在线免费看 | 91午夜精品亚洲一区二区三区| 爱豆传媒免费全集在线观看| 91久久精品国产一区二区成人| 国产精品美女特级片免费视频播放器| 成人欧美大片| 亚洲一区二区三区色噜噜| 色吧在线观看| 男插女下体视频免费在线播放| 亚洲久久久久久中文字幕| 国产伦理片在线播放av一区 | 99热网站在线观看| 亚洲aⅴ乱码一区二区在线播放| 女人被狂操c到高潮| 看黄色毛片网站| 欧美日韩在线观看h| or卡值多少钱| 一级黄片播放器| 国产成人午夜福利电影在线观看| 1000部很黄的大片| 久久人人爽人人爽人人片va| 亚洲国产色片| 日韩欧美在线乱码| 亚洲精品久久久久久婷婷小说 | 精品一区二区三区人妻视频| 一区福利在线观看| 色播亚洲综合网| 亚洲国产精品久久男人天堂| 日韩,欧美,国产一区二区三区 | 久久精品91蜜桃| 国产私拍福利视频在线观看| 日本一二三区视频观看| 99久久成人亚洲精品观看| 国产亚洲精品久久久久久毛片| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器| 波多野结衣巨乳人妻| 中文欧美无线码| 国产成人福利小说| 给我免费播放毛片高清在线观看| 久久久久久久久久久丰满| 黄色配什么色好看| 日本色播在线视频| 亚洲人成网站高清观看| 日韩视频在线欧美| 国产三级在线视频| 成人特级av手机在线观看| 久99久视频精品免费| 99热精品在线国产| ponron亚洲| 97在线视频观看| 国产单亲对白刺激| 国产免费男女视频| 成人三级黄色视频| 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| 久久鲁丝午夜福利片| 色吧在线观看| 日韩 亚洲 欧美在线| 国产精品一区二区在线观看99 | 淫秽高清视频在线观看| 人妻少妇偷人精品九色| 午夜视频国产福利| 中文欧美无线码| 中国美女看黄片| 大又大粗又爽又黄少妇毛片口| 国产一级毛片七仙女欲春2| 亚洲精品国产成人久久av| 干丝袜人妻中文字幕| 欧美日韩综合久久久久久| 长腿黑丝高跟| 国产精品嫩草影院av在线观看| 97超碰精品成人国产| 日本色播在线视频| 精品久久久久久久末码| 亚洲天堂国产精品一区在线| 高清午夜精品一区二区三区 | 99热全是精品| 免费av观看视频| 国产精品久久久久久亚洲av鲁大| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 亚洲成人久久性| 青春草亚洲视频在线观看| 在线免费观看不下载黄p国产| 国产探花在线观看一区二区| 1000部很黄的大片| 国产精品人妻久久久影院| 国产精品久久久久久精品电影小说 | 在线国产一区二区在线| 亚洲国产精品sss在线观看| 精品免费久久久久久久清纯| 婷婷色av中文字幕| 亚洲,欧美,日韩| 亚洲自拍偷在线| 欧美日韩乱码在线| 人妻久久中文字幕网| 网址你懂的国产日韩在线| 国产私拍福利视频在线观看| 一区二区三区免费毛片| 晚上一个人看的免费电影| 成人永久免费在线观看视频| 搡女人真爽免费视频火全软件| 一级黄片播放器| 天堂中文最新版在线下载 | 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看| 美女 人体艺术 gogo| 精品少妇黑人巨大在线播放 | 亚洲美女视频黄频| 午夜激情福利司机影院| 天天一区二区日本电影三级| 久久婷婷人人爽人人干人人爱| 一边摸一边抽搐一进一小说| 亚洲av成人精品一区久久| 只有这里有精品99| 夜夜爽天天搞| 最近最新中文字幕大全电影3| 色哟哟哟哟哟哟| 深爱激情五月婷婷| 午夜精品国产一区二区电影 | 天堂av国产一区二区熟女人妻| 亚洲精品成人久久久久久| 一本久久精品| 欧美人与善性xxx| 99热只有精品国产| 99热6这里只有精品| 三级经典国产精品| 国产视频首页在线观看| 蜜桃久久精品国产亚洲av| 网址你懂的国产日韩在线| 99在线人妻在线中文字幕| 桃色一区二区三区在线观看| 国产成人一区二区在线| 美女大奶头视频| 久久韩国三级中文字幕| av专区在线播放| 五月伊人婷婷丁香| 毛片女人毛片| 亚洲国产日韩欧美精品在线观看| 国内揄拍国产精品人妻在线| 亚洲最大成人手机在线| 麻豆一二三区av精品| 九九久久精品国产亚洲av麻豆| 最近的中文字幕免费完整| 夜夜看夜夜爽夜夜摸| 成人漫画全彩无遮挡| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 麻豆国产av国片精品| 国产欧美日韩精品一区二区| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 亚洲欧美日韩卡通动漫| 国产乱人偷精品视频| 午夜福利高清视频| 性插视频无遮挡在线免费观看| 国产精品久久电影中文字幕| 久久热精品热| 成人无遮挡网站| 国产精品不卡视频一区二区| 91麻豆精品激情在线观看国产| 国产日本99.免费观看| 人人妻人人澡人人爽人人夜夜 | 女人十人毛片免费观看3o分钟| 青春草视频在线免费观看| 只有这里有精品99| 成人无遮挡网站| 久久久欧美国产精品| 久久亚洲精品不卡| 给我免费播放毛片高清在线观看| 天堂av国产一区二区熟女人妻| 18禁黄网站禁片免费观看直播| 欧美成人一区二区免费高清观看| a级一级毛片免费在线观看| av免费观看日本| 春色校园在线视频观看| 99久久精品一区二区三区| 精品人妻视频免费看| 性色avwww在线观看| 麻豆一二三区av精品| 精品久久久久久久久亚洲| 春色校园在线视频观看| a级一级毛片免费在线观看| 久久人人精品亚洲av| 97热精品久久久久久| a级一级毛片免费在线观看| 热99在线观看视频| 中文字幕精品亚洲无线码一区| 不卡视频在线观看欧美| 黄色视频,在线免费观看| 99热这里只有是精品50| 亚洲精品日韩av片在线观看| 国产麻豆成人av免费视频| 亚洲欧美日韩东京热| 欧美精品国产亚洲| 国产精品久久电影中文字幕| 又粗又爽又猛毛片免费看| 亚洲精品久久国产高清桃花| 亚洲在久久综合| 成人特级av手机在线观看| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清激情床上av| 99热6这里只有精品| 全区人妻精品视频| 一个人观看的视频www高清免费观看| 91狼人影院| 国产黄a三级三级三级人| 女的被弄到高潮叫床怎么办| 日产精品乱码卡一卡2卡三| 亚洲av免费高清在线观看| 国产免费男女视频| 国产亚洲91精品色在线| 精品99又大又爽又粗少妇毛片| 亚洲精品自拍成人| 中国美女看黄片| 日韩国内少妇激情av| 国产黄a三级三级三级人| 午夜精品一区二区三区免费看| 九九久久精品国产亚洲av麻豆| 国产一级毛片在线| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看| 少妇熟女aⅴ在线视频| 一级二级三级毛片免费看| 99精品在免费线老司机午夜| 黑人高潮一二区| 国产在视频线在精品| 3wmmmm亚洲av在线观看| 色视频www国产| 日韩精品青青久久久久久| 免费观看的影片在线观看| .国产精品久久| 最近中文字幕高清免费大全6| 亚洲欧美日韩高清在线视频| www.色视频.com| 亚洲av不卡在线观看| 久久人人精品亚洲av| 一级黄片播放器| 久久久久久九九精品二区国产| 久久九九热精品免费| 婷婷精品国产亚洲av| 嫩草影院新地址| 色5月婷婷丁香| 久久精品综合一区二区三区| 久久久久久久亚洲中文字幕| 九九久久精品国产亚洲av麻豆| 中文字幕制服av| 村上凉子中文字幕在线| 狂野欧美白嫩少妇大欣赏| 91久久精品电影网| 国产老妇伦熟女老妇高清| 欧美日韩国产亚洲二区| 婷婷六月久久综合丁香| 午夜福利成人在线免费观看| 国产午夜福利久久久久久| 欧美一区二区亚洲| 亚洲精华国产精华液的使用体验 | 亚洲精品乱码久久久v下载方式| 欧美日韩在线观看h| 国产69精品久久久久777片| 此物有八面人人有两片| av女优亚洲男人天堂| 悠悠久久av| 午夜爱爱视频在线播放| 边亲边吃奶的免费视频| 欧美色视频一区免费| 日本黄大片高清| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 久久久久九九精品影院| 在线观看免费视频日本深夜| 天天躁日日操中文字幕| 国产精品1区2区在线观看.| 亚洲av熟女| 婷婷亚洲欧美| 亚洲aⅴ乱码一区二区在线播放| av在线亚洲专区| 99热精品在线国产| 欧美精品国产亚洲| 亚洲欧美精品综合久久99| 亚洲国产高清在线一区二区三| 好男人视频免费观看在线| 一个人看的www免费观看视频| 九九热线精品视视频播放| 久久人妻av系列| 麻豆国产97在线/欧美| 国产激情偷乱视频一区二区| 淫秽高清视频在线观看| 日韩视频在线欧美| 国产男人的电影天堂91| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 国产69精品久久久久777片| 高清午夜精品一区二区三区 | 给我免费播放毛片高清在线观看| 久久精品91蜜桃| 亚洲五月天丁香| 高清在线视频一区二区三区 | 狂野欧美白嫩少妇大欣赏| 99国产极品粉嫩在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| 美女内射精品一级片tv| 国产成人freesex在线| 国产精品精品国产色婷婷|