• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatigue Design Criteria for Welded Bridges in the U.S.

    2011-12-28 06:05:32JohnFisherSchoolofCivilEngineeringLehighUniversityBethlehemPAUSA
    關(guān)鍵詞:恒定抗力腹板

    John W.Fisher(School of Civil Engineering,Lehigh University,Bethlehem,PA,USA)

    1 Introduction

    The possibility of fatigue cracking under relatively high stress range conditions was demonstrated by the steel beam bridges(Fig.1)of the AASHO Road Test in 1960[1].

    Fatigue crack growth has occurred in bridge structures and components since the 1970’s.Cracks were first observed in coverplated bridge girders(Fig.2)located on an interstate highway which carried a high volume of truck traffic causing large numbers of cyclic stress[2].

    Fig.1 Fatigue crack at end of coverplated beam圖1 梁端疲勞裂縫

    Fig.2 Typical fatigue crack found in 1970 from bridge in service圖2 在役橋梁(1970年)發(fā)現(xiàn)的典型疲勞裂縫

    Early fatigue specifications in the U.S.originated from railway bridge design,which required reductions in allowable stress when members were subjected to load reversal[3].

    During the 1940’s both AREA and AASHO used the AWS bridge specifications for welded structures.These provided for three load cycle conditions and allowable stresses were expressed in terms of the maximum stress and varied with the stress ratio,R,defined as the algebraic ratio of minimum and maximum stress.In 1965,AASHO adopted steel bridge fatigue provisions based on the existing test data which was primarily on small test specimens and limited specimens and it was generally assumed that 2 million cycles was the fatigue limit or infinite life condition for all details.These details were divided into different classifications for fatigue lives of 100,000,500,000 and 2,000,000 cycles of maximum stress caused by passage of the HS-20 design truck(Fig.3)based on the type of road and the average daily truck traffic(Table 1).

    Fig.3 HS-20 design truck used for fatigue design,1965 -1994圖3 1965—1994年用于疲勞設(shè)計的荷載車HS-20

    Table 1 Stress cycles for main(longitudinal)load carrying members(1965-1994)表1 承擔(dān)主荷載構(gòu)件的應(yīng)力循環(huán)

    The allowable fatigue stress was still expressed in terms of the maximum stress and was derived from the modified Goodman diagram as seen in Fig.4 with provisions for stress ratio and steel strength.

    Fig.4 Goodman diagram and allowable design maximum stress provisions圖4 Goodman圖和容許設(shè)計最大應(yīng)力條款

    It was not possible to provide a statistical analysis of the design factors thought toinfluencefatigue strength as duplication was rare and variables were not controlled.

    2 Laboratory Tests of Welded Girders

    To overcome these limitations an extensive series of fatigue studies were carried out at Lehigh University starting in 1967 and continuing into the 1980’s.These studies used statistically designed experimental programs under controlled conditions,so that analysis of the data could reveal the significance of the parameters believed to be important in fatigue behavior[4-7].The substantial amount of experimental data developed on steel beam details showed that the most important factors that govern the fatigue strength are the stress range and the type of detail.Fig.5 shows the test data for coverplated steel beam details on both rolled and welded beams with 3 grades of steel(yields of 250MPa,350MPa and 700MPa),several levels of minimum stress and a variety of geometrical conditions.

    The test results show clearly that only the stress range was the controlling stress variable and that the type of steel and section as well as the type of geometrical detail were not significant.The test data had a log normal distribution of cyclic life at all levels of stress range.Stress range means that only the live load and impact stresses need to be considered when designing steel details for fatigue.These findings were observed to be applicable to every beam and detail examined.The ratio of minimum to maximum stress,R,did not affect the stress range to cycle life relationship.The existence of residual stresses from welding is largely responsible for the fact that the R ratio is not a significant factor in the stress range cycle life relationship.Measurements shown in Fig.6 verify the existence of high tensile residual stresses at the weld toe where the initial stages of fatigue crack growth and most of fatigue life occurs in as-welded structures.

    Fig.5 Test data for coverplated steel beams圖5 鋼蓋板梁試驗數(shù)據(jù)

    Fig.6 Residual stresses measured at the weld toe圖6 焊縫腳趾處殘余應(yīng)力測試值

    The lower bound stress range cycle life relationships are plotted in Fig.7 for all of the experimental tests that were available up to 1986[7]for each design category.It is apparent from Fig.7 that the assumption in 1965 that the fatigue limit occurred at 2 million cycles is only applicable to base metal(Category A).

    Fig.7 Lower bound S-N curves for design stress range for Categories A to E’圖7 A到E類設(shè)計應(yīng)力幅度S-N曲線下限

    Each subsequent Category provides a lower bound stress range limit that occurs at cycle lives between 2 million and 20 million as the Categories go from Category B to Category E’.This lower bound fatigue limit for constant amplitude test data is a crack growth threshold that has been verified for Categories C,E and E’out to 100 million cycles.

    The slopping S-N curves have an exponential relationship between stress range and life that is provided by

    Where,Cfis a constant value for each Category of detail;Sris the design stress range.This relationship is provided in the current AASHTO specifications.

    3 Variable Loading

    It is well established that bridge structures are subjected to a random variable loading which results in a wide band skewed stress range spectrum.Fig.8 shows a typical stress range histogram for a bridge girder with cover plates.The most widely used method to account for cumulative damage is the Miner hypothesis[8].

    Fig.8 Stress range histogram for a category E圖8 E類應(yīng)力幅度直方圖

    Variable stress cycle damage is accumulated in proportion to the relative frequency of occurrence of each level of stress range.Several studies were undertaken between 1971 and 1993 to evaluate the applicability ofthe cumulative damage criteria such as Miner’s Rule[9-11].These studies indicated that Miner’s linear damage hypothesis provided a means of relating random variable stress cycles to constant cycle data.An effective stress range can be developed using Miner’s linear fatigue damage relationship Σni/Ni=1 together with the exponential relationship provided by Eq.(2)as

    Where,γiis the frequency of occurrence of stress range Sri.

    The long life tests carried out in Reference[11]are shown in Fig.9 for welded web attachments.These random variable tests are seen to provide a good method of transforming the variable stress range spectrum into an equivalent effective stress range.

    Fig.9 Comparison of the variable load tests with the constant amplitude tests圖9 可變荷載試驗與恒定振幅荷載試驗比較

    These tests also demonstrated that if maximum stress cycles exceeded the constant amplitude fatigue limit by more than 0.01%,all of the stress cycles below the fatigue limit contributed to the damage and had to be considered in the effective stress range.

    4 Fatigue Design since 1994

    In 1994 AASHTO made use of the random variable truck loads on the U.S.roads to determine an effective fatigue truck that represented all of the trucks greater than 20 kips(90kN)[12].Fig.10 shows that gross vehicle load spectrum between 1970 and 1987.An effective GVW truck was developed using the relationship provided in Eq.(2)[12].Fig.11 shows the resulting fatigue truck that has been used by AASHTO since 1994.

    Fig.10 Gross vehicle weight spectrum observed between 1970 and 1987圖10 1970—1987年觀察的車輛總重量譜

    Fig.11 Fatigue truck(HS-15)used to design bridges for resistance圖11 用于橋梁抗力設(shè)計的疲勞荷載車輛

    The fatigue truck with 15%impact provides the effective load for the variable load spectrum that the bridge will be subjected to.If the cycle frequency is great,the maximum stress range in the variable spectrum must not exceed twice the stresses generated by the fatigue truck.This is shown schematically as case 3 in Fig.12.

    Fig.12 Effective fatigue resistance lies along the fatigue resistance curve when the constant amplitude fatigue limit is exceeded by 0.01%圖12 恒定振幅疲勞極限超過0.01%時有效疲勞抗力與疲勞抗力曲線一致

    The use of a multiplier of 2 for most bridge details is based on the fact that stress range measurements of hundreds of bridges in service for over 50 years have demonstrated that their actual live load stress range spectrum is no greater than one half to two thirds of the maximum stress predicted from the maximum loads.Hence the variable spectrum is adjusted for these observations as illustrated in Fig.13.

    Fig.13 Adjustments to the variable load spectrum to reflect actual measurements of stress range in bridge structures圖13 橋梁結(jié)構(gòu)中影響實測應(yīng)力范圍的可變荷載譜的調(diào)整

    Hence,the AASHTO fatigue limit state load range for primary members is taken as 2×HS-15 or HS-30(108kips 480kN)for the effective maximum stress.For orthotropic decks it is required to be 3×HS-15(162kips 720kN)with the single axle loads placed on dual axles.

    5 Distortion Induced Cracking and Secondary Stresses

    Since the 1970’s web gap cracking has been observed in many bridges built between 1950 and 1980.These web gaps occurred as a result of a rule adopted after WWII that you should not weld transverse to the tension flanges of girders.This was based on experience with early welded bridges in Europe in the 1930’s.As a result,the three dimensional behavior at transverse connection plates for transverse floor-beams and cross-frames resulted in very small displacements and very high stress range cycles in these web gaps.Typically these gaps were 10mm to 50mm between the longitudinal welds of the web-flange connection and the transverse welds that attached the connection plates to the web.Fig.14 shows a typical example of distortion induced cracking at the weld end of the transverse connection plate and along the toe of the web to flange weld.Distortion induced secondary stresses that result in fatigue cracks are found in every type of bridge structure.They include simple and continuous span girder bridges as illustrated in Fig.14,to box structures,tied arches(Fig.15),truss systems and many others[13-15].Often these cracks can be stopped by drilling holes at the crack tips.More often they require corrective action to prevent further web gap distortion by providing positive connections that prevents distortion between the gap.Another option is to soften the connection by increasing the size of the gap a significant amount.

    Fig.14 Web gap cracking in the girder web圖14 梁腹板裂縫

    Fig.15 Cracking in the floor-beam web gap at the connection to a tie girder圖15 樓板、梁板腹板裂縫

    The AASHTO specifications require positive attachments between web gaps so the distortion induced cracking is minimized.

    During the past decade fractures have developed in several bridges as a result of high triaxial stresses in very small web gaps(less than 6mm)without any detectable fatigue crack growth.Fig.16 shows the fractures that suddenly occurred in the Hoan Bridge at the small or negligible web gap between the transverse connection plate and a lateral gusset plate[16].These sudden brittle fractures resulted from the restraint stresses from weld shrinkage and dead load stress and the geometric crack-like condition that resulted from the intersecting gusset plate and the transverse connection plate.The very small web gap created a triaxial stress state that did not allow yielding to occur and resulted in stresses in the gap that exceeded the yield point by a substantial margin.This resulted in fracture under low service temperatures.The nature of the web crack development resulted in a detail that is not inspectable.

    Fig.16 Restraint induced cracking from the triaxial stresses at connection plates圖16 連接板三向應(yīng)力約束裂縫

    6 Summary

    This paper provided an historical overview of the development of fatigue design provisions in the US,which has been adopted in specifications around the world.These provisions,including improved detailing practices,were developed based on extensive research and case studies.Implementation of the guidelines and improved material has limited fatigue cracking and brittle fracture in newer constructions.Fatigue of steel bridges under traffic loading is the most significant issue affecting the service performance of aging transportation infrastructure.Without timely intervention these cracks can lead to brittle fracture in steels having less than adequate toughness.Historically most of the fatigue cracking of the welded steel bridges in the USA occurred at cover plate and similar attachment details,as well as at the web gaps from distortion.The attachment details are the most severe of the fatigue critical details,which are characterized by crack growth at the weld toe.Distortion induced fatigue cracking in the web gaps may be solved by proper detailing that eliminates the secondary stresses driving these cracks.In most cases,the web-gap-cracking can be prevented by rigidly connecting the attachment plates to the tension flange.Where the distortion is displacement controlled,the stresses can be reduced by increasing the flexibility of the connection.If distortion is limited,holes may be drilled or cored at the crack tips to temporarily arrest propagation.Triaxial stresses developing in overly constrained small web gaps can cause brittle fracture without any prior fatigue crack growth.When the cumulative stress ranges in the variable stress spectrum exceeds the CAFL by 0.05%or more of the total stress cycles in the distribution,the fatigue resistance of the attachments is given by the extension of the linear sloped part of the S-N curve below the CAFL.An infinite life may be assumed when the cumulative exceedence of the stress cycles beyond the CAFL is limited to 0.01%of the total.Most structures carry enough truck traffic to justify designing them for an infinite fatigue life,especially the deck elements.

    Acknowledgements:The author acknowledges those organizations that supported the research into the fatigue behavior of steel details carried out at the Fritz Engineering Laboratory and ATLSS Laboratories,Lehigh University.They include NCHRPTRB;FHWA,U.S.Department of Transportation;the Pennsyl-vania Dept.of Transportation;the U.S.Navy;the Canadian National Railroad;the New York State DOT;the New York City DOT;and the Triborough Bridge and Tunnel Authority.Thanks are also due colleagues and research students who worked with the author over the past 50 years.They include B.T.Yen,A.W.Pense,G.R.Irwin,K.H.Frank,M.A.Hirt,P.Albrecht,R.Jaccard,N.Zettlemoyer,H.Hausammann,D.R.Mertz,P.Keating,C.Menzemer,R.H.Dexter,G.L.Kulak,A.Nussbaumer,R.E.Slockbower,D.J.Klingerman,B.M.Barthelemey,J.A.Edinger,D.C.Wagner,R.Connor,W.J.Wright,B.Metrovich and S.Roy.

    [1]Fisher J W,Viest I M.Fatigue Life of Bridge Beams Subjected to Controlled Truck Traffic[C]//Preliminary Publication.7th Congress.Rio de Janeiro:IABSE,1964:497-510.

    [2]Fisher J W,Slockbower R E,Hausammann H,et al.Long-time observations of a fatigue damaged bridge[J].Proceedings ASCE,1981,107(TC1):55-71.

    [3]Fountain R S,Munse W H,Sunbury R D.Specifications and design relations[J].Journal of the Structural Division,ASCE,1968,94(ST12):2751-2767.

    [4]Fisher J W,F(xiàn)rank K H,Hirt M A,et al.Effect of Weldments on the Fatigue Strength of Steel Beams[R]//NCHRP Report 102,Washington,D.C.:Transportion Research Board,National Research Council,1970.

    [5]Fisher J W,Albrecht P A,Yen B T,et al.Fatigue Strength of Steel Beams with Transverse Stiffeners and Attachments[R].Washington,D.C.:Transportation Research Board,National Research Council,1974.

    [6]Fisher J W,Hausammann H,Sullivan M D,et al.Detection and Repair of Fatigue Damaged in Welded Highway Bridges[R]//NCHRP Report 206.Washington,D.C.:Transportafion Research Board,National Research Council,1979.

    [7]Keating P B,F(xiàn)isher J W.Evaluation of Fatigue Tests and Design Criteria on Welded Details[R]//NCHRP Report 286.Washington,D.C.:Transportafion Research Board,National Research Council,1986.

    [8]Miner M A.Cumulative damage in fatigue[J].Journal of Applied Mechanics,1945,12:111-119.

    [9]Schilling C G,Klippstein K H,Barsom J M,et al.Fatigue of Welded Steel Bridge Members Under Variable-Amplitude Loadings[R]//NCHRP Report 188.Washington,D.C.:Transportafion Research Board,National Research Council,1978.

    [10]Fisher J W,Mertz D R,Zhong A.Steel Bridge Members under Variable Long Life Fatigue Loading[R]//NCHRP Report 267.Washington,D.C.:Transportafion Research Board,National Research Council,1983.

    [11]Fisher J W,Nussbaumer A,Keating P B,et al.Resistance of Welded Details Under Variable Amplitude Long-Life Loading[R]//NCHRP Report 354.Washington,D.C.:Transportafion Research Board,National Research Council,1993.

    [12]Moses F,Schilling C G,Raju K S.Fatigue Evaluation Procedures for Steel Bridges[R]//NCHRP Report 299.Washington,D.C.:Transportafion Research Board,National Research Council,1987.

    [13]Fisher J W.Bridge Fatigue Guide-Design and Details[M].USA:American Institute of Steel Construction,1977.

    [14]Fisher J W.Fatigue and Fracture in Steel Bridges[M].USA:Wiley-Interscience,1984.

    [15]Fisher J W,Jin J,Wagner D C,et al.Distortion-Induced Cracking in Steel Bridges[R]//NCHRP Report 336.Washington,D.C.:Transportafion Research Board,National Research Council,1990.

    [16]Wright W J,F(xiàn)isher J W,Kaufmann E K.Failure Analysis of the Hoan Bridge Brittle Fracture[C]//Proceedings,NYC 2ndBridge Conference.Lisse:Swets & Zeitlinger,2003.

    猜你喜歡
    恒定抗力腹板
    腹板開口對復(fù)合材料梁腹板剪切承載性能的影響
    橋梁低樁承臺基底豎向抗力作用效應(yīng)的計算研究
    交通科技(2021年4期)2021-09-03 09:47:22
    變截面波形鋼腹板組合箱梁的剪應(yīng)力計算分析
    花花世界
    鋼箱梁超高腹板設(shè)計理論與方法
    上海公路(2018年3期)2018-03-21 05:55:50
    漫畫十萬個為什么
    巖塊的彈性模量及巖體單位彈性抗力系數(shù)的確定方法
    30MnSi熱變形抗力的數(shù)學(xué)模型
    上海金屬(2014年2期)2014-12-18 06:52:51
    恒定動能打擊變初速發(fā)射原理
    一種帶折腹板槽形鋼梁的組合箱梁橋
    变态另类成人亚洲欧美熟女| 人人妻,人人澡人人爽秒播| 九色国产91popny在线| 青草久久国产| 久久精品影院6| 久久国产乱子伦精品免费另类| 精品第一国产精品| 91大片在线观看| www.熟女人妻精品国产| 一进一出抽搐动态| 欧美人与性动交α欧美精品济南到| 十八禁人妻一区二区| 午夜免费激情av| 母亲3免费完整高清在线观看| 一个人免费在线观看的高清视频| 国产精品精品国产色婷婷| 极品教师在线免费播放| 久久人妻福利社区极品人妻图片| 国产精品av久久久久免费| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 久久久久九九精品影院| 国产真实乱freesex| 一本精品99久久精品77| 亚洲精品在线美女| 欧美激情 高清一区二区三区| 国产精品久久久久久人妻精品电影| 亚洲成国产人片在线观看| 波多野结衣巨乳人妻| 午夜视频精品福利| 久久久久久大精品| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 国产蜜桃级精品一区二区三区| 大型av网站在线播放| 亚洲成国产人片在线观看| 国产亚洲精品一区二区www| 日韩欧美国产一区二区入口| 成在线人永久免费视频| 可以免费在线观看a视频的电影网站| 9191精品国产免费久久| 18禁黄网站禁片免费观看直播| 精品国产乱码久久久久久男人| 免费在线观看成人毛片| www日本在线高清视频| 在线视频色国产色| 亚洲av熟女| 国产v大片淫在线免费观看| 一本大道久久a久久精品| 午夜影院日韩av| 日韩视频一区二区在线观看| 99久久综合精品五月天人人| 免费无遮挡裸体视频| 美女午夜性视频免费| 免费观看人在逋| 在线av久久热| 亚洲色图av天堂| av在线播放免费不卡| 满18在线观看网站| 精品日产1卡2卡| 99久久99久久久精品蜜桃| 波多野结衣高清无吗| 亚洲中文av在线| bbb黄色大片| 国产1区2区3区精品| 午夜视频精品福利| 丝袜美腿诱惑在线| 亚洲男人的天堂狠狠| 欧美不卡视频在线免费观看 | 欧美又色又爽又黄视频| 久久久久久久午夜电影| 十分钟在线观看高清视频www| 亚洲一区二区三区不卡视频| 美女午夜性视频免费| 免费人成视频x8x8入口观看| 成人18禁高潮啪啪吃奶动态图| 国产精品免费视频内射| 少妇被粗大的猛进出69影院| 大香蕉久久成人网| 人人妻人人看人人澡| 神马国产精品三级电影在线观看 | 国产极品粉嫩免费观看在线| 美国免费a级毛片| 日韩成人在线观看一区二区三区| av超薄肉色丝袜交足视频| 亚洲第一电影网av| 免费在线观看影片大全网站| www.999成人在线观看| 成人手机av| 淫妇啪啪啪对白视频| 亚洲国产欧美日韩在线播放| 久久中文字幕人妻熟女| 法律面前人人平等表现在哪些方面| 国产黄片美女视频| 天堂动漫精品| 桃色一区二区三区在线观看| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 久9热在线精品视频| 看片在线看免费视频| 日韩精品青青久久久久久| 日韩视频一区二区在线观看| 久久伊人香网站| 黑人巨大精品欧美一区二区mp4| 在线免费观看的www视频| 成年人黄色毛片网站| 日日夜夜操网爽| 国产精品影院久久| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 日韩欧美国产一区二区入口| 在线观看午夜福利视频| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 九色国产91popny在线| 99久久久亚洲精品蜜臀av| videosex国产| 午夜成年电影在线免费观看| 国产精品综合久久久久久久免费| 制服丝袜大香蕉在线| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜| 亚洲中文av在线| 亚洲免费av在线视频| 女性被躁到高潮视频| 午夜福利一区二区在线看| 亚洲五月婷婷丁香| 国产伦一二天堂av在线观看| 日韩欧美一区视频在线观看| 麻豆成人午夜福利视频| 99国产精品一区二区三区| av免费在线观看网站| 91成人精品电影| 欧美成人性av电影在线观看| 淫妇啪啪啪对白视频| 久久精品人妻少妇| 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| 亚洲国产毛片av蜜桃av| www.www免费av| 怎么达到女性高潮| 国产一区在线观看成人免费| 久久性视频一级片| 国产免费男女视频| 中文字幕人妻丝袜一区二区| 久久草成人影院| 一二三四在线观看免费中文在| www.999成人在线观看| 老司机午夜十八禁免费视频| 欧美日韩瑟瑟在线播放| 日韩三级视频一区二区三区| 人妻久久中文字幕网| 亚洲成人免费电影在线观看| 久久中文字幕人妻熟女| 日本三级黄在线观看| 久久婷婷成人综合色麻豆| av在线天堂中文字幕| 日韩欧美在线二视频| 国产午夜福利久久久久久| 国产亚洲欧美在线一区二区| 性欧美人与动物交配| 国产精品98久久久久久宅男小说| 久久久久久大精品| 熟女少妇亚洲综合色aaa.| 中文亚洲av片在线观看爽| 亚洲中文av在线| 久久久久国产一级毛片高清牌| 久热爱精品视频在线9| 天堂√8在线中文| 国产亚洲欧美98| 一级黄色大片毛片| 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 欧美日韩黄片免| 国产精品爽爽va在线观看网站 | 此物有八面人人有两片| 日韩av在线大香蕉| 看片在线看免费视频| 国产一区在线观看成人免费| 久9热在线精品视频| 无限看片的www在线观看| 久久精品国产清高在天天线| 首页视频小说图片口味搜索| 身体一侧抽搐| 99久久无色码亚洲精品果冻| 亚洲国产欧美网| av欧美777| 国产熟女午夜一区二区三区| 国产黄片美女视频| 亚洲九九香蕉| 精品国产乱子伦一区二区三区| 欧美日本亚洲视频在线播放| 99riav亚洲国产免费| 一级毛片高清免费大全| 久久亚洲精品不卡| 精品熟女少妇八av免费久了| 亚洲精品一卡2卡三卡4卡5卡| 女生性感内裤真人,穿戴方法视频| 成年女人毛片免费观看观看9| 亚洲电影在线观看av| av在线天堂中文字幕| 日韩欧美国产在线观看| 国产男靠女视频免费网站| 久久精品成人免费网站| 日韩国内少妇激情av| 亚洲,欧美精品.| 日韩一卡2卡3卡4卡2021年| 午夜激情av网站| 视频区欧美日本亚洲| 老司机午夜福利在线观看视频| 欧美三级亚洲精品| 久久亚洲真实| 久久精品亚洲精品国产色婷小说| 欧美激情极品国产一区二区三区| 一本精品99久久精品77| 欧美在线黄色| 在线观看免费午夜福利视频| 国产视频一区二区在线看| 成在线人永久免费视频| 可以在线观看毛片的网站| 搡老岳熟女国产| 男人操女人黄网站| 精品少妇一区二区三区视频日本电影| 日本免费a在线| 91老司机精品| 午夜影院日韩av| 一本一本综合久久| 老司机在亚洲福利影院| 日韩精品免费视频一区二区三区| 亚洲人成电影免费在线| 老熟妇乱子伦视频在线观看| 国产伦人伦偷精品视频| 中文字幕久久专区| 1024香蕉在线观看| 可以免费在线观看a视频的电影网站| 亚洲精品国产区一区二| 精品久久久久久久末码| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久久久99蜜臀| 免费看日本二区| 少妇粗大呻吟视频| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | 日本五十路高清| 十八禁人妻一区二区| 欧美 亚洲 国产 日韩一| 免费高清视频大片| 午夜久久久久精精品| 久久久国产欧美日韩av| av福利片在线| 动漫黄色视频在线观看| 免费看十八禁软件| 天天一区二区日本电影三级| 亚洲性夜色夜夜综合| 观看免费一级毛片| 日韩精品免费视频一区二区三区| 成年女人毛片免费观看观看9| ponron亚洲| 18禁裸乳无遮挡免费网站照片 | 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| 国产精品久久久av美女十八| 日本撒尿小便嘘嘘汇集6| 欧美三级亚洲精品| 俺也久久电影网| 色婷婷久久久亚洲欧美| 亚洲九九香蕉| 国产亚洲精品综合一区在线观看 | 欧美人与性动交α欧美精品济南到| 婷婷精品国产亚洲av| 露出奶头的视频| 国产精品一区二区免费欧美| 久久精品国产亚洲av香蕉五月| 在线观看免费午夜福利视频| 麻豆久久精品国产亚洲av| 老鸭窝网址在线观看| 久久精品国产综合久久久| 天堂动漫精品| 亚洲在线自拍视频| 精品乱码久久久久久99久播| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区四区五区乱码| 日韩免费av在线播放| 桃红色精品国产亚洲av| 国产熟女午夜一区二区三区| 久久香蕉精品热| 日韩av在线大香蕉| 成人国产综合亚洲| 国产成人精品久久二区二区91| 亚洲中文日韩欧美视频| 欧美日韩中文字幕国产精品一区二区三区| 免费观看精品视频网站| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 黄片小视频在线播放| 午夜福利成人在线免费观看| 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| 久久婷婷成人综合色麻豆| 亚洲精品久久国产高清桃花| 亚洲五月色婷婷综合| cao死你这个sao货| 亚洲午夜精品一区,二区,三区| 国产精品精品国产色婷婷| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 男女那种视频在线观看| 一区二区日韩欧美中文字幕| 午夜成年电影在线免费观看| 久热这里只有精品99| 久久精品国产99精品国产亚洲性色| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 999久久久精品免费观看国产| 国产精品 国内视频| 女性被躁到高潮视频| 精品国产乱码久久久久久男人| 久久久久久久久中文| 19禁男女啪啪无遮挡网站| 国产在线精品亚洲第一网站| 国产精品二区激情视频| 欧美一级a爱片免费观看看 | 精品熟女少妇八av免费久了| 国产爱豆传媒在线观看 | 日日爽夜夜爽网站| 成人免费观看视频高清| 在线国产一区二区在线| 亚洲av电影在线进入| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 淫妇啪啪啪对白视频| 黄片小视频在线播放| 国产高清videossex| 日韩欧美一区视频在线观看| 色尼玛亚洲综合影院| 一区福利在线观看| 日本在线视频免费播放| 亚洲激情在线av| 亚洲国产精品久久男人天堂| 国产精品久久久久久精品电影 | 女生性感内裤真人,穿戴方法视频| 欧美一级a爱片免费观看看 | 中文字幕精品亚洲无线码一区 | 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 夜夜爽天天搞| 麻豆成人av在线观看| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 一级片免费观看大全| www日本在线高清视频| 51午夜福利影视在线观看| 国产伦在线观看视频一区| av在线天堂中文字幕| 欧美乱码精品一区二区三区| 搡老妇女老女人老熟妇| 老熟妇乱子伦视频在线观看| 免费看十八禁软件| 999久久久精品免费观看国产| 两性夫妻黄色片| 999久久久精品免费观看国产| 亚洲成av人片免费观看| 亚洲国产欧美日韩在线播放| 国产麻豆成人av免费视频| 好男人电影高清在线观看| 18禁黄网站禁片午夜丰满| 亚洲 国产 在线| bbb黄色大片| 韩国精品一区二区三区| 夜夜夜夜夜久久久久| 欧美日本亚洲视频在线播放| 国产区一区二久久| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9| 亚洲国产毛片av蜜桃av| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线| 亚洲人成网站高清观看| 欧美激情极品国产一区二区三区| netflix在线观看网站| 黄色视频,在线免费观看| 亚洲一区二区三区不卡视频| 大型av网站在线播放| 精品福利观看| 禁无遮挡网站| 日韩免费av在线播放| 午夜激情福利司机影院| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av电影不卡..在线观看| 在线永久观看黄色视频| 国内精品久久久久精免费| 国产黄a三级三级三级人| 免费一级毛片在线播放高清视频| av在线天堂中文字幕| 搞女人的毛片| av超薄肉色丝袜交足视频| 国产亚洲av高清不卡| 亚洲成av人片免费观看| 91字幕亚洲| 在线看三级毛片| 亚洲国产精品999在线| 国产亚洲欧美精品永久| 他把我摸到了高潮在线观看| 啦啦啦观看免费观看视频高清| 老汉色av国产亚洲站长工具| 9191精品国产免费久久| 满18在线观看网站| 国产亚洲精品久久久久久毛片| 高清毛片免费观看视频网站| 少妇粗大呻吟视频| 国产亚洲欧美98| 18禁黄网站禁片免费观看直播| 国产精品久久电影中文字幕| 岛国视频午夜一区免费看| 亚洲在线自拍视频| 一个人免费在线观看的高清视频| 亚洲最大成人中文| 欧美成人一区二区免费高清观看 | 一级a爱视频在线免费观看| 日韩大码丰满熟妇| 日韩欧美 国产精品| 日本一区二区免费在线视频| 波多野结衣av一区二区av| 国产亚洲欧美精品永久| 免费在线观看完整版高清| 人妻丰满熟妇av一区二区三区| 色综合站精品国产| 少妇熟女aⅴ在线视频| 亚洲精品国产一区二区精华液| 国产精品影院久久| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美三级三区| 真人做人爱边吃奶动态| av在线天堂中文字幕| 女性被躁到高潮视频| 又大又爽又粗| 亚洲全国av大片| 欧美黄色淫秽网站| 久久精品aⅴ一区二区三区四区| 中文在线观看免费www的网站 | 国产真实乱freesex| 精品人妻1区二区| 成熟少妇高潮喷水视频| 欧美激情 高清一区二区三区| 日日夜夜操网爽| 亚洲九九香蕉| 又紧又爽又黄一区二区| 精品久久久久久久久久久久久 | www.熟女人妻精品国产| 亚洲精品美女久久av网站| 欧美日本视频| 日韩av在线大香蕉| 身体一侧抽搐| 亚洲一区高清亚洲精品| 久久婷婷人人爽人人干人人爱| 亚洲在线自拍视频| 久久中文字幕人妻熟女| 久热爱精品视频在线9| 99在线视频只有这里精品首页| 99国产极品粉嫩在线观看| 久久久久国产一级毛片高清牌| 丰满的人妻完整版| 99国产精品99久久久久| 男女之事视频高清在线观看| 欧美不卡视频在线免费观看 | 人妻丰满熟妇av一区二区三区| 日韩视频一区二区在线观看| 婷婷精品国产亚洲av| 最近在线观看免费完整版| av天堂在线播放| 久久久久国产一级毛片高清牌| 国产91精品成人一区二区三区| 黄色毛片三级朝国网站| 欧美成人性av电影在线观看| 黄网站色视频无遮挡免费观看| 欧美人与性动交α欧美精品济南到| 女人高潮潮喷娇喘18禁视频| 黄色丝袜av网址大全| 欧美激情极品国产一区二区三区| 女性被躁到高潮视频| 91国产中文字幕| 婷婷精品国产亚洲av在线| 亚洲av电影不卡..在线观看| 国产欧美日韩精品亚洲av| 国产精品亚洲美女久久久| 久久精品成人免费网站| 亚洲av成人不卡在线观看播放网| 欧洲精品卡2卡3卡4卡5卡区| 久久香蕉国产精品| 日韩精品中文字幕看吧| 麻豆国产av国片精品| 无遮挡黄片免费观看| 国产人伦9x9x在线观看| 国产精品爽爽va在线观看网站 | 欧美日韩乱码在线| 亚洲 欧美 日韩 在线 免费| e午夜精品久久久久久久| 国产蜜桃级精品一区二区三区| 亚洲精品av麻豆狂野| 狠狠狠狠99中文字幕| 精品国产亚洲在线| 久久久国产成人精品二区| 国产精品,欧美在线| 午夜日韩欧美国产| a级毛片在线看网站| 久久久久久九九精品二区国产 | 国产乱人伦免费视频| 别揉我奶头~嗯~啊~动态视频| 97人妻精品一区二区三区麻豆 | 日韩欧美一区二区三区在线观看| 高潮久久久久久久久久久不卡| 久久人妻福利社区极品人妻图片| 黄网站色视频无遮挡免费观看| av片东京热男人的天堂| 国产一卡二卡三卡精品| 国产熟女xx| 一边摸一边抽搐一进一小说| www.自偷自拍.com| 国内久久婷婷六月综合欲色啪| 琪琪午夜伦伦电影理论片6080| 又黄又爽又免费观看的视频| 午夜精品久久久久久毛片777| 亚洲第一av免费看| 免费观看精品视频网站| 成人午夜高清在线视频 | 精品午夜福利视频在线观看一区| 老汉色av国产亚洲站长工具| 又黄又爽又免费观看的视频| 欧美日韩一级在线毛片| 国产主播在线观看一区二区| 一级毛片高清免费大全| 久久精品成人免费网站| 男女午夜视频在线观看| 黄片播放在线免费| 亚洲欧美一区二区三区黑人| 不卡一级毛片| 午夜福利成人在线免费观看| 国产一区二区激情短视频| 老熟妇乱子伦视频在线观看| 三级毛片av免费| 色综合亚洲欧美另类图片| 久久精品国产综合久久久| 一本久久中文字幕| 亚洲国产精品999在线| 啦啦啦观看免费观看视频高清| 亚洲一码二码三码区别大吗| 久久久久久九九精品二区国产 | 国产视频一区二区在线看| 夜夜夜夜夜久久久久| 国产成年人精品一区二区| 不卡av一区二区三区| 国产欧美日韩一区二区精品| 国产不卡一卡二| 中文字幕av电影在线播放| av超薄肉色丝袜交足视频| 国产精品影院久久| 两个人看的免费小视频| а√天堂www在线а√下载| 欧美一区二区精品小视频在线| 国产久久久一区二区三区| 露出奶头的视频| 日本黄色视频三级网站网址| 91麻豆av在线| 国产精品九九99| 少妇 在线观看| 夜夜夜夜夜久久久久| 亚洲久久久国产精品| 曰老女人黄片| 亚洲欧美激情综合另类| 99精品欧美一区二区三区四区| 亚洲最大成人中文| 国产麻豆成人av免费视频| 91麻豆精品激情在线观看国产| 无限看片的www在线观看| 午夜精品久久久久久毛片777| 一区二区日韩欧美中文字幕| 欧美乱码精品一区二区三区| 男人操女人黄网站| 草草在线视频免费看| 香蕉久久夜色| 一级作爱视频免费观看| 少妇被粗大的猛进出69影院| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区精品| 久久精品国产亚洲av香蕉五月| 好看av亚洲va欧美ⅴa在| 国产熟女午夜一区二区三区| 男女做爰动态图高潮gif福利片| 中文资源天堂在线| 午夜精品在线福利| 一区二区日韩欧美中文字幕| 美国免费a级毛片| 国产真实乱freesex| 他把我摸到了高潮在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美人与性动交α欧美精品济南到| 国产免费av片在线观看野外av| 一本大道久久a久久精品| 久99久视频精品免费| 国产精品,欧美在线| 亚洲一区中文字幕在线| 国产日本99.免费观看| АⅤ资源中文在线天堂| 亚洲五月色婷婷综合| 婷婷丁香在线五月| a级毛片a级免费在线| 亚洲一区二区三区色噜噜|