• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    線狀和樹枝狀銀納米結(jié)構(gòu)、形成機(jī)理及表面增強(qiáng)拉曼散射性質(zhì)

    2010-12-12 02:42:58吳馨洲裴梅山王廬巖李肖男陶緒堂
    物理化學(xué)學(xué)報 2010年11期
    關(guān)鍵詞:化工學(xué)院物理化學(xué)濟(jì)南

    吳馨洲 裴梅山 王廬巖, 李肖男 陶緒堂

    (1濟(jì)南大學(xué)化學(xué)化工學(xué)院,山東省氟化學(xué)化工材料重點實驗室,濟(jì)南 250022; 2山東大學(xué)晶體材料國家重點實驗室,濟(jì)南 250100)

    Silver nanoparticles,especially one?dimensional nanostruc?tures,have drawn particular attention due to their highest elec?trical,thermal conductivities and strong surface plasmon reso?nance,which make them attractive for use in biochemistry as nanoscale biomaterials[1-5].For instance,Thorpe et al.[6]synthe?sized a composite electrode structure comprised of silver nanowires and carbon nanotubes for use as cathode catalysts in alkaline fuel cell.They found that silver nanowires had similar performance at a much lower catalyst loading than the bulk samples.

    In the past few years,many wet?chemical methods,like soft template,non-template,seedless and ionic liquid processes, have been developed for the synthesis of one dimensional sil?ver nanostructures[7-10].And their properties such as catalysis, SERS,and plasmon resonances have been investigated[5-6,11-12]. However,these methods have their own disadvantages,such as relatively high temperature,expensive and commercially un?available reagents,complicated operations,and low?yield.Suh et al.[10]prepared silver nanowires in the presence ofN?alkyl imidazolium based ionic liquids.The obtained straight wires are about 200 nm in width and up to about 15 mm in length with no or few nanoparticles.But this method requires expen?sive reagents and complicated operations.Therefore,there is still a need to develop a more straightforward procedure for fabricating silver nanowires.Monodispersed silver nanowires were synthesized under oil?bath heating in high yield(>90% without isolation)using bubbling of air through a reagent solu?tion from ca 20℃to the boiling point of ethylene glycol(EG) (198℃)for 20 min by Tsuji et al.[13].Nevertheless,this method is limited due to relatively high temperature and the bubbling of oxygen molecules is indispensable.Most recently,Saha et al.[14]prepared single crystalline micron?sized rectangular silver bar using polyacrylamide(PAM)and silver nitrate(AgNO3)by a hydrothermal process.But this method requires relatively high?er temperature(above 107℃)and the PAM aqueous solution needs to be mature for 7 days.And the main products are rect?angular silver bars,and this method has a low yield of silver bars according to the SEM images.

    Herein,we describe a simple one?step method to prepare tan?gled silver nanowires as well as the dendritic structures,using PAM as the stabilizer and soft template at room temperature in large quantities.The structures obtained in our system are all in tangled morphology,which is different from those silver nanow?ires reported before.Moreover,PAM,being widely used in pe?troleum exploitation,water treatment,textile dyeing and chemi?cal industry,is cheaper and easy to be purchased.It plays the key role in the formation of wire?like structures.The growth mechanism concerning the tangled sliver nanowires are pro?posed and detailed investigated.Further,the study on the SERS properties indicates that such anisotropic structures are suitable substrates for probing PATP and probably other analytes.

    1 Experimental

    1.1 Materials

    Acrylamide(AM,99.0%),Polyacrylamide(PAM,≥99.0%, Mw≈5000000)are purchased from Tianjin Kermel Reagent Co.Ascorbic acid(Vc,99.7%)and silver nitrate(AgNO3, 99.8%)are purchased respectively from Shanghai Reagent Co..4?aminothiophenol(PATP,97%)is purchased from Alfa Aesar China(Tianjin)Co.,Ltd..All chemicals are used without fur?ther purification.The secondary distilled water is used for all solution preparation and experiments.

    1.2 Synthesis of silver products

    A typical procedure to synthesize the silver tangled nanow?ires is as follows:2 mL of 10 mmol·L-1PAM([PAM]denotes concentrations calculated in terms of moles of the repeating unit of PAM,with a molecular weight of 71 g·mol-1,per liter of solution),1 mL of 10 mmol·L-1silver nitrate,1 mL of 10 mmol·L-1ascorbic acid are added to 6 mL of water.The final concentrations of PAM,ascorbic acid,and AgNO3are 2,1,and 1 mmol·L-1,respectively.The solution is stirred for several seconds and aged for 24 h at 25℃without any stirring.All samples are sealed in glass tubes and left at certain temperature for further study.

    1.3 Characterization of silver products

    TEM observations are performed with a JEM?100CX II(JE?OL,Japan)electron microscope operated at an accelerating voltage of 100 kV.To prepare TEM samples,the reacted mix?tures are dispersed in water under sonication and centrifuged at 5500 r·min-1for 15 min.Then the upper solution containing unreduced ions and unbound molecules is removed.Such ob?tained samples are redispersed in water.A little drop of result?ing dispersion is put onto a Formvar?covered copper grid(230 meshes)and followed by drying naturally in the air at room temperature for TEM measurement.For the UV(HP 8453E UV?Vis spectrometer,US)measurements,the suspension obtained above is placed in a 1 cm light path quartz cell,and spectra are recorded at room temperature.Raman measurements are made with a Renishaw System 1000 Raman imaging microscope (Renishaw Plc,U.K.)equipped with 25 mW(632.8 nm)He?Ne laser(model 127?25RP,Spectra?Physics,USA)and a Pelti?er?cooled CCD detector(Renishaw,576 pixels×384 pix?els).A 50×objective(numerical aperture=0.80)mounted on an Olympus BH?2 microscope(Japan)is used to focus the laser onto a spot approximately 1 μm in diameter and collect the back?scattered light from the sample.To analyze the SERS ac?tivities of these samples,40 μL of these concentrated colloids is directly cast on the clean glass slide and let dry in air.Final?ly,10 μL of a 24 mmol·L-1ethanol solution of PATP is cast onto the colloid films formed on the glass slide,and allowing the solvent to evaporate.

    2 Results and discussion

    Fig.1(A-C)presents representative SEM and TEM images of the silver products obtained at a PAM concentration of 2 mmol·L-1,which apparently consists of tangled wire?like struc?tures as the main products with width ranging from 50 to 100 nm.Fig.1D shows a small amount of structures in the products, with some short wires and some aggregated quasi?spherical nanostructures.The quasi?spherical nanoparticles connect with the short wires(arrows in Fig.1D)with the tendency of form?ing tangled silver nanostructures.And the sizes of the sliver quasi?spherical nanostructures range from 50 to 100 nm in di?ameter,which is similar to the width of the wires.

    To investigate the growing mechanism of tangled silver nanostructures,different products obtained from the same sam?ple after certain reaction time are shown in Fig.2.The probable formation mechanism can be described in Fig.3,path A.PAM plays the key role in the formation of such silver nanowires as the capping agent as well as the soft template.In the reaction process,the ascorbic acid acts as the reducing agent.Nucle?ation first occurs in aqueous solution and small particles are formed(Fig.2A).Then the amide groups of PAM molecules are adsorbed on the surfaces of silver nanoparticles simultane?ously.On the basis of Flory?Krigbaum′s theory of dilute solu?tion[15],PAM molecules dissolved in the aqueous solution are mainly in the form of the cloud of chain segments(see Fig.3). The nascent nuclei and small nanoparticles would be arranged side by side along the polymer chains due to the presence of numerous amide groups on PAM chain(Fig.2(B-F)).This is helpful to the anisotropic growth of silver particles and then tangled silver nanowires can be formed through particles at?taching with each other.This can further be verified by Fig. 1D,where it can be seen that some wires are formed through aggregating of some quasi?spherical particles and short wires (denoted by arrows in Fig.1D).Saha et al.[14]demonstrated that when reaction solution containing PAM and AgNO3was heat?ed at a temperature of about 237℃,thermal degradation of am?ide bonds of acryl amide to carboxylic acids occur,accompa?nied by the release of ammonia.Then ammonium ions got re?placed by silver ions and reduced the silver ions attached to the PAM to form a silver nanoparticles assembly along the PAM chain.After oriented attachment and Ostwald ripening,single crystalline micron?sized rectangular silver bars with smooth sur?face were produced.According to Saha,the Ostwald ripening was the key to produce the rectangular smooth silver bars,so the longer reaction time(7 d)was necessary and the yield was relatively lower.In our system,silver tangled nanowires in?stead of rectangular silver bars are the main products due to the fast reaction rate and oriented attachment with the shorted reac?tion time and higher yield.

    According to the mechanism,PAM is the key factor in the synthesis of the tangled silver nanowires.To test this,further experiments are done to study the effects of concentrations of different components and AM(monomer of PAM)as the cap?ping agent on the products.

    Fig.1 SEM(A,B)and TEM(C)images of silver tangled nanostructures from PAM(2 mmol·L-1)?Vc(1 mmol·L-1)?AgNO3(1 mmol·L-1)aqueous solution at 25℃B is a magnified image marked by a white rectangle in A.D represents a few products obtained from the same reaction system with the tendency of forming structures like C.

    With the concentration of ascorbic acid increasing to 10 mmol·L-1,dendritic silver structures are produced(Fig.4A).A higher reducing agent concentration enhances the reduction rate of silver nitrate and results in the fast formation of more sliver nuclei,and such effect is disadvantageous to the growing of sliver nanostructures.The result tells us that the concentra?tion of ascorbic acid has great influence on the silver morpholo?gy.A little lower concentration of ascorbic acid is helpful to the anisotropic growth of silver nanostructures.Therefore,it can be concluded that too fast reduction process is unfavorable to silver tangled nanowires.These obtained dendritic silver structures(Fig.4A)further support our mechanism.As shown in Fig.3,path B,small particles,inside of the cloud of chain segments,connect each other rapidly due to the faster growth rate and lead to formation of the core with the diameter range from 800 nm to 2 μm.Wang et al.[16]reported that dendritic sil?ver nanostructures were synthesized very easily by dropping a droplet of AgNO3?HF solution on silicon wafers without any capping agent and surfactant.They explained the structural evolution by the oriented attachment?based aggregation mecha?nism,which can also be used to explain the formation of den?dritic silver nanostructures in this work(insert in Fig.4A). With prolonging reaction duration,the concentrations of the sil?ver salt and reduction agent decrease,the reaction process is dominated by a non?equilibrium condition(under kinetic fac?tor)due to a high silver ion concentration[16],so silver dendrites (outside the core)are formed.And with increasing reaction time and the consumption of the silver ions,the reaction pro?cess was dominated by a quasi?equilibrium or equilibrium con?dition(thermodynamic factor)[16].The branches(denoted by ar?rows in insert Fig.4A)become less and shorter.

    Fig.2 TEM images of silver products obtained from the samples of Fig.1 for monitoring the tangled nanowires evolution over timet/min:(A)1,(B)60,(C)180,(D)300,(E)420,(F)540

    Fig.3 Schematic illustration of formation mechanism of tangled and dendritic silver nanostructures

    The growth mechanism of tangled nanowires is further certi?fied by the products from the AM?assistant method.AM(2 mmol·L-1)is introduced into the reaction system instead of PAM as the capping agent.Compared to the polyacrylamide, amide(the monomer of PAM)without the long carbon chain can not act as the template,so the silver products are dominat?ed by branched particles with long acuminate branches of more than 300 nm(Fig.4B).Increasing the ascorbic acid concentra?tion to 3 mmol·L-1,flower?like particles with short branches (about 50 nm)appear as the main products,as can be seen in Fig.4C.Moreover the number of the short branches on one sil?ver particle decreases and the central parts of the structures shrink.As we know,metals like Ag,Au,Pt,Pb,and Pd have a face?centered cubic(fcc)structure,which leads to no crystallograph?ic driving force for anisotropic growth[17].Indeed,atoms of these metals should assemble to form faceted spheres to mini?mize their surface energy[17].Therefore spherical core can be easily formed.Nevertheless the appearance of these branched structures demonstrates that amide group can adsorb on silver surface,which indirectly demonstrates the proposed mecha?nism mentioned above.

    Fig.4 TEM images of silver nanoproducts from different AgNO3(1 mmol·L-1)reaction systems at 25℃(A)PAM(2 mmol·L-1)-Vc(10 mmol/L);(B)AM(2 mmol·L-1)-Vc(1 mmol· L-1);(C)AM(2 mmol·L-1)-Vc(3 mmol/L);(D)Vc(1 mmol·L-1).The image inserted in A represents the magnified part of A.

    Additionally,the effect of PAM concentration on the prod?uct is also discussed.When PAM concentrations are changed from 0 to 0.05 mmol·L-1,the products are dendritic silver nanostructures.With PAM concentration increases from 0.1 to 2 mmol·L-1,the quantity of nanowires is also increased and fi?nally nanowires are the main product(Fig.1).Products of sys?tems with PAM concentration increasing to 8 mmol·L-1,are the same as those obtained from system containing PAM of 2 mmol·L-1.With the higher concentration of PAM,the PAM template dominates and directs the growth to form silver tan?gled nanostructures.These results are consistent with the mech?anism mentioned above.

    As can be seen from Fig.5,a large amount of long straight wires(the maximum length is about 7 μm)accompanied with tangled wires are obtained by stirring the reaction system.The stirring process makes the chains of PAM relatively extend, thus resulting to the formation of straight wires.

    Fig.6 shows the absorption spectra of the silver structures presented in Fig.1 and Fig.4A,respectively.It is well known that UV?Vis absorption spectra of silver nanostructures depend strongly on their shapes and sizes[18].The main optical response of spherical silver nanoparticles with diameters of 20-40 nm and 40-90 nm often exhibits a single absorption band around 410 and 480 nm attributed to the surface plasma resonance,re?spectively[19].While anisotropic metal particles could give rise to two or more surface plasmon resonance(SPR)bands[20].

    Fig.5 TEM image of silver nanoproducts from PAM(2 mmol·L-1)?Vc(1 mmol·L-1)?AgNO3(1 mmol·L-1)aqueous solution under stirring for 24 h at 25℃

    Fig.6 UV?Vis absorption spectra of tangled silver nanowires(a)and dendritic nanostructures(b)obtained from different AgNO3(1 mmol·L-1)reaction systems at 25℃(a)PAM(2 mmol·L-1)?Vc(1 mmol·L-1); (b)PAM(2 mmol·L-1)?Vc(10 mmol·L-1)

    The absorption spectrum(Fig.6a)of silver nanowires shows a shoulder peak at around 350 nm and an evident peak centered at 410 nm with a long tail extending to 800 nm.Gao et al.[21]syn?thesized uniform silver nanowires with an average length of 6 mm and diameter of 70 nm via PVP?assisted(polyvinylpyrrol?idone,PVP?K30)polyol reduction.They explained this tail band to the overlapping of the in?plane quadrupole and dipole resonance modes of nanowires with peaks at 445 and 514 nm, respectively[21].In our work,the peak(located at 410 nm)exhib?its a broad full?width at half?maximum of about 100 nm,which could be attributed to the existence of a broad distribution in size and morphology(as can be seen in Fig.1)for these silver structures.Moreover,the shoulder peak at about 350 nm which is attributed to the transversal modes could be considered as the optical signature of relatively long silver nanowires[22].And it is in good accordance with our TEM images.

    The spectrum in Fig.6b displays a broad plasmon band cen?tered at about 420 nm for sliver dendritic structures.The peak at 420 nm is attributed to the out?of?plane dipole resonance,but the expected longitudinal plasmon band does not appear,nei?ther.This may be explained by considering that the silver den?dritic structures do not adopt a uniform morphology(Fig.4A), which signifcantly can decrease the intensity of the longitudi?nal plasmon band,leading to the disappearance of the band[23].

    To investigate the SERS sensitivity of the silver nanowires substrates,the Raman spectra of the PATP molecules adsorbed on the surface of silver nanowires as well as silver dendritic structures are measured.All the obtained SERS spectra of PATP are in agreement with those in the literature[24].It should be noted that without silver colloids,no detectable spectrum could be obtained when the same amount of PATP is dropped on the glass slide(Fig.7a).And noticeable changes in the fre?quency shift and relative intensity of the bands can be ob?served from the SERS spectra on different silver substrates,in?dicating that the thiol group in PATP directly contacts with the silver surfaces.The SERS spectra obtained from the silver den?dritic structures(Fig.7b)and silver nanowires(Fig.7c)are dom?inated with theb2modes(in?plane,out of?phase modes)locat?ed at 1438,1389,1142,1189,and 1003 cm-1.Recent study has shown that the apparently selective enhancement of the non?to?lally symmetric b2modes could be ascribed to the surface cata?lytic reaction of adsorbed PATP molecules to form the aromat?ic azo compound[25].Moreover the enhancement of a1vibration?al modes(in?plane,in?phase modes),such as v(C—C)and v(C—S)at 1577 and 1077 cm-1,is also apparent.The apparent enhancement of a1modes in the SERS spectra may imply that the enhancement via an electromagnetic(EM)mechanism is significant.The better enhancement ability of sample is sup?posed to be closely related to its unique tangled structure be?cause the branches on the particles made the surface of them highly curved[26].In principle,high curvature features on the surface(lightening rod effect)could cause very large enhance?ment[24].In contrast with the silver dendritic structures,the SERS intensity of nanowires is stronger.According to Xia et al.[27],high surface areas and many sharp edges could serve as great substrates for SERS detection.From Fig.1A and Fig.4A, the tangled nanowires have larger surfaces areas than the den?dritic structures with the same amount of silver atoms,because the dendritic structures have relatively larger cores.Although it is difficult to calculate the enhancement factors from these data because of the complex particle shapes,the strong Raman sig?nals enabled by the particles indicate that these tangled silver structures are active SERS substrates.

    Fig.7 Comparison of normal Raman spectrum and SERS spectra of PATP(a)normal Raman spectrum of solid sample;(b)and(c)are SERS spectra of PATP(0.024 mol·L-1)on the dendritic structures and silver nanowires, respectively.

    3 Conclusions

    At mild conditions,a large yield of tangled silver nanowires and dendritic structures are synthesized from PAM aqueous solution under different concentrations of ascorbic acid.PAM provides a useful soft template for the growth of tangled silver nanowires.At the initial reaction stage,silver nuclei are formed and adsorbed by PAM with a tangled structure.As the reaction time is prolonged,the nanoparticles contact with each other and grow along the polymer chain,leading to the formation of tangled silver nanowires.When the reducer concentration become higher or small AM molecule is used to replace PAM as the capping agent,it is disadvantageous for silver particles to anisotropically grow along the soft template, so dendritic or branched nanostructures can be obtained. Raman measurements show silver nanowires and dendritic structures are active SERS substrates for probing PATP and probably other analytes.The tangled structures will provide new structural diversity for the applications in biological tagging,optoelectronics,SERS,and catalysis.

    1 Yao,H.J.;Liu,J.;Duan,J.L.;Hou,M.D.;Sun,Y.M.;Mo,D.; Chen,Y.F.;Xue,Z.H.Acta Phys.?Chim.Sin.,2007,23:489 [姚會軍,劉 杰,段敬來,侯明東,孫友梅,莫 丹,陳艷峰,薛智浩.物理化學(xué)學(xué)報,2007,23:489]

    2 Fu,X.F.;Zou,H.M.;Zhou,L.;Zhou,Z.K.;Yu,X.F.;Hao,Z. H.Acta Phys.?Chim.Sin.,2008,24:781 [付小鋒,鄒化民,周 利,周張凱,喻學(xué)峰,郝中華.物理化學(xué)學(xué)報,2008,24:781]

    3 Chi,G.J.;Yao,S.W.;Fan,J.;Zhang,W.G.;Wang,H.Z.Acta Phys.?Chim.Sin.,2002,18:532 [遲廣俊,姚素薇,范 君,張衛(wèi)國,王宏智.物理化學(xué)學(xué)報,2002,18:532]

    4 Xia,Y.;Yang,P.;Sun,Y.;Wu,Y.;Mayers,B.;Gates,B.;Yin, Y.;Kim,F.;Yan,H.Adv.Mater.,2003,15:353

    5 Sarkar,R.;Kumbhakar,P.;Mitra,A.K.;Ganeev,R.A.Curr. Appl.Phys.,2010,10:853

    6 Kostowskyj,M.A.;Gilliama,R.J.;Kirkb,D.W.;Thorpe,S.J. Int.J.Hydrog.Energy,2008,33:5773

    7 Gao,Y.;Jiang,P.;Liu,D.F.;Yuan,H.J.;Yan,X.Q.;Zhou,Z. P.;Wang,J.X.;Song,L.;Liu,L.F.;Zhou,W.Y.;Wang,G.; Wang,C.Y.;Xie,S.S.Chem.Phys.Lett.,2003,380:146

    8 Jiang,Z.Y.;Xie,Z.X.;Zhang,S.H.;Xie,S.Y.;Huang,R.B.; Zheng,L.S.Chem.Phys.Lett.,2003,374:645

    9 Chen,C.;Wang,L.;Yu,H.;Jiang,G.;Yang,Q.;Zhou,J.;Xiang W.;Zhang,J.Mater.Chem.Phys.,2008,107:13

    10 Kim,T.Y.;Kim,W.J.;Hong,S.H.;Kim,J.E.;Suh,K.S. Angew.Chem.Int.Edit.,2009,48:3806

    11 Sanders,A.W.;Routenberg,D.A.;Wiley,B.J.;Xia,Y.; Dufresne,E.R.;Reed,M.A.Nano Lett.,2006,6:1822

    12 Kang,T.;Yoon,I.;Jeon,K.S.;Choi,W.;Lee,Y.;Seo,K.;Yoo, Y.;Park,Q.H.;Ihee,H.;Suh,Y.D.;Kim,B.J.Phys.Chem.C, 2009,113:7492

    13 Tanga,X.;Tsuji,M.;Jiang,P.;Nishio,M.;Jang,S.M.;Yoon,S. H.Colloids and Surfaces A,2009,338:36

    14 Mondal,B.;Majumdar,D.;Saha,S.K.J.Mater.Res.,2010,25: 383

    15 Krigbaum,W.R.;Geyme,D.O.J.Am.Chem.Soc.,1959,81: 1859

    16 Ye,W.;Shen,C.;Tian,J.;Wang,C.;Hui,C.;Gao,H.Solid State Sci.,2009,11:1088.

    17 Chen,J.;Wiley,B.J.;Xia,Y.Langmuir,2007,23:4120

    18 Caswell,K.K.;Bender,C.M.;Murphy,C.J.Nano Lett.,2003, 3:667

    19 Mdluli,P.S.;Revaprasadu,N.Mater.Lett.,2009,63:447

    20 Brennan,M.E.;Whelan,A.M.;Kelly,J.M.;Blau,W.J.Synth. Met.,2005,154:205

    21 Gao,Y.;Jiang,P.;Song,L.;Liu,L.;Yan,X.;Zhou,Z.;Liu,D.; Wang,J.;Yuan,H.;Zhang,Z.;Zhao,X.;Dou,X.;Zhou,W.; Wang,G.;Xie,S.J.Phys.D?Appl.Phys.,2005,38:1061

    22 Sun,Y.;Yin,Y.;Mayers,B.T.;Herricks,T.;Xia,Y.Chem. Mater.,2002,14:4736

    23 Zhang,J.;Liu,K.;Dai,Z.;Feng,Y.;Bao,J.;Mo,X.Mater. Chem.Phys.,2006,100:313

    24 Zou,X.;Ying,E.;Dong,S.J.Colloid Interface Sci.,2007,306: 307

    25 Wu,D.Y.;Liu,X.M.;Huang,Y.F.;Ren,B.;Xu,X.;Tian,Z.Q. J.Phys.Chem.B,2009,113:18212

    26 Jana,N.R.;Pal,T.Adv.Mater.,2007,19:1761

    27 Wang,Y.;Camargo,P.H.C.;Skrabalak,S.E.;Gu,H.;Xia,Y. Langmuir,2008,24:12042

    猜你喜歡
    化工學(xué)院物理化學(xué)濟(jì)南
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Chemical Concepts from Density Functional Theory
    Paving Memory Lane
    濟(jì)南
    汽車與安全(2016年5期)2016-12-01 05:21:55
    《化工學(xué)報》贊助單位
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    菩萨蛮人人尽说江南好唐韦庄| 满18在线观看网站| 精品福利观看| 亚洲欧美一区二区三区国产| www日本在线高清视频| 欧美日韩国产mv在线观看视频| 校园人妻丝袜中文字幕| 久久国产亚洲av麻豆专区| 大片免费播放器 马上看| av不卡在线播放| 国产99久久九九免费精品| 啦啦啦视频在线资源免费观看| 99九九在线精品视频| 一区二区三区乱码不卡18| 人妻人人澡人人爽人人| 国产精品一区二区精品视频观看| 亚洲精品日本国产第一区| 中文乱码字字幕精品一区二区三区| 婷婷色综合www| 久久久久精品国产欧美久久久 | 久久精品久久精品一区二区三区| 色视频在线一区二区三区| 精品一区二区三区av网在线观看 | 国产在视频线精品| 亚洲欧美日韩高清在线视频 | 香蕉丝袜av| 日韩人妻精品一区2区三区| 成人黄色视频免费在线看| 极品人妻少妇av视频| 午夜激情久久久久久久| 青青草视频在线视频观看| 99九九在线精品视频| 欧美国产精品一级二级三级| www.熟女人妻精品国产| 一区二区三区四区激情视频| 99久久综合免费| 下体分泌物呈黄色| 少妇粗大呻吟视频| 午夜福利视频在线观看免费| 国产精品国产av在线观看| 国产一区二区三区综合在线观看| 一级毛片黄色毛片免费观看视频| 日韩大码丰满熟妇| 国产麻豆69| 丰满人妻熟妇乱又伦精品不卡| 亚洲,一卡二卡三卡| 在现免费观看毛片| 丰满饥渴人妻一区二区三| av线在线观看网站| 欧美变态另类bdsm刘玥| 90打野战视频偷拍视频| 大话2 男鬼变身卡| 亚洲七黄色美女视频| 久久久亚洲精品成人影院| 满18在线观看网站| 中文欧美无线码| 青草久久国产| 国产又色又爽无遮挡免| 男女床上黄色一级片免费看| 视频区欧美日本亚洲| 成在线人永久免费视频| 熟女av电影| 久久人妻福利社区极品人妻图片 | 久久青草综合色| 老司机深夜福利视频在线观看 | 日本欧美视频一区| 久久鲁丝午夜福利片| 精品国产乱码久久久久久男人| 汤姆久久久久久久影院中文字幕| 中文字幕人妻熟女乱码| 日韩av免费高清视频| 免费av中文字幕在线| 在线观看免费高清a一片| 男人爽女人下面视频在线观看| 99热全是精品| 日本五十路高清| 国产午夜精品一二区理论片| 国产精品九九99| 亚洲精品美女久久av网站| 国产精品久久久人人做人人爽| 午夜免费观看性视频| 90打野战视频偷拍视频| 欧美在线一区亚洲| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽av亚洲精品天堂| 一级a爱视频在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 天天影视国产精品| 黄色一级大片看看| 久久99一区二区三区| 日韩伦理黄色片| 激情五月婷婷亚洲| 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 日韩精品免费视频一区二区三区| 国产精品九九99| 麻豆av在线久日| 色婷婷av一区二区三区视频| 校园人妻丝袜中文字幕| 97精品久久久久久久久久精品| 男女午夜视频在线观看| 看免费成人av毛片| 国产精品久久久久久人妻精品电影 | 精品一区二区三区四区五区乱码 | 老汉色∧v一级毛片| 欧美变态另类bdsm刘玥| 亚洲九九香蕉| 亚洲一区二区三区欧美精品| 啦啦啦在线观看免费高清www| 人人澡人人妻人| 美女国产高潮福利片在线看| 人人妻,人人澡人人爽秒播 | 亚洲欧洲国产日韩| 国产成人av激情在线播放| 黄网站色视频无遮挡免费观看| 午夜福利乱码中文字幕| 女性生殖器流出的白浆| 亚洲av欧美aⅴ国产| 色综合欧美亚洲国产小说| 一区二区三区四区激情视频| 亚洲欧美激情在线| 男女无遮挡免费网站观看| 久久中文字幕一级| 免费在线观看黄色视频的| 久久人人爽av亚洲精品天堂| 国产精品99久久99久久久不卡| 新久久久久国产一级毛片| 精品人妻熟女毛片av久久网站| 中文字幕另类日韩欧美亚洲嫩草| 黄色片一级片一级黄色片| 久久青草综合色| 777久久人妻少妇嫩草av网站| 无遮挡黄片免费观看| 国产三级黄色录像| 免费人妻精品一区二区三区视频| 婷婷丁香在线五月| 9191精品国产免费久久| 欧美日韩黄片免| 成人午夜精彩视频在线观看| 精品少妇一区二区三区视频日本电影| 天天影视国产精品| 精品国产乱码久久久久久男人| 99精品久久久久人妻精品| 国产精品一区二区在线不卡| 亚洲一区中文字幕在线| 国产真人三级小视频在线观看| 香蕉丝袜av| 一区二区av电影网| 脱女人内裤的视频| 99热全是精品| 国产午夜精品一二区理论片| 亚洲一码二码三码区别大吗| 久久久久视频综合| 亚洲国产最新在线播放| 自线自在国产av| 蜜桃在线观看..| 久久久久久久久久久久大奶| 一本—道久久a久久精品蜜桃钙片| 91精品伊人久久大香线蕉| 欧美日韩黄片免| h视频一区二区三区| 久久人妻熟女aⅴ| 国产国语露脸激情在线看| 久久国产精品人妻蜜桃| 侵犯人妻中文字幕一二三四区| av在线app专区| 免费黄频网站在线观看国产| 人人妻人人爽人人添夜夜欢视频| 亚洲一区二区三区欧美精品| 高清av免费在线| 好男人视频免费观看在线| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 老鸭窝网址在线观看| 亚洲av男天堂| 丁香六月欧美| 老汉色∧v一级毛片| 尾随美女入室| 久久99精品国语久久久| 精品一区在线观看国产| 在线 av 中文字幕| 精品亚洲乱码少妇综合久久| 国产精品九九99| 免费观看a级毛片全部| 制服人妻中文乱码| 最近手机中文字幕大全| 一个人免费看片子| 日本a在线网址| 久久久久视频综合| 在现免费观看毛片| 国产在线观看jvid| 一级毛片黄色毛片免费观看视频| 桃花免费在线播放| 色播在线永久视频| 纯流量卡能插随身wifi吗| 亚洲精品美女久久av网站| 69精品国产乱码久久久| 色视频在线一区二区三区| 亚洲精品国产区一区二| 深夜精品福利| 成人黄色视频免费在线看| 亚洲欧美日韩高清在线视频 | e午夜精品久久久久久久| 国产99久久九九免费精品| 女人被躁到高潮嗷嗷叫费观| 欧美黄色片欧美黄色片| 免费高清在线观看视频在线观看| 亚洲欧洲日产国产| www日本在线高清视频| 亚洲第一av免费看| 国产高清不卡午夜福利| 久久久精品国产亚洲av高清涩受| 久久精品久久精品一区二区三区| 欧美亚洲日本最大视频资源| 嫩草影视91久久| 天天躁夜夜躁狠狠躁躁| 天天影视国产精品| 蜜桃在线观看..| 午夜福利在线免费观看网站| 满18在线观看网站| 制服诱惑二区| av又黄又爽大尺度在线免费看| 精品一区二区三区av网在线观看 | 亚洲精品国产av成人精品| 国产精品一区二区精品视频观看| 1024视频免费在线观看| 亚洲天堂av无毛| 午夜免费鲁丝| 丰满饥渴人妻一区二区三| 国产在线视频一区二区| bbb黄色大片| 好男人视频免费观看在线| 丝袜喷水一区| 国产福利在线免费观看视频| 亚洲综合色网址| 在线 av 中文字幕| h视频一区二区三区| 天天躁夜夜躁狠狠久久av| 欧美大码av| 国产精品99久久99久久久不卡| 精品人妻一区二区三区麻豆| 男女之事视频高清在线观看 | 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 免费高清在线观看视频在线观看| 91老司机精品| 中文字幕亚洲精品专区| 国产免费现黄频在线看| av片东京热男人的天堂| 老司机深夜福利视频在线观看 | 久久毛片免费看一区二区三区| 成人手机av| 高清不卡的av网站| 国产野战对白在线观看| 欧美在线一区亚洲| 久久ye,这里只有精品| 热re99久久精品国产66热6| 久久亚洲精品不卡| 亚洲av国产av综合av卡| 日本av手机在线免费观看| 欧美 日韩 精品 国产| 女性生殖器流出的白浆| 国产成人欧美在线观看 | 久久久精品免费免费高清| 免费观看a级毛片全部| 精品久久久精品久久久| 免费少妇av软件| 日韩一本色道免费dvd| 91老司机精品| 伊人久久大香线蕉亚洲五| 少妇裸体淫交视频免费看高清 | 亚洲五月色婷婷综合| 欧美黄色片欧美黄色片| 最黄视频免费看| 在现免费观看毛片| 国产91精品成人一区二区三区 | 女人高潮潮喷娇喘18禁视频| 一级毛片黄色毛片免费观看视频| 亚洲精品国产一区二区精华液| 黄网站色视频无遮挡免费观看| 老汉色av国产亚洲站长工具| 人人妻人人澡人人看| 欧美人与性动交α欧美软件| 欧美黑人精品巨大| 国产精品国产三级专区第一集| 50天的宝宝边吃奶边哭怎么回事| 国产爽快片一区二区三区| 国产成人精品久久久久久| 国产片内射在线| 久久久久久人人人人人| 欧美激情高清一区二区三区| 首页视频小说图片口味搜索 | 少妇裸体淫交视频免费看高清 | 婷婷成人精品国产| 岛国毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| 久久久久网色| 1024香蕉在线观看| 国产国语露脸激情在线看| 国产老妇伦熟女老妇高清| 国产不卡av网站在线观看| 精品国产乱码久久久久久小说| 午夜福利影视在线免费观看| 亚洲精品久久成人aⅴ小说| 久久九九热精品免费| 日日爽夜夜爽网站| 少妇精品久久久久久久| 日韩av不卡免费在线播放| 亚洲 欧美一区二区三区| 国产日韩欧美在线精品| 又大又爽又粗| 久久精品久久精品一区二区三区| 国产成人系列免费观看| 只有这里有精品99| 国产免费视频播放在线视频| 亚洲第一av免费看| 久久99精品国语久久久| 亚洲中文日韩欧美视频| 91成人精品电影| 一级,二级,三级黄色视频| 久久久久久久精品精品| av在线app专区| 国产免费福利视频在线观看| 成人影院久久| 黄色 视频免费看| 叶爱在线成人免费视频播放| 免费久久久久久久精品成人欧美视频| 国产精品一区二区精品视频观看| 亚洲,欧美,日韩| e午夜精品久久久久久久| 亚洲精品一卡2卡三卡4卡5卡 | 在线观看一区二区三区激情| 中国美女看黄片| 99久久综合免费| 国产欧美日韩一区二区三 | 亚洲av国产av综合av卡| 精品国产国语对白av| 热99久久久久精品小说推荐| 日本一区二区免费在线视频| 又黄又粗又硬又大视频| 欧美老熟妇乱子伦牲交| 少妇人妻 视频| 欧美日韩精品网址| www.av在线官网国产| 精品久久蜜臀av无| 久久久精品区二区三区| 国产av精品麻豆| 男女高潮啪啪啪动态图| 国产欧美日韩一区二区三区在线| 日本a在线网址| 精品少妇久久久久久888优播| 新久久久久国产一级毛片| 日韩av在线免费看完整版不卡| 久久99热这里只频精品6学生| 免费黄频网站在线观看国产| 一区二区三区精品91| 亚洲欧美日韩高清在线视频 | 久久久久精品人妻al黑| 美女扒开内裤让男人捅视频| 国产日韩欧美亚洲二区| 精品熟女少妇八av免费久了| 嫁个100分男人电影在线观看 | 一本一本久久a久久精品综合妖精| 国产一区亚洲一区在线观看| 国产欧美日韩一区二区三区在线| 亚洲激情五月婷婷啪啪| 亚洲自偷自拍图片 自拍| 捣出白浆h1v1| 国产高清videossex| 久久久久久免费高清国产稀缺| 日本a在线网址| 亚洲欧美一区二区三区久久| 免费在线观看完整版高清| 少妇的丰满在线观看| 自线自在国产av| 成年人黄色毛片网站| 水蜜桃什么品种好| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 国产精品久久久人人做人人爽| 成人国语在线视频| 蜜桃国产av成人99| 日韩av不卡免费在线播放| 超碰成人久久| 国产又色又爽无遮挡免| 99久久精品国产亚洲精品| 在线观看www视频免费| 亚洲av日韩在线播放| 午夜日韩欧美国产| avwww免费| 亚洲国产av新网站| 欧美成人午夜精品| 亚洲av电影在线进入| 久久 成人 亚洲| 亚洲,欧美精品.| 最新在线观看一区二区三区 | 日本一区二区免费在线视频| 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 国产精品亚洲av一区麻豆| 免费看av在线观看网站| 国产成人精品久久二区二区91| 久久99热这里只频精品6学生| 国产免费又黄又爽又色| 欧美人与性动交α欧美精品济南到| 高清欧美精品videossex| 在线精品无人区一区二区三| 国产男女内射视频| 久久久久久久大尺度免费视频| 又大又爽又粗| 免费日韩欧美在线观看| 性高湖久久久久久久久免费观看| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区蜜桃| 国产黄色免费在线视频| 一本综合久久免费| www.av在线官网国产| 国产成人啪精品午夜网站| 狠狠精品人妻久久久久久综合| 日韩人妻精品一区2区三区| 啦啦啦在线免费观看视频4| 赤兔流量卡办理| 少妇的丰满在线观看| 18禁观看日本| 18禁观看日本| 亚洲人成电影观看| 精品卡一卡二卡四卡免费| 欧美人与善性xxx| 熟女少妇亚洲综合色aaa.| 韩国精品一区二区三区| 国产黄色免费在线视频| 99九九在线精品视频| 成人免费观看视频高清| 久久青草综合色| 亚洲男人天堂网一区| 中文字幕最新亚洲高清| 亚洲精品久久成人aⅴ小说| 国产精品亚洲av一区麻豆| 中文字幕亚洲精品专区| 亚洲人成电影观看| 午夜激情av网站| 亚洲欧美精品自产自拍| 丝袜美足系列| 黄色一级大片看看| 9色porny在线观看| 少妇被粗大的猛进出69影院| 午夜福利视频在线观看免费| 最近中文字幕2019免费版| 久久久精品94久久精品| 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 国产日韩欧美视频二区| 国产成人精品久久久久久| 一级毛片我不卡| videosex国产| 校园人妻丝袜中文字幕| 免费看不卡的av| 日本猛色少妇xxxxx猛交久久| 在线观看人妻少妇| 操出白浆在线播放| 另类精品久久| 免费高清在线观看视频在线观看| 黄色视频在线播放观看不卡| 男女下面插进去视频免费观看| 人妻人人澡人人爽人人| 久久久国产精品麻豆| 一区二区三区四区激情视频| 中文字幕人妻丝袜一区二区| 熟女少妇亚洲综合色aaa.| 国产日韩欧美亚洲二区| 国产国语露脸激情在线看| 久久久久久久大尺度免费视频| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 欧美 亚洲 国产 日韩一| av有码第一页| 亚洲色图综合在线观看| www.999成人在线观看| 黑人猛操日本美女一级片| 精品国产一区二区三区四区第35| 18禁裸乳无遮挡动漫免费视频| 极品少妇高潮喷水抽搐| 午夜老司机福利片| 欧美 日韩 精品 国产| 欧美日韩视频精品一区| 一边摸一边做爽爽视频免费| 亚洲黑人精品在线| 中文乱码字字幕精品一区二区三区| 亚洲九九香蕉| 午夜91福利影院| videosex国产| 精品少妇内射三级| 国产一区二区激情短视频 | 亚洲国产欧美在线一区| 久久久国产欧美日韩av| 免费不卡黄色视频| 精品人妻1区二区| 精品久久久久久电影网| 欧美+亚洲+日韩+国产| 国产国语露脸激情在线看| 晚上一个人看的免费电影| 日本色播在线视频| 每晚都被弄得嗷嗷叫到高潮| 成人黄色视频免费在线看| 亚洲国产欧美日韩在线播放| 午夜av观看不卡| 丝袜在线中文字幕| 如日韩欧美国产精品一区二区三区| 建设人人有责人人尽责人人享有的| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 又大又爽又粗| 777久久人妻少妇嫩草av网站| 天天操日日干夜夜撸| 最近手机中文字幕大全| 国产亚洲精品久久久久5区| 亚洲欧美清纯卡通| 国产精品av久久久久免费| 欧美精品啪啪一区二区三区 | 久久精品国产亚洲av涩爱| 久久人人爽av亚洲精品天堂| 欧美人与善性xxx| 国产99久久九九免费精品| www.999成人在线观看| 看免费av毛片| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| kizo精华| 久久综合国产亚洲精品| 一二三四社区在线视频社区8| 午夜免费鲁丝| 国产在线免费精品| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费| videosex国产| 天天躁日日躁夜夜躁夜夜| 亚洲九九香蕉| 热99国产精品久久久久久7| 满18在线观看网站| 日韩 亚洲 欧美在线| 一级,二级,三级黄色视频| 97人妻天天添夜夜摸| 美女大奶头黄色视频| 97人妻天天添夜夜摸| 国产黄色免费在线视频| 久久久久国产精品人妻一区二区| 婷婷色麻豆天堂久久| 国产亚洲av高清不卡| 国产色视频综合| 久久久久久久大尺度免费视频| 国产成人av教育| 人人妻,人人澡人人爽秒播 | 久久 成人 亚洲| 亚洲人成77777在线视频| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 国产精品久久久久久精品电影小说| 国产熟女欧美一区二区| 免费日韩欧美在线观看| 色精品久久人妻99蜜桃| 国产视频一区二区在线看| 国产色视频综合| 午夜精品国产一区二区电影| 性少妇av在线| av在线老鸭窝| 一区二区av电影网| 婷婷成人精品国产| 免费在线观看黄色视频的| 久久久久网色| 天天操日日干夜夜撸| 秋霞在线观看毛片| 后天国语完整版免费观看| 中文字幕亚洲精品专区| 亚洲国产av影院在线观看| 午夜福利视频在线观看免费| 国产精品三级大全| 人人妻人人爽人人添夜夜欢视频| 丁香六月欧美| 成人亚洲欧美一区二区av| 一本久久精品| 亚洲av欧美aⅴ国产| 欧美成人午夜精品| 18禁黄网站禁片午夜丰满| 精品亚洲成国产av| 中文精品一卡2卡3卡4更新| 亚洲视频免费观看视频| 国精品久久久久久国模美| 国产av精品麻豆| 亚洲欧美中文字幕日韩二区| 一区二区三区精品91| 自线自在国产av| 91麻豆av在线| 宅男免费午夜| 免费在线观看日本一区| 老司机影院毛片| 亚洲自偷自拍图片 自拍| 亚洲一区二区三区欧美精品| 国产成人欧美| 国产97色在线日韩免费| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| 国产一区二区激情短视频 | 亚洲一区中文字幕在线| 超色免费av| 亚洲伊人色综图| 国产精品免费大片| 久久精品国产亚洲av涩爱| 亚洲欧美清纯卡通| 最新的欧美精品一区二区| 99久久人妻综合| 国产激情久久老熟女| 成年人免费黄色播放视频| 夜夜骑夜夜射夜夜干|