• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    低溫NH3-SCR催化劑MnOx-CeOx/ACF的SO2中毒機理

    2010-12-11 09:08:08沈伯雄
    物理化學學報 2010年11期
    關鍵詞:亞硫酸鹽南開大學硫酸鹽

    沈伯雄 劉 亭

    (南開大學環(huán)境科學與工程學院,天津 300071)

    低溫NH3-SCR催化劑MnOx-CeOx/ACF的SO2中毒機理

    沈伯雄*劉 亭

    (南開大學環(huán)境科學與工程學院,天津 300071)

    在二氧化硫(SO2)氣氛下,對Fe、Cu和V改性的催化劑MnOx-CeOx/ACF(活性碳纖維)的氨選擇性催化還原(NH3-SCR)一氧化氮的低溫活性進行研究.實驗結果表明:以Cu和V改性催化劑未提高MnOx-CeOx/ACF的低溫抗SO2性能;Fe改性MnOx-CeOx/ACF在初始6 h內(nèi)提高了催化劑的抗SO2性能,但較長時間仍然失活.以N2吸附、X射線光電子能譜(XPS)、傅里葉變換紅外(FT-IR)光譜以及熱重分析(TGA)等手段對中毒催化劑進行分析.在SO2存在下,催化劑中毒歸因于兩個方面:一是覆蓋于催化劑表面的銨鹽類物質,二是SO2與催化劑中的金屬氧化物反應生成的金屬硫酸鹽及亞硫酸鹽.在中毒催化劑中硫元素主要以金屬硫酸鹽及亞硫酸鹽的形式存在,其在中毒的MnOx-CeOx/ACF、Fe-MnOx-CeOx/ACF、Cu-MnOx-CeOx/ACF和V-MnOx-CeOx/ACF催化劑中所占比例分別為70.4%、68.9%、86.3%和71.4%(w).進一步揭示了MnOx-CeOx/ACF催化劑在低溫SCR條件下的SO2中毒機理.

    低溫選擇性催化還原;MnOx-CeOx/ACF;NO;SO2

    Selective catalytic reduction(SCR)of nitrogen oxides(NOx) with ammonia(NH3)has been a well-proven technique to remove NOxin flue gases from stationary sources.The low-temperature SCR process always operates at temperature below 200℃which is the typical temperature of flue gases.The low-temperature SCR unit can be located downstream of the particulate control device and desulfurizer,which results in systems of low energy consumption and retrofitting easily into the existing boiler systems for flue gas cleaning.There is a great interest in the development of low-temperature SCR catalysts.

    Manganese-cerium-mixed-oxide catalysts have been reported to be active for low-temperature SCR of NOxwith NH3.Manganese-cerium oxidesprepared by co-precipitation method yielded high NO conversion at 150℃[1-2].Supported manganesecerium oxide catalysts,such as MnOx-CeO2/AC/C[3](AC means activated carbon)and ceria modified MnOx/TiO2[4],have shown high activities for NOxreduction by NH3.Activated carbon fiber (ACF)-supported manganese oxide catalysts were also found to be highly active for NOx-SCR at low temperature[5-6].Marbán et al.[7]carried out a survey of metal oxides(manganese,iron,vanadium,chromium,and nickel oxides)to form active phase on ACF surface and the catalytic activity order was found to be Fe>Mn>V>Cr>Ni.

    Flue gases always contain low concentrations of sulfur dioxide (SO2)even after desulfurization.Many researchers concluded that even low concentrations of SO2poisoned the catalysts[8-9].In the presence of SO2,ACF-supported metal oxide catalysts were also deactivated and SO2tolerance of the different metals followed the order:V>Cr>Fe>Mn(at 150℃)[7].Recently,Wu et al.[10]reported that Ce doped Mn/TiO2catalyst exhibited certain SO2resistance in the presence of 0.01%(w)SO2at 150℃,but the catalytic activity also decreased gradually within the reaction time of 6.5 h.Up to now,there were few reports on deactivation mechanism of the catalysts under low-temperature SCR conditions in the presence of SO2.

    In this work,the catalytic activity and SO2tolerance of MnOx-CeOx/ACF were investigated under low-temperature SCR conditions.Some transition metals(Fe[5,7,11],V[12-14],and Cu[15-16]),which wereactiveinthelow-temperatureSCRreaction,wereintroduced to modify the catalyst of MnOx-CeOx/ACF.Special attention was focused on the deactivation mechanism of the catalysts based on MnOx-CeOx/ACF by SO2.

    1 Experimental

    1.1 Materials

    HNO3,citricacid(C6H8O7),manganesenitrates(Mn(NO3)2),cerium nitrates(Ce(NO3)3),ferric nitrates(Fe(NO3)3),cupric nitrates (Cu(NO3)2),and ammonium metavanadate(NH4VO3)were of analytical grade and obtained from Tianjin Guangfu Fine Chemical Research Institute,China.Polyacrylonitrile-based ACF was supplied by Jiangsu SuTong Carbon Fiber Co.,China.

    1.2 Support treatment

    The polyacrylonitrile-based ACF was used as the catalyst support for NOxreduction.The ACF was oxidized with HNO3(30%,w)at 90℃for 2 h at first.After this process,the ACF was washed to be neutral with deionized water and then dried at 105℃for 10 h.The Brunauer-Emmet-Teller(BET)surface areas of ACF before and after HNO3oxidization were 1000 m2·g-1and 550 m2·g-1,respectively.

    1.3 Catalyst preparation

    The MnOx-CeOx/ACF catalysts with the same loadings of(6%, w)Mn and(6%,w)Ce was synthesized by incipient-wetness impregnation method using Mn(NO3)2and Ce(NO3)3as precursors. The oxidized ACF was impregnated with the aqueous solution of Mn(NO3)2,Ce(NO3)3in citric acid at room temperature for 24 h.The molar ratio of citric acid to metal components(the total moles of manganese and cerium)was 1.0.After the impregnation,the catalysts were dried in a vacuum at 105℃for 3 h followed by calcination in N2stream at 500℃for 3 h.Following the same procedure,the catalyst based on MnOx-CeOx/ACF with the addition of Fe,Cu or V respectively was prepared using corresponding metal precursors,Fe(NO3)3for Fe,Cu(NO3)2for Cu,and NH4VO3for V.In the resulted catalysts M-MnOx-CeOx/ ACF(M=Fe,Cu,or V),the loadings of M element were all 2% (w).

    1.4 Catalytic tests

    The SCR activities of the catalysts for NOxremoval in the presence of SO2were carried out in a fixed-bed flow reactor. Five gas streams,0.06%NO,0.065%NH3,3.6%O2,0.01%SO2and pure N2in balance were used to simulate the flue gases.In all the runs,the total gas flow rate was maintained at 300 mL· min-1over 1.0 g of the catalysts.The SCR of NO with NH3over all the catalysts in the absence of SO2was stabilized for 1 h at first,and then 0.01%SO2was added into SCR gas conditions. During the measurements,the concentrations of NO at the inlet and outlet of the reactor were monitored by Flue Gas Analyzer (KM900,Kane International ltd.,United Kingdom)equipped with NO and SO2sensors.

    1.5 Catalyst characterization

    The morphology of the catalysts based on MnOx-CeOx/ACF wasdeterminedon a SS-550 microscope(Shimadzu Corp.,Japan) at 15 keV.

    The N2adsorption isotherms were measured at-196℃on an automated gas adsorption system(Tristar 3000,Micrometrics Instrument Corp.,USA).The specific surface area and the adsorption average pore width of each sample were determined through the BET method.The t-plot theory was used to calculate the micropore(<2 nm)surface area and volume.Before the measurements,the samples were dried at 90℃for 2 h and then evacuated at 150℃for 10 h both in a vacuum.

    The X-ray photoelectron spectroscopy(XPS)was recorded using a Kratos Axis Ultra DLD spectrometer(Shimadzu Corp., Japan)equipped with a monochromated Al Kαradiation(1486.6 eV)operated at 15 kV and 10 mA.All XPS spectra were recorded using an aperture slot of 300×700 microns with pass energy of 160 and 40 eV for recording survey and high-resolution spectra. The binding energy calibration was checked by the line position of C 1s as an internal reference(284.6 eV).The normal operating pressure in the analysis chamber was controlled to 10-9Pa during the measurement.According to the XPS spectra,the effects of the added transition metal on the oxidation state of elements in the catalysts were obtained.

    Fourier transform infrared(FT-IR)spectroscopy was used to analyze the nature of sulfur-containing species formed in the catalysts.The infrared spectra were recorded on a Nicolet Magna-560 infrared spectrometer(Nicolet,USA).The catalysts were pressured into self-supporting wafers and placed in a hightemperature cell with KBr window.A total of 100 co-added scans with a spectral resolution of 4 cm-1were collected over the spectral range 4000-400 cm-1.

    Inorderto further identify the sulfur-containing species formed in the catalysts,thermogravimetric analysis(TGA)was carried out using a NETZSCH STA 409 PC Luxx simultaneous analyzer (NETZSCH Instrument Co.,Germany).The samples were heated from room temperature to 1000℃at a heating rate of 5℃·min-1in a dynamic nitrogen atmosphere.The gas flow rate maintained at 40 cm3·min-1.

    2 Results and discussion

    2.1 Surface morphology of the catalysts

    SEM micrographs in Fig.1 show the surface morphologies of the catalysts based on MnOx-CeOx/ACF,and that of ACF after HNO3oxidation and calcination in N2at 500℃for 3 h is also included for comparison.It is observed that the uncovered ACF exhibits smooth surface with some grooves in the axial direction.The supporting of active phases makes the surface of the catalysts rough.For MnOx-CeOx/ACF,the particles of active phase can be noticeably observed on the surface of the catalysts. With the addition of Fe,Cu,or V,much bigger particles of active phases disperse on the surface of the catalysts.Although the active phases deposit on the ACF at such a large scale,the catalysts based on MnOx-CeOx/ACF still retain the same tridimensional shape as that of the uncovered ACF.

    2.2 Physical properties of the catalysts

    Fig.2 shows the N2adsorption-desorption isotherms for the fresh catalysts based on MnOx-CeOx/ACF.The detailed physical properties of the catalysts are summarized in Table 1.

    As shown in Fig.2,the adsorption isotherm of ACF after HNO3oxidization and calcination in N2at 500℃for 3 h is classified as type I according to International Union of Pure and Applied Chemistry(IUPAC)classification.It is evident that most of the pore volume of the materials are filled at the relative pressure below 0.1,which suggests that the materials are highly microporous ones.The t-plot results given in Table 1 indicate that the contribution of micropore surface area to the total surface area of 505.70 m2·g-1is equal to 84.5%.For MnOx-CeOx/ ACF,the sample has a high N2uptake at a low relative pressure and the uptake is remarkably enhanced at the end(p/p0=1.0). The sample exhibits combined adsorption features characteristic to type I and IV behavior,which indicates the presence of both micro and mesoporosity in the catalysts.Table 1 shows that the microporesurfacearea(Smi)accountsfor78.7%ofthetotalsurface area of 285.70 m2·g-1.Compared with the sample of ACF,the decreased values of the surface area value and micropore volume for MnOx-CeOx/ACF can be due to the micropore blocking when manganese and cerium addition into the catalysts.

    With the addition of Fe,Cu,or V,the surface area(SBET)and total pore volume(Vt)of the catalysts decrease as in Table 1. Compared with the surface area of 285.70 m2·g-1for MnOx-CeOx/ACF,the surface area decreases to 219.50,197.57,and 191.43 m2·g-1for Fe-MnOx-CeOx/ACF,Cu-MnOx-CeOx/ACF, and V-MnOx-CeOx/ACF,respectively.Fig.2 shows that the adsorption isotherms of the samples with the addition of Fe,Cu or V are close to that of MnOx-CeOx/ACF though a lower adsorptioncapacity over the entire relative pressure range is observed in this case.This can be a consequence of the addition of Fe,Cu or V which increases the pore blocking phenomena.

    Fig.1 SEM micrographs of various fresh catalysts(a)ACF,(b)MnOx-CeOx/ACF,(c)Fe-MnOx-CeOx/ACF,(d)Cu-MnOx-CeOx/ACF,(e)V-MnOx-CeOx/ACF

    Fig.2 N2adsorption-desorption isotherms of fresh catalysts(★)ACF,(●)MnOx-CeOx/ACF,(△)Fe-MnOx-CeOx/ACF, (■)Cu-MnOx-CeOx/ACF,(▽)V-MnOx-CeOx/ACF

    2.3 XPS analysis

    XPS was used to investigate the effect of the added Fe,Cu,or V on the oxidation state of Mn and Ce.Mn 2p and Ce 3d XPS spectra for the fresh catalysts are presented in Fig.3.In Mn 2p spectra,the binding energy value of Mn 2p3/2is 641.0 eV for MnOx-CeOx/ACF,indicating that Mn element is mainly in trivalent form(Mn3+)[17].After Fe,Cu,or V was added,the peaks are clearly changed.As shown in Fig.3(a),the peaks of Mn 2p3/2with binding energy between 641.8 and 642.6 eV are found for MMnOx-CeOx/ACF(M=Fe,Cu,or V),which can be attributed to the coexistence of Mn4+and Mn3+species[18].The phenomena that the main peak of Mn 2p3/2shifts to higher binding energies with the addition of Fe,Cu,or V indicate the increase of oxidation state of manganese.Previously reported results also found the chemical shift in Mn 2p line toward higher binding energies in the case of Fe modified catalysts[19].This can be due to the formation of various nonstoichiometric mixed oxides phase between manganese and the added transition metals(Cu and Cr)[20].

    Complicated Ce 3d XPS spectra are presented in Fig.3(b). XPS peaks denoted as u?,u″,u and V?,V″,V are attributed to Ce4+species while u′and v′are attributed to Ce3+.From these peaks,it can be known that Ce4+and Ce3+are the two main patterns for cerium on the surface of the catalysts.As shown in Fig. 3(b),Ce3+species on the surface of the catalyst seem to increase with the addition of Fe or Cu,but this phenomenon does not appear with the addition of V.

    Table 1 Physical properties of the fresh catalysts

    Fig.3 Mn 2p(a)and Ce 3d(b)XPS spectra for various catalysts(1)MnOx-CeOx/ACF,(2)Cu-MnOx-CeOx/ACF,(3)Fe-MnOx-CeOx/ACF, (4)V-MnOx-CeOx/ACF

    2.4 Results of catalytic activities

    The activities of the catalysts based on MnOx-CeOx/ACF for SCR of NO with NH3were measured in the fixed-bed flue reactor.Fig.4 illustrates the effect of reaction temperature on the NO conversion over various catalysts in the absence of SO2.For all the catalysts,the NO conversion increases with the increasing temperature.MnOx-CeOx/ACF exhibits high NO conversion of nearly 90%at 190℃.For M-MnOx-CeOx/ACF(M=Fe,Cu,or V), the results indicate that the addition of Fe,Cu,or V into thecatalysts does not change the activities of the catalysts significantly.

    Fig.4 Effect of reaction temperature on the NO conversion in the absence of SO2(a)MnOx-CeOx/ACF,(b)Fe-MnOx-CeOx/ACF,(c)Cu-MnOx-CeOx/ACF, (d)V-MnOx-CeOx/ACF

    Fig.5 shows the effect of SO2on NO conversion over the catalysts based on MnOx-CeOx/ACF at 150℃.The SCR performance of the catalysts in the presence of SO2was carried out as follows:The SCR of NO with NH3over all the catalysts in the absence of SO2was stabilized for 1 h at first,and then 0.01% SO2was added into SCR gas conditions till 11 h.From 11 to 13 h,SO2was out and the catalysts were under SCR conditions in the absence of SO2.From 13 to 16 h,the pure N2were turned on instead of the reaction gases,and the catalysts were heated in N2at 350℃.From 16 to 19 h,the activities of the catalysts after above thermal treatment were carried out under SCR conditions in the absence of SO2.

    As shown in Fig.5,the NO conversion for MnOx-CeOx/ACF decreases sharply upon 0.01%SO2addition into the feed gases. Cu-MnOx-CeOx/ACF and V-MnOx-CeOx/ACF are also found to be deactivated seriously by SO2.For Fe-MnOx-CeOx/ACF,the NO conversion remains at nearly 75%in the first 6 h in the presence of SO2but then decreases as other catalysts.For all the catalysts,the NO conversion decreases to approximately 20%in the presence of SO2within 11 h.After cutting off the SO2supply,the original SCR activities of all above catalysts are not restored to any extent in 2 h,showing that the deactivation occurs for all catalysts in the presence of SO2.Ce doped Mn/TiO2[10]and Fe modified MnOx-CeO2catalyst[21]exhibited SO2tolerance in a short time under low-temperature SCR conditions at 150℃. However,Fe-MnOx-CeOx/ACF does not exhibit well SO2tolerance in a long time.

    Ammonium salts,such as ammonium sulfates and sulfites,can form under low-temperature SCR conditions with NH3as reductant in the presence of SO2.These ammonium salts can deposit on the catalyst surface and deactivate the catalysts significantly when the reaction temperature is below 300℃.These ammonium salts have been reported to decompose at temperature below 350℃[22].As shown in Fig.5,the NO conversion for all deactivated catalysts after thermal treatment is partially restored from 16 to 19 h,showing that ammonium salts formed in the SCR reaction make some contributions to the deactivation of the catalysts.However,there must be some reasons for the unrecovered activity of the catalysts.The catalyst deactivation phenomena are discussed in the followings.

    Fig.5 Effect of SO2on NO conversion over various catalystsT=150℃;(○)MnOx-CeOx/ACF,(△)Fe-MnOx-CeOx/ACF, (□)Cu-MnOx-CeOx/ACF,(▽)V-MnOx-CeOx/ACF

    The physical properties of the deactivated catalysts are shown in Table 2.The catalysts with superscript“S”indicate the deactivated catalysts before the thermal treatment in N2at 350℃for 3 h,i.e.,MnOx-CeOx/ACFS.The catalysts with superscript“T”denote the above deactivated catalysts after thermal treatment in N2at 350℃ for 3 h.For example,MnOx-CeOx/ACFTcorresponds to MnOx-CeOx/ACFSafter the thermal treatment in N2at 350℃for 3 h.

    Compared with the physical properties of the fresh catalysts as shown in Table 1,the surface area and pore volume of corresponding deactivated catalysts before thermal treatment are reduced apparently as shown in Table 2.Such catalysts have been under low-temperature SCR conditions in the presence of SO2for 10 h as shown in Fig.5,so the decrease of surface area and pore volume can be attributed to the deposition of ammonium salts on the surface of the catalysts.Huang et al.[23]also indicated that the ammonium salts formed in the NO reduction with NH3decreased the catalyst surface area and blocked the pore volume.Compared with the fresh catalysts,the decreased values(Δ)of surface area value for deactivated catalysts are in the order of MnOx-CeOx/ACFS(Δ=268.8 m2·g-1)>Fe-MnOx-CeOx/ACFS(Δ=206.28 m2·g-1)>Cu-MnOx-CeOx/ACFS(Δ=193.96 m2·g-1)>V-MnOx-CeOx/ACFS(Δ=188.26 m2·g-1)and pore volume in the same order of MnOx-CeOx/ACFS>Fe-MnOx-CeOx/ACFS>Cu-MnOx-CeOx/ACFS>V-MnOx-CeOx/ACFS.

    It is found from Table 2 that there is obvious difference in physical characteristics for the deactivated catalysts before and after thermal treatment.The surface area and pore volume of the deactivated catalysts increase obviously after thermal treatment. For MnOx-CeOx/ACFT,the surface area increases from 16.9 to 285 m2·g-1and the pore volume increases from 0.050 to 0.15 cm3· g-1compared with MnOx-CeOx/ACFSafter thermal treatment.This change in physical properties can be due to the thermal decomposition of ammonium salts formed under low-temperature SCR conditions in the presence of SO2.

    It is interesting to note that the pore structures of the fresh catalysts mainly compose of micropores as shown in Table 1.Asshown in Table 2,the micropores of the corresponding deactivated catalysts disappear before thermal treatment but dominate again after thermal treatment.It can be concluded that the deposition of ammonium salts prefers to micropores.

    Table 2 Physical properties of the deactivated catalysts

    The N2adsorption-desorption isothermals and pore size distribution of the deactivated catalysts before and after thermal treatment are shown in Fig.6.For the deactivated catalysts before thermal treatment,the shapes of the isothermals indicate that there are few pores in the catalysts,which results in a low adsorption capacity.Especially at the relative pressure below 0.2, the pore volume is hardly filled.The deactivated catalysts after thermal treatment exhibit isothermals with high nitrogen uptakes atalowrelativepressure(p/p0)and a remarkably enhanced uptake of nitrogen at the end(p/p0=1.0).As shown in Fig.2 and Fig.6(a), the isothermals of the deactivated catalysts after thermal treatment show features similar to those of the fresh catalysts.The pore size distribution of these catalysts is showed in Fig.6(b). For all deactivated catalysts before thermal treatment,the deposition of ammonium salts blocks all the micropores and most mesopores.While for all the deactivated catalysts after thermal treatment,the obvious pore structure over the entire pore width range recovers and the physical properties,such as surface area (SBET),total volume(Vt)and average pore diameter(dBET),are close to those of corresponding fresh catalysts as shown in Table 1, which indicates that the ammonium salts blocking the pores of the catalysts decompose completely after the thermal treatment in nitrogen at 350℃for 3 h.

    Fig.6 N2adsorption-desorption isotherms(a)and DFT differential pore size distribution of various catalysts(b)(●)MnOx-CeOx/ACFS,(○)MnOx-CeOx/ACFT,(▲)Fe-MnOx-CeOx/ACFS, (△)Fe-MnOx-CeOx/ACFT,(■)Cu-MnOx-CeOx/ACFS,(□)Cu-MnOx-CeOx/ACFT, (▼)V-MnOx-CeOx/ACFS,(▽)V-MnOx-CeOx/ACFT

    Table 3 Atomic fraction(%)of the catalysts determined by XPS

    In order to further investigate the catalyst deactivation by SO2, XPS was also used to analyze the sulfur element existed in the deactivated catalysts before and after thermal treatment.The sulfur concentrations in the catalysts are summarized in Table 3. The fresh catalyst of MnOx-CeOx/ACF,used as reference material, is analyzed and no sulfur element is detected.For MnOx-CeOx/ ACFS,the catalysts have been under SCR conditions including 0.01%SO2for 10 h and the sulfur contents in the catalysts are as high as 10.4%.Although the thermal treatment makes the ammonium salts decompose completely as shown in Table 2,corresponding MnOx-CeOx/ACFTstill has a sulfur content of 7.32%. M-MnOx-CeOx/ACFT(M=Fe,Cu,or V)also has a high sulfur content after the thermal treatment,i.e.,9.17%in Fe-MnOx-CeOx/ACFT,11.30%in Cu-MnOx-CeOx/ACFT,and 9.86%in VMnOx-CeOx/ACFT.Therefore,the much higher sulfur contents in deactivated catalysts after thermal treatment than that in MnOx-CeOx/ACF indicate that the active phase of the catalysts can be sulfated by SO2under the low-temperature SCR conditions.In addition,Fe-MnOx-CeOx/ACFT,Cu-MnOx-CeOx/ACFT,and VMnOx-CeOx/ACFTall have higher sulfur contents than MnOx-CeOx/ACFT.

    Fig.7 shows the XPS spectra of S 2p for the deactivated catalysts after thermal treatment.The single peak of S 2p is found to be located at 167.5 eV for MnOx-CeOx/ACFT.This adsorption peak around 167.5 eV indicates the coexistence of S4+and S6+on the surface of MnOx-CeOx/ACFT[24].The S 2p peaks for M-MnOx-CeOx/ACFT(M=Fe,Cu,or V)shift to higher binding energies, nearly 168.9 eV,which indicates much more concentration of S6+in M-MnOx-CeOx/ACFT.As shown in Fig.3(a),the oxidation state of manganese increases with the addition of Fe,Cu,or V. Mn3+and Mn4+coexist in M-MnOx-CeOx/ACF(M=Fe,Cu,or V). The higher the oxidation state of manganese is,the more easily S6+might form during low-temperature SCR process.So much more S4+is found for MnOx-CeOx/ACFTand much more S6+is found for M-MnOx-CeOx/ACFT(M=Fe,Cu,or V).

    FT-IR spectra of the deactivated catalysts after thermal treatment are shown in Fig.8.The spectra of MnOx-CeOx/ACFT exhibit adsorption peaks corresponding to the stretching vibration of Mn—O[25](605 cm-1)and C—O(1392 cm-1)which indicate the oxygenated groups on the surface of the catalysts.The adsorption peak centered at 837 cm-1is assigned to the stretching vibration of S—O.M-MnOx-CeOx/ACFT(M=Fe,Cu,or V)shows almost the same spectra of MnOx-CeOx/ACFT.The adsorption peak centered at 500 cm-1is assigned to outplane blending vibration of SO2-3which indicates sulfites in the deactivated catalysts after thermal treatment.The characteristic adsorptions in the frequency range 1000-1420 cm-1have been reported to be the infrared active normal mode of SO2-4groups in the catalysts.The band centered at 1115 cm-1can be assigned to manganese sulfates and the broad band in 1000-1200 cm-1have also been reported to correspond to Ce(SO4)2formation[26].It is verified that the reactions between metals and SO2take place under low-temperature SCR conditions.

    Fig.8 FT-IR spectra of various catalysts(1)MnOx-CeOx/ACFT,(2)Cu-MnOx-CeOx/ACFT,(3)Fe-MnOx-CeOx/ACFT, (4)V-MnOx-CeOx/ACFT

    Fig.9 DTG curves of the thermal decomposition for various catalysts in N2(●)MnOx-CeOx/ACF,(○)MnOx-CeOx/ACFT,(△)Fe-MnOx-CeOx/ACFT, (□)Cu-MnOx-CeOx/ACFT,(▽)V-MnOx-CeOx/ACFT

    The thermal behavior of MnOx-CeOx/ACF and the deactivated catalysts after thermal treatment was evaluated(Fig.9).The first mass loss in the temperature range 50-300℃is matched to the dehydration of the catalysts.Zhu et al.[27]studied the decomposition of ammonium bisulfate depositing on the activated carbon and indicated that the decomposition temperature of ammonium bisulfate on the activated carbon started at 250℃and peaked at 325℃.As shown in Fig.9,M-MnOx-CeOx/ACFT(M=Fe,Cu,or V)shows DTG curves(the rate of mass loss plotted against temperature)similar to that of MnOx-CeOx/ACF in the temperature range 200-400℃.It means that there are no ammonium salts in the catalysts after the thermal treatment,which is consistent with the results from N2adsorption analysis.Compared with MnOx-CeOx/ACF,the thermal decomposition of M-MnOx-CeOx/ACFT(M=Fe,Cu,or V)takes place in two stages in 400-1000℃,as predicted by DTG curves.The mass loss in 400-1000℃can be attributed to the decomposition of metallic sulfites and sulfates, whicharedescribed as follows:MSO3→MOx+SO2,MSO4→MOx+ SO3(M=Fe,Cu,V,Mn,or Ce).The first stage starts from 400-650℃with maximum rate at 550℃,which corresponds to the decom-position of metallic sulfites and some metallic sulfates, such as Fe2(SO4)3(about 480℃),CuSO4(about 600℃).The second stage degradation temperature is in the range of 650-1000℃,which can be due to the decomposition of metallic sulfates.MnSO4[9]and Ce(SO4)2[28]have been reported to decompose at 750℃and 840℃,respectively.Moreover,in two stages of 400-650℃and 650-1000℃,the mass loss of MnOx-CeOx/ ACFTis 5.85%and 11.4%,respectively which is less than that of M-MnOx-CeOx/ACFT(M=Fe,Cu,or V).It means that the added Fe,Cu,or V can be sulfated by SO2to form metallic sulfites and sulfates in the SCR reaction and the thermal degradation of such sulfated metals increases the mass loss of M-MnOx-CeOx/ACFT. Therefore,it can be concluded that the active components of the catalysts are sulfated by SO2in low-temperature SCR process and corresponding metallic sulfates and sulfites are formed.

    According to the analysis from Table 3 and Fig.9,the sulfur contents in metallic salts and ammonia salts on the surface of deactivated catalysts are demonstrated in Table 4.It is clear that the formation of metallic sulfates and sulfites,and ammoniumsalts are both reasons for the deactivation of the catalysts.Much sulfur on the surface of the deactivated catalysts is in the form of metallic sulfate and sulfite,and metallic sulfates seem to be more than metallic sulfites.About 70.4%of sulfur element on the surface of the deactivated MnOx-CeOx/ACF is in the form of metallic sulfates and sulfites,and 68.9%on the deactivated Fe-MnOx-CeOx/ACF,86.3%on Cu-MnOx-CeOx/ACF,71.4%on VMnOx-CeOx/ACF.

    Table 4 Sulfur contents(ws)from metallic and ammonia salts(wa)in deactivated catalysts

    3 Conclusions

    The modification by Fe,Cu,or V increased the oxidation state of manganese in MnOx-CeOx/ACF but decreased the surface area and pore volume.The catalytic results indicated that the addition of Fe,Cu,or V into the catalysts did not change the activities of the catalysts significantly.Under low-temperature SCR conditions,low concentrations of SO2in the feed gases deactivated MnOx-CeOx/ACF catalyst seriously.According to the results from BET,XPS,FT-IR,and TGA,it could be found that the catalyst deactivation in the presence of SO2was twofold: one was the ammonium salts covering on the surfaces of the catalysts and the other was metallic sulfates and sulfites formed by the reaction between SO2and metal oxides.With the addition of Fe,Cu,or V,it seemed that more metallic sulfates and sulfites formed.The sulfur element on the surface of the deactivated catalysts was mainly in the form of metallic sulfates and sulfites, with 70.4%on deactivated MnOx-CeOx/ACF,68.9%on deactivated Fe-MnOx-CeOx/ACF,86.3%on Cu-MnOx-CeOx/ACF, and 71.4%on V-MnOx-CeOx/ACF.Fe addition into MnOx-CeOx/ ACF enhanced the catalyst resistance to SO2positioning to some extent.

    1 Qi,G.S.;Yang,R.T.J.Catal.,2003,217:434

    2 Casapu,M.;Kr?cher,O.;Elsener,M.Appl.Catal.B,2009,88: 413

    3 Tang,X.L.;Hao,J.M.;Yi,H.H.;Li,J.H.Catal.Today,2007, 126:406

    4 Wu,Z.B.;Jin,R.B.;Liu,Y.;Wang,H.Q.Catal.Commun.,2008, 9:2217

    5 Yoshikawa,M.;Yasutake,A.;Mochida,I.Appl.Catal.A,1998, 173:239

    6 Marbán,G.;Fuertes,A.B.Appl.Catal.B,2001,34:55

    7 Marbán,G.;Antu?a,R.;Fuertes,A.B.Appl.Catal.B,2003,41, 323

    8 Kijlstra,W.S.;Biervliet,M.;Poels,E.K.;Bliek,A.Appl.Catal.B, 1998,16:327

    9 Park,T.S.;Jeong,S.K.;Hong,S.H.;Hong,S.C.Ind.Eng.Chem. Res.,2001,40:4491

    10 Wu,Z.B.;Jin,R.B.;Wang,H.Q.;Liu,Y.Catal.Commun.,2009, 10:935

    11 Marbán,G.;Fuertes,A.B.Catal.Lett.,2002,84:13

    12 Zhu,Z.P.;Liu,Z.Y.;Liu,S.J.;Niu,H.X.Appl.Catal.B,1999, 23:L229

    13 Valdés-Solís,T.;Marbán,G.;Fuertes,A.B.Appl.Catal.B,2003, 46:261

    14 Huang,B.C.;Huang,R.;Jin,D.J.;Ye,D.Q.Catal.Today,2007, 126:279

    15 Hsu,L.Y.;Teng,H.Appl.Catal.B,2001,35:21

    16 Pe?a,D.A.;Uphade,B.S.;Reddy,E.P.;Smirniotis,P.G.J.Phys. Chem.B,2004,108:9927

    17 Kapteijn,F.;van Vanlangeveld,A.D.;Moulijn,J.A.;Andreini,A.; Vuurman,M.A.;Turek,A.M.;Jehng,J.M.;Wachs,I.E.J.Catal., 1994,150:94

    18 Chang,L.H.;Sasirekha,N.;Chen,Y.W.;Wang,W.J.Ind.Eng. Chem.Res.,2006,45:4927

    19 Wu,Z.B.;Jiang,B.Q.;Liu,Y.Appl.Catal.B,2008,79:347

    20 Sreekanth,P.M.;Pe?a,D.A.;Smirniotis,P.G.Ind.Eng.Chem. Res.,2006,45:6444

    21 Qi,G.S.;Yang,R.T.;Chang,R.Appl.Catal.B,2004,51:93

    22 Nam,I.S.;Eldridge,J.W.;Kittrell,J.R.Ind.Eng.Chem.Prod. Res.Dev.,1986,25:192

    23 Huang,Z.G.;Zhu,Z.P.;Liu,Z.Y.Appl.Catal.B,2002,39:361

    24 Román,E.;de Segovia,J.L.;Martín-Gago,J.A.;Comtet,G.; Hellner,L.Vacuum,1997,48:597

    25 Alonso,L.;Palacios,J.M.Energy Fuels,2002,16:1550

    26 Peralta,M.A.;Milt,V.G.;Cornaglia,L.M.;Querini,C.A. J.Catal.,2006,242:118

    27 Zhu,Z.P.;Niu,H.X.;Liu,Z.Y.;Liu,S.J.J.Catal.,2000,195: 268

    28 Casari,B.M.;Langer,V.J.Solid State Chem.,2007,180:1616

    April 12,2010;Revised:August 2,2010;Published on Web:September 28,2010.

    Deactivation of MnOx-CeOx/ACF Catalysts for Low-Temperature NH3-SCR in the Presence of SO2

    SHEN Bo-Xiong*LIU Ting
    (College of Environmental Science and Engineering,Nankai University,Tianjin 300071,P.R.China)

    The low-temperature selective catalytic reduction of NO with NH3(NH3-SCR)over MnOx-CeOx/ACF (activated carbon fiber)modified by Fe,Cu,or V was investigated in the presence of SO2.The results revealed that the SO2tolerance of MnOx-CeOx/ACF was not enhanced after Cu and V modification.The addition of Fe to MnOx-CeOx/ ACF enhanced its resistance to SO2poisoning over the first 6 h in the presence of SO2,but then deactivated quickly. The samples were analyzed by N2adsorption,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared(FTIR)spectroscopy,and thermogravimetric analysis(TGA).We found that catalyst surface coverage by ammonium salts as wellasmetallicsulfatesandsulfitesformedbythereactionbetweenSO2andmetaloxides in the catalysts was responsible for catalyst deactivation in the presence of SO2.Sulfur on the surface of the deactivated catalysts was mainly in the form of metallic sulfates and sulfites with 70.4%,68.9%,86.3%,and 71.4%(w)on deactivated MnOx-CeOx/ACF,Fe-MnOx-CeOx/ACF,Cu-MnOx-CeOx/ACF,and V-MnOx-CeOx/ACF,respectively.A valuable contribution towards understanding the deactivation of catalysts based on MnOx-CeOx/ACF for the SCR in the presence of SO2was made.

    Low-temperature selective catalytic reduction;MnOx-CeOx/ACF;NO;SO2

    *Corresponding author.Email:shenbx@nankai.edu.cn;Tel:+86-22-23503219

    The project was supported by the National Natural Science Foundation of China(0976050),Program for New Century Excellent Talents in University, China(07-0457)and National Key Technology Research and Development Program of Tianjin,China(09ZCKFSH01900).

    國家自然科學基金(50976050),新世紀優(yōu)秀人才支持計劃(07-0457)和天津市科技支撐計劃項目(09ZCKFSH01900)資助

    O643

    猜你喜歡
    亞硫酸鹽南開大學硫酸鹽
    鐵/過硫酸鹽高級氧化體系強化方法的研究進展
    云南化工(2021年5期)2021-12-21 07:41:16
    亞硫酸鹽在食品中的研究進展
    南開大學制備新型超強韌人造蜘蛛絲
    紫外光分解銀硫代硫酸鹽絡合物的研究
    四川冶金(2019年5期)2019-12-23 09:04:48
    ICP-OES法測定硫酸鹽類鉛鋅礦石中的鉛量
    一道南開大學自主招生試題的推廣
    食品中亞硫酸鹽的使用及檢測
    亞硫酸鹽在食品加工中的作用及其應用
    硫酸鹽測定能力驗證結果分析
    Suggestionsfor Speeding Up the Development of Audiobook Websitesby Changing Them to SNS
    科技視界(2015年35期)2015-01-10 07:50:00
    亚洲精品色激情综合| 特级一级黄色大片| 亚洲aⅴ乱码一区二区在线播放| 日本免费一区二区三区高清不卡| 色综合婷婷激情| 国产视频内射| 欧美日韩乱码在线| 国产精品,欧美在线| 亚洲自拍偷在线| 又黄又爽又免费观看的视频| 成熟少妇高潮喷水视频| 69人妻影院| 热99在线观看视频| 国产免费一级a男人的天堂| 丁香六月欧美| 午夜免费激情av| 欧美精品国产亚洲| 午夜日韩欧美国产| 乱码一卡2卡4卡精品| 国产淫片久久久久久久久 | 我的老师免费观看完整版| 免费在线观看日本一区| 午夜激情福利司机影院| 亚洲国产欧美人成| 91av网一区二区| 99久久九九国产精品国产免费| 桃色一区二区三区在线观看| 性插视频无遮挡在线免费观看| 久久国产乱子伦精品免费另类| 久久香蕉精品热| 99热这里只有是精品50| 欧美丝袜亚洲另类 | 国产av在哪里看| 国产精品一区二区三区四区免费观看 | 国产精品,欧美在线| 我的老师免费观看完整版| 亚洲,欧美,日韩| 国内久久婷婷六月综合欲色啪| 欧美成人a在线观看| 久久国产精品人妻蜜桃| 嫩草影院入口| 国产三级在线视频| 两个人的视频大全免费| 精品久久久久久久久久免费视频| 一级av片app| 国产人妻一区二区三区在| а√天堂www在线а√下载| 国内毛片毛片毛片毛片毛片| 国产男靠女视频免费网站| 制服丝袜大香蕉在线| 天天躁日日操中文字幕| 精品国产三级普通话版| 午夜a级毛片| 亚洲精品在线美女| 国产老妇女一区| 国产伦在线观看视频一区| 免费一级毛片在线播放高清视频| bbb黄色大片| 亚洲国产精品成人综合色| av在线天堂中文字幕| 日韩欧美一区二区三区在线观看| 草草在线视频免费看| 婷婷色综合大香蕉| 亚洲专区国产一区二区| 日本熟妇午夜| 天堂av国产一区二区熟女人妻| 黄色丝袜av网址大全| 亚洲第一欧美日韩一区二区三区| 最近在线观看免费完整版| 欧美成人a在线观看| 男女之事视频高清在线观看| 亚洲国产欧美人成| 国产av不卡久久| 日韩人妻高清精品专区| av福利片在线观看| 全区人妻精品视频| 自拍偷自拍亚洲精品老妇| 性欧美人与动物交配| 色综合亚洲欧美另类图片| 五月伊人婷婷丁香| 精品人妻1区二区| 亚洲av.av天堂| 黄色配什么色好看| 在线十欧美十亚洲十日本专区| 国内精品一区二区在线观看| 国产探花在线观看一区二区| 免费人成在线观看视频色| av在线老鸭窝| 黄色丝袜av网址大全| 国产精品野战在线观看| 天堂av国产一区二区熟女人妻| 免费av观看视频| 国产又黄又爽又无遮挡在线| 欧美潮喷喷水| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 淫秽高清视频在线观看| 九九久久精品国产亚洲av麻豆| 欧美在线黄色| 最好的美女福利视频网| 免费看a级黄色片| 国产精品98久久久久久宅男小说| 色5月婷婷丁香| 在线播放无遮挡| 亚洲天堂国产精品一区在线| 高清在线国产一区| 欧美xxxx性猛交bbbb| 亚洲国产色片| 亚洲人与动物交配视频| 特级一级黄色大片| av黄色大香蕉| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美国产在线观看| 中文字幕久久专区| 国产 一区 欧美 日韩| 午夜久久久久精精品| 国产成人aa在线观看| 国产欧美日韩一区二区精品| 99久久无色码亚洲精品果冻| 偷拍熟女少妇极品色| 91久久精品国产一区二区成人| 少妇的逼好多水| av欧美777| 日韩欧美精品v在线| 深夜a级毛片| 久久精品国产自在天天线| 男女下面进入的视频免费午夜| 欧美日本亚洲视频在线播放| 日韩人妻高清精品专区| 嫩草影视91久久| 久久精品人妻少妇| 亚洲专区中文字幕在线| 国产精品久久久久久久电影| 欧美最新免费一区二区三区 | 免费观看精品视频网站| 中文字幕人妻熟人妻熟丝袜美| 男女那种视频在线观看| 99热这里只有精品一区| 熟女人妻精品中文字幕| 夜夜夜夜夜久久久久| 中文字幕精品亚洲无线码一区| 很黄的视频免费| 99热6这里只有精品| 男人和女人高潮做爰伦理| 99riav亚洲国产免费| 精品一区二区三区视频在线| 毛片女人毛片| 精品欧美国产一区二区三| aaaaa片日本免费| 亚洲成人久久爱视频| 99在线视频只有这里精品首页| 91在线精品国自产拍蜜月| 最后的刺客免费高清国语| 麻豆国产av国片精品| 91久久精品国产一区二区成人| 天天躁日日操中文字幕| 亚洲国产精品成人综合色| 久久天躁狠狠躁夜夜2o2o| 青草久久国产| 真人一进一出gif抽搐免费| 最后的刺客免费高清国语| 国产精品嫩草影院av在线观看 | 国产免费一级a男人的天堂| 在线观看免费视频日本深夜| a级一级毛片免费在线观看| 日日摸夜夜添夜夜添小说| 18+在线观看网站| 国产精品野战在线观看| 国产伦在线观看视频一区| 亚洲中文日韩欧美视频| 欧美日本视频| 免费人成在线观看视频色| 丁香六月欧美| 757午夜福利合集在线观看| 白带黄色成豆腐渣| 欧美高清成人免费视频www| 免费观看精品视频网站| 国产综合懂色| 国产色爽女视频免费观看| 人人妻人人看人人澡| 欧美日韩国产亚洲二区| 国产伦精品一区二区三区四那| 精品国内亚洲2022精品成人| 亚洲一区二区三区不卡视频| 日韩国内少妇激情av| 99久久九九国产精品国产免费| a级一级毛片免费在线观看| 亚洲色图av天堂| 亚洲国产日韩欧美精品在线观看| 中文字幕高清在线视频| 757午夜福利合集在线观看| 国产伦精品一区二区三区四那| 成人欧美大片| 日本熟妇午夜| 亚洲专区中文字幕在线| 久久久成人免费电影| 最近视频中文字幕2019在线8| 久久九九热精品免费| 99riav亚洲国产免费| 非洲黑人性xxxx精品又粗又长| 久久久久九九精品影院| 久久九九热精品免费| 久久草成人影院| 真实男女啪啪啪动态图| 久久人妻av系列| 日本一本二区三区精品| 国产一级毛片七仙女欲春2| .国产精品久久| 国产一级毛片七仙女欲春2| 女同久久另类99精品国产91| 在线观看66精品国产| 在线观看av片永久免费下载| 五月伊人婷婷丁香| 欧美一区二区国产精品久久精品| 成年女人永久免费观看视频| 琪琪午夜伦伦电影理论片6080| 听说在线观看完整版免费高清| 在线观看美女被高潮喷水网站 | 中文字幕精品亚洲无线码一区| 一本精品99久久精品77| 精品久久久久久久人妻蜜臀av| av天堂中文字幕网| 国产精品亚洲一级av第二区| 国内精品美女久久久久久| 日韩精品青青久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 丰满人妻一区二区三区视频av| 最近视频中文字幕2019在线8| 欧美日韩乱码在线| 99久久无色码亚洲精品果冻| 久久久久性生活片| 九色国产91popny在线| 国产探花在线观看一区二区| 欧美精品啪啪一区二区三区| 亚洲精品在线美女| 亚洲精品一区av在线观看| 国产精品av视频在线免费观看| 国产黄a三级三级三级人| 日本精品一区二区三区蜜桃| 综合色av麻豆| 久久6这里有精品| 在现免费观看毛片| 成人鲁丝片一二三区免费| 99热精品在线国产| 白带黄色成豆腐渣| 国产视频一区二区在线看| 亚洲国产精品999在线| 宅男免费午夜| 欧美成人一区二区免费高清观看| 精品欧美国产一区二区三| 国产综合懂色| 在线观看66精品国产| 久久久久亚洲av毛片大全| 国产精品久久久久久精品电影| 麻豆国产97在线/欧美| 在线观看午夜福利视频| 久久久久性生活片| 午夜精品一区二区三区免费看| 91在线观看av| 黄色一级大片看看| 身体一侧抽搐| 亚洲av成人不卡在线观看播放网| 97人妻精品一区二区三区麻豆| 我要看日韩黄色一级片| 久久午夜亚洲精品久久| 校园春色视频在线观看| 免费看光身美女| 婷婷色综合大香蕉| 成人午夜高清在线视频| 1024手机看黄色片| 久久人妻av系列| h日本视频在线播放| 精品久久久久久,| 精品久久国产蜜桃| 成年人黄色毛片网站| 久久国产精品人妻蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 国产视频一区二区在线看| 美女免费视频网站| 国产乱人伦免费视频| 免费看光身美女| 精品人妻1区二区| 中文字幕熟女人妻在线| 欧美zozozo另类| 欧美乱妇无乱码| 天堂网av新在线| 亚洲中文字幕日韩| 久久人人精品亚洲av| 天堂动漫精品| 嫁个100分男人电影在线观看| 十八禁国产超污无遮挡网站| h日本视频在线播放| 精品人妻偷拍中文字幕| 五月玫瑰六月丁香| 一区二区三区免费毛片| 亚洲第一电影网av| 精品福利观看| 久久精品久久久久久噜噜老黄 | 高潮久久久久久久久久久不卡| 国产亚洲精品久久久久久毛片| 3wmmmm亚洲av在线观看| 国产一区二区亚洲精品在线观看| 男人和女人高潮做爰伦理| 啦啦啦观看免费观看视频高清| 国产一区二区三区视频了| 国产男靠女视频免费网站| 男女床上黄色一级片免费看| 国产成人影院久久av| 很黄的视频免费| 国产激情偷乱视频一区二区| 一进一出抽搐gif免费好疼| 精品乱码久久久久久99久播| 亚洲国产欧美人成| 亚洲成av人片免费观看| 久久精品影院6| 国产亚洲av嫩草精品影院| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女| 国产私拍福利视频在线观看| 久久亚洲真实| 久久99热6这里只有精品| 成人国产综合亚洲| 亚洲欧美日韩东京热| 日韩欧美国产一区二区入口| 热99在线观看视频| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 久久久久免费精品人妻一区二区| 日韩人妻高清精品专区| 午夜免费激情av| 日韩亚洲欧美综合| 中文字幕人妻熟人妻熟丝袜美| 少妇熟女aⅴ在线视频| 久久久久亚洲av毛片大全| 噜噜噜噜噜久久久久久91| 国产成人av教育| 亚洲在线观看片| 亚洲精品在线美女| 免费高清视频大片| 18禁裸乳无遮挡免费网站照片| 免费黄网站久久成人精品 | 男女下面进入的视频免费午夜| 丝袜美腿在线中文| 直男gayav资源| 国内精品一区二区在线观看| 精品久久久久久,| 亚洲av熟女| 97超级碰碰碰精品色视频在线观看| 中文字幕久久专区| 久久久久久九九精品二区国产| 最近视频中文字幕2019在线8| 性欧美人与动物交配| 久久久久久久久久成人| 国产精品久久久久久亚洲av鲁大| 久久久久久大精品| 国产麻豆成人av免费视频| 看免费av毛片| 国产精品综合久久久久久久免费| 五月玫瑰六月丁香| 亚洲欧美清纯卡通| 一级av片app| 成年版毛片免费区| 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 久久伊人香网站| 国产亚洲精品久久久久久毛片| 欧美精品国产亚洲| 搡老妇女老女人老熟妇| 精品人妻熟女av久视频| 午夜视频国产福利| 国产一级毛片七仙女欲春2| 久久精品综合一区二区三区| 18禁黄网站禁片午夜丰满| 欧美高清成人免费视频www| 美女大奶头视频| 噜噜噜噜噜久久久久久91| 男人狂女人下面高潮的视频| 欧美精品啪啪一区二区三区| 精华霜和精华液先用哪个| 岛国在线免费视频观看| 日韩欧美在线二视频| 免费av不卡在线播放| 精品一区二区免费观看| 俺也久久电影网| 啦啦啦观看免费观看视频高清| 成人国产一区最新在线观看| 中文字幕熟女人妻在线| 美女高潮的动态| 国产探花极品一区二区| 日本 av在线| 色播亚洲综合网| 亚洲av电影不卡..在线观看| 麻豆成人av在线观看| 国产伦精品一区二区三区视频9| 亚洲精华国产精华精| 一本精品99久久精品77| 国内少妇人妻偷人精品xxx网站| a级毛片a级免费在线| 久久精品国产99精品国产亚洲性色| 熟妇人妻久久中文字幕3abv| 五月伊人婷婷丁香| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 一级黄色大片毛片| 欧美一区二区精品小视频在线| 免费电影在线观看免费观看| 午夜福利视频1000在线观看| 高潮久久久久久久久久久不卡| 国内少妇人妻偷人精品xxx网站| 深爱激情五月婷婷| 亚洲人成网站在线播| 婷婷精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 熟女人妻精品中文字幕| 亚洲国产日韩欧美精品在线观看| 国产真实伦视频高清在线观看 | 男女之事视频高清在线观看| 黄色丝袜av网址大全| 亚洲电影在线观看av| 亚洲成人精品中文字幕电影| 午夜免费激情av| 久久久久久久久中文| 久久婷婷人人爽人人干人人爱| 欧美乱妇无乱码| 中文字幕av在线有码专区| 在线观看一区二区三区| 一本一本综合久久| 免费一级毛片在线播放高清视频| av在线观看视频网站免费| 夜夜爽天天搞| 午夜久久久久精精品| 亚洲精品亚洲一区二区| 亚洲性夜色夜夜综合| 国产aⅴ精品一区二区三区波| 国产高清视频在线播放一区| 亚洲精品粉嫩美女一区| 久99久视频精品免费| 特级一级黄色大片| 午夜影院日韩av| 日韩亚洲欧美综合| 9191精品国产免费久久| 亚洲成人精品中文字幕电影| 最后的刺客免费高清国语| 在线观看舔阴道视频| 久久99热这里只有精品18| 亚洲人与动物交配视频| 亚洲专区国产一区二区| 有码 亚洲区| 老司机午夜福利在线观看视频| 999久久久精品免费观看国产| 欧美性猛交黑人性爽| 亚洲一区高清亚洲精品| 国产午夜福利久久久久久| 最近视频中文字幕2019在线8| 欧美bdsm另类| 日韩亚洲欧美综合| 亚洲专区国产一区二区| 色哟哟·www| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 成人一区二区视频在线观看| 精品一区二区免费观看| 国产人妻一区二区三区在| 亚洲国产精品合色在线| 一二三四社区在线视频社区8| 蜜桃亚洲精品一区二区三区| 全区人妻精品视频| 美女xxoo啪啪120秒动态图 | 日韩人妻高清精品专区| 性插视频无遮挡在线免费观看| 欧美最黄视频在线播放免费| 日韩中字成人| 亚洲人与动物交配视频| 国产精品国产高清国产av| 亚洲国产欧美人成| 日本三级黄在线观看| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 国产精品99久久久久久久久| 久久久久久国产a免费观看| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 国产麻豆成人av免费视频| 欧美区成人在线视频| 一级毛片久久久久久久久女| 久久久久久久亚洲中文字幕 | 99精品久久久久人妻精品| 久久国产精品影院| 免费人成视频x8x8入口观看| 亚洲成av人片在线播放无| 色综合亚洲欧美另类图片| 校园春色视频在线观看| 日本免费一区二区三区高清不卡| 免费搜索国产男女视频| 国产精品人妻久久久久久| 亚洲av免费在线观看| 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看| 岛国在线免费视频观看| 日日摸夜夜添夜夜添av毛片 | avwww免费| 狂野欧美白嫩少妇大欣赏| 国产免费一级a男人的天堂| 岛国在线免费视频观看| 成人精品一区二区免费| 黄片小视频在线播放| 国产成人欧美在线观看| 日韩精品青青久久久久久| 真人一进一出gif抽搐免费| 亚洲精品一卡2卡三卡4卡5卡| a级毛片免费高清观看在线播放| 亚洲第一电影网av| 午夜影院日韩av| 亚洲欧美日韩高清专用| 在线观看66精品国产| 最近中文字幕高清免费大全6 | 亚洲人成电影免费在线| .国产精品久久| 搡老妇女老女人老熟妇| 亚洲成av人片在线播放无| 一二三四社区在线视频社区8| 精品午夜福利视频在线观看一区| 久久热精品热| 男人和女人高潮做爰伦理| 亚洲色图av天堂| 欧美性猛交╳xxx乱大交人| 麻豆一二三区av精品| 国产免费av片在线观看野外av| 蜜桃亚洲精品一区二区三区| 亚洲美女黄片视频| 成人性生交大片免费视频hd| 精品不卡国产一区二区三区| 国产高清有码在线观看视频| 国产色婷婷99| 久久精品国产清高在天天线| 精品日产1卡2卡| 亚洲精品日韩av片在线观看| bbb黄色大片| 国产高潮美女av| 成年人黄色毛片网站| 永久网站在线| 久久午夜亚洲精品久久| 网址你懂的国产日韩在线| 69人妻影院| 韩国av一区二区三区四区| 久久精品综合一区二区三区| av专区在线播放| 天堂√8在线中文| 久久久久久久亚洲中文字幕 | 午夜激情欧美在线| 91午夜精品亚洲一区二区三区 | 久久性视频一级片| 日韩中文字幕欧美一区二区| 免费人成视频x8x8入口观看| 欧美日韩国产亚洲二区| 免费大片18禁| 好看av亚洲va欧美ⅴa在| 久久精品综合一区二区三区| 赤兔流量卡办理| 亚洲无线在线观看| 国产精品野战在线观看| 亚洲av免费在线观看| 国产又黄又爽又无遮挡在线| 国产精品,欧美在线| 国内久久婷婷六月综合欲色啪| 久久国产乱子免费精品| 91麻豆av在线| 精品久久久久久,| 精品无人区乱码1区二区| 日韩欧美国产一区二区入口| 99热6这里只有精品| 日本免费一区二区三区高清不卡| 激情在线观看视频在线高清| 男女之事视频高清在线观看| 熟妇人妻久久中文字幕3abv| 亚洲性夜色夜夜综合| 91在线观看av| 岛国在线免费视频观看| 日本熟妇午夜| 国产精品久久视频播放| 小说图片视频综合网站| 嫁个100分男人电影在线观看| 在线天堂最新版资源| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 国产极品精品免费视频能看的| 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 久久九九热精品免费| 日韩欧美 国产精品| 成人性生交大片免费视频hd| 午夜福利高清视频| 中文字幕精品亚洲无线码一区| 人人妻人人澡欧美一区二区| 久久精品国产99精品国产亚洲性色| 日本五十路高清| 最新在线观看一区二区三区| 无遮挡黄片免费观看| 婷婷丁香在线五月| 亚洲欧美日韩无卡精品| 人妻久久中文字幕网| 久久精品久久久久久噜噜老黄 | 搡女人真爽免费视频火全软件 | 又紧又爽又黄一区二区| 一本久久中文字幕| 久久精品91蜜桃| 欧美色视频一区免费| ponron亚洲| 久久99热6这里只有精品| 一a级毛片在线观看| 日本在线视频免费播放| 88av欧美| 真人做人爱边吃奶动态| 成人特级av手机在线观看|