• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于3D 集成中的晶圓和芯片鍵合技術(shù)

    2010-10-24 05:08:04ShariFarrens
    關(guān)鍵詞:基本規(guī)律晶圓本源

    Shari Farrens

    (SUSS MicroTec,228 Suss Drive,Waterbury Center,VT 05677,U.S.A.)

    1 INTRODUCTION

    The basic processing steps that transcend all three stacking options are alignment and bonding.Aligned bonding allows for interlayer connection of TSV’s (through silicon vias)which provide the electrical interconnects.The bonding steps not only provide the mechanical bond between layers but also complete metallurgical reactions that define the resistivity and electrical properties of the connected layers.A variety of choices exist for both alignment and bonding process steps and the following sections will cover in detail these various options.

    2 ALIGNMENT STRATEGIES

    The TSV size and pitch define the required overlay accuracy needed for substrate alignment and influence bonding choices.Presently the via sizes range from a few micrometers (for IC’s) to 25~50 μm(CMOS image sensors) and the required area overlay is 75%.This sets the limit for post bond alignment accuracy at approximately 1~5 μm.Roadmaps extending out over the next several years point toward submicron alignment requirements for some applications such as stacked IC’s for memory.Figure 1 is one projection provided in the Yole industry report on 3D (1).

    Figure 1 The Through Silicon Via (TSV)size is shown versus production year and the corresponding alignment accuracy need for overlaying the various sized vias.

    3 Infrared Alignment

    I nfrared alignment uses a light source of approximately 1.2 μm wavelength to transmit the image of the various layers in the substrates to a camera located on the opposite side of the wafer stack.Naturally,metallic layers will appear totally opaque(black) in the final im age since metals totally adsorb the IR wavelengths.Layers with band gaps ≥1.1 eV will be transparent and doped layers will have varying shades of grayscale depending on layer thickness and adsorption coefficient.Due to the interactions with the layers within the wafer and between substrates th e IR technique can be limited as the device and via density increase.In these cases if the IR method is preferred then open areas must be designed around all alignment key positions.The advantage of the IR method is that all the layers are imaged simultaneously.This enables viewing of the active bond alignment process and the results of previous layer stacking.IR alignment is not used in die-to-wafer bonding.

    4 Intersubstrate Alignment

    Intersubstrate alignment (ISA) uses special optics that are inserted between the two substrates.The left and right objectives image the upper and lower faces of both wafers simultaneously and precision alignment stages bring the wafers into registry.Figure 2 shows the experimental setup for both IR and ISA alignment methods.The benefits of ISA alignment are that the alignment keys placed at the bond interface can be viewed simultaneously.Offsets can be used to accommodate known run out issues and other repeatable errors associated with final alignment accuracy.Historically,precession errors associated with bringing the wafers into proximity and contact after the objectives are retracted,limited the ISA method to roughly ±2 μm accuracy.Recently,precision optics and mechanics have been combined with global inline calibration methods to achieve deep submicron alignment accuracy.Also critical to achieving submicron accuracy is temperature,humidity and vibration control environments such as those used on the SUS S MicroTec BA300UHP precision 3D wafer aligner.

    Figure 2 Experimental configuration of IR and ISA alignment.Both methods image fiducials at the bond interface and align to live images rather than stored digital keys.

    For Die-to-Wafer bonding the ISA mode is used to align each die on its proper location on the substrate wafer one by one.A single ISA objective is used to scan the wafer surface and identify the proper location and alignment keys on the wafer.Then as each die is picked up the upper ISA objective views its face and the pick-n-place robot brings the die into the correct location.The ISA microscope is retracted and the die are lowered on to the surface and tacked or bonded into location.

    Figure 3 Schematic illustration of Die-to-Wafer alignment and bonding setup.Both the bonding arm and substrate stage control heat.The bond force is applied by the bonding arm.Die-to-wafer alignment accuracy degrade with placement speed but can be in the 1-2 μm range for slower,precision tools such as those illustrated here and offered by SET(2).

    5 Alignment Keys

    The design of the alignment key also affects the ability to properly align upper and lower substrates.In general non-overlapping keys provide for the most flexibility in use and achieve the best automated results.Cognex has recently recommended the use of Brad fans for use with their automated pattern recognition software (3).The fan itself is an asymmetrical pinwheel in which edge definition software can be used to mathematically define a unique center of mass.When male and female pairs are used the center of the key is exceptionally well defined.Figure 4 shows the

    Figure 4.Brad fan design of alignment keys used in 3D integration.The non-overlapping,asymmetric patterns facilitate high resolution overlay placement.The post bond accuracy of the aligned keys in the lower right was submicron as determined by the verniers.

    Brad fan design used on the SUSS MicroTec calibration wafers for 300 mm wafer level bonding.The verniers used in this example make use of all four sides of the alignment key by incorporating a coarsely graduated scale on the upper and left sides of the die,and a 0.05 μm scale to the bottom and left side.In this way,x-,y-,and theta misalignments can be calculated.By comparison of radial data from several wafer locations addition data can be harvested to determine thermal expansion contributions and run out errors.These can then be mediated by recipe specific offsets if necessary.

    6 WAFER LEVEL BONDING

    There are three main wafer bonding methods used in 3D integration;metal to metal diffusion (primarily Cu),silicon direct or fusion bonding,and adhesive (primarily BCB) bonding(4,5).Extensive research activities have been conducted on all these processes and each have advantages and drawbacks to be discussed individually.The primary considerations for 3D integration are alignment accuracy and throughput/cost of ownership.Cost of ownership is often a compromise between meeting device requirements and engineering desires.

    6.1 Copper to Copper Diffusion Bonding

    The advantage of copper diffusion bonding is that the mechanical as well as electrical connection can be completed simultaneously during the bonding process.The clarity of alignment keys are exceptional when the metal layer incorporates the fiducials and either ISA or IR alignment is appropriate.The drawbacks to copper diffusion bonding are controlling the quality of the copper surfaces and the relatively high temperatures required for the diffusion reaction.

    Controlling surface oxidation of copper on the substrates generally involves additives to the chemical mechanical polishing (CMP) slurries and the post-CMP cleaning processes.The copper surface is passivated and oxidation is prevented.The surface passivation layers are removed during heat up in the bonder or by other prebond treatments that are done in batch processing and do not severely impact the process flow.It is also possible to incorporate vapor cleaning processes to remove surface oxidation at point of use in the bond cluster.Using the vapor from formic acid (HC00H) in a bubbler,SUSS MicroTec has developed a point of use removal system for metal oxides.The module is incorporated on the C4NP solder transfer tool and is available for SUSS bond clusters.Figure 5 shows the effect of severe oxide removal using this technique.Wafers are placed in cleaning chambers and exposed to the vapor for a few minutes.The chamber is purged and by controlling the partial pressure of O2in the module no salts are fo rmed that required post process rinses.The process is totally dry and the copper surface is stable for several hours.

    這番袒露心聲的話(huà),也讓我們對(duì)金鉆明的了解又深了一步。我們本是為太赫茲而想到去找他,而他其實(shí)沒(méi)有太多地涉及現(xiàn)在非常熱的太赫茲的各種應(yīng)用,而是把更多的研究精力放到對(duì)太赫茲的基本規(guī)律的認(rèn)識(shí)上,并為此樂(lè)此不疲。太赫茲輻射技術(shù)因?yàn)楦鞣N安防上的應(yīng)用而為大眾所知,吸引了很多研究力量和資源,而其實(shí)揭示其本源和規(guī)律同樣重要,也更需要有人去做。正是在這一點(diǎn)上,金鉆明的工作尤其值得我們稱(chēng)道。

    Figure 5 Optical images of device layers heated to 450℃with and without prior surface treatment with formic acid.Dark discoloration is thick copper oxide.

    The self-diffusion coefficient for copper is strongly dependent on grain size and dislocation density at low temperatures.This is true for all fcc metals and the effects can be capitalized upon in the case of thin films and copper vias.Figure 6 shows the relationship between the dominant mechanisms for diffusion as a function of normalized temperature(6).The melting point of copper is 1 084℃and with bonding processes ranging from 300~400℃for copper,T/Tmfalls in the range of 0.27~0.36 where defects dominate.In fact,grain boundaries are the primary contributor to atomic motions.

    Figure 7.Regimes in which lattice diffusion (l),dislocation diffusion (d)or grain boundary (gb)diffusion dominate the diffusion path.T/Tm is the normalized diffusion temperature where Tm is the melting point of the metal.(6)

    Figure 8 is a cross section of a copper via(7).This via is 10 μm wide and several tens of micrometers deep.The SEM image shows how the grain size typically starts submicron at the sidewalls and bottom where the growth initiates from the seed layer.However,the bond interface at the top of the via will typically have grain sizes approaching 2~4 μm.High angle grain boundaries and twins are present extensively throughout copper films and vias.These rapid pathways enhance the low temperature diffusivity and enable copper interconnect technology to occur at semiconductor compatible temperatures.It is,however,difficult to drive the diffusion temperature significantly lower without dramatic alteration of the microstructure with microporous copper deposition or other nonstandard semiconductor deposition/growth methods(8).

    Figure 8 Copper via illustrating grain size and morphology within the via.Oxide liner and seed layer not visible.

    7 Fusion Bonding

    The most attractive feature of fusion bonding is that the wafers can be room temperature bonded.This has the potential to eliminate one of the contributions to misalignment which is the thermal expansion of one wafer relative to the other during the bond reaction.To put it in perspective a 300 mm silicon wafer with a coefficient of thermal expansion of 3.8×10-6at 300℃will have grown in diameter by 320 μm.It is imperative that both wafers experience identical temperature profiles to maintain micron level registry between substrates.

    The fusion or direct bond process is a two stage kinetic reaction.At room temperature wafers can be aligned and brought into contact.The wafers surfaces have a dipole layer of moisture (water)adsorbed onto the surface that will initially repel the opposite surface.The wafers will“float”above each other until a gentle force,usually a mechanical pin presses lightly at the edge of the wafer.This will overcome the electrostatic repulsion and enable the water molecules to van der Waals bond.The van der Waals forces are weak interactions between the polar water groups with an interfacial energy of<1 J/m2.Wafers can be separated by hand or using a tensile force of nominally 0.1 Pa.However,this bond is sufficient to enable transfer of the aligned and prebonded pairs to annealing furnaces where the bonds can be converted to permanent covalent interfacial bonds.This eliminates many of the thermal expansion problems attributed to the thermal compression bonder used for Cu-Cu diffusion bonds and thermal expansion difference between upper and lower wafers while the bonder is ramped from room temperature to the bond temperature.In other words,for copper bonding there are not attractive forces or low temperature interactions that prevent upper and lower wafers from moving relative to one another until the diffusion reaction initiates.In the fusion bond process the prebond van der Waals attractions are sufficient to hold the wafers in place during the conversion to covalent bonds at elevated temperatures(typically 300℃).

    The drawback to fusion bonding is the stringent requirementsfor surface flatnessandroughness.Becausethe vander Waalsbonds areweakinteractionsit isnot possible to prebond wafers with roughness values>1 nm RMS or withbow/warplevelsinexcessiveof~50μm.Fusionbondingfor 3Dhasbeenmost successful whenthe device layers are passivated byblanket layers of dielectric material such asPECVDoxideorotherlowtemperatureoxidelayers.

    The passivation layer is easily CMP’d and resulting surfaces are of sufficient quality to enable fusion bonding.However,there are no direct electrical connections across the interface to interconnect the metal layers.Additional processing is therefore required to etch through the wafer stack and backfill vias with metals.This is done by thinning one of the substrates to several tens of micrometers and follow by a patterned etch and metal backfill in a process known as“via last”processing.

    More recently hybrid technology is being investigated in which the vias are buried below a dielectric blanket layer and the CMP process goes beyond planarizing the oxide and exposes the surfaces of the metal plugs.Care must be taken to control the dishing and conversely the crowning of the metal with respect to the passivation layer.However,results are emerging that indicate this technique may be applicable to production process flows.Ziptronix has developed many of these processes and the reader is referred to this literature for details (9).These methods could enable via first processing using hybrid fusion bonding.

    Fusion bondinghas resulted in consistent submicron alignment accuracies whenever the bonding requirements can be fulfilled.Certainly as CMP processes improve this technique will find full scale productionvalue.

    7.1 Adhesive Bonding for 3D

    Adhesive bonding for 3D falls in the intermediate range with respect to temperature.BCB (benzocyclobutene) is the most often used polymer for precision 3D adhesive bonding and is bonded from 150-320℃.By controlling the rheology of the film during the precure step the material can be manipulated to customize the interfacial compliancy and provide low temperature bonding and alignment accuracies in the 1~2 μm range.Extensive literature about BCB bonding for use in 3D applications exists and illustrate process flows for front to front or front to back stacking sequences.The general process flow starts with the application of BCB to one or both of the surfaces.When one wafer only is coated it is important to use adhesion promoter AP3000 on the opposing side.Typical total thicknesses are~2 μm.Figure 9 shows the evolution of the bonded BCB layer if the precure (bake out step before bonding)is not sufficient to remove all the residual solvents.Basically,for precuring below 150℃there is an almost certain chance that the film will dissociate resulting in poor bond integrity.All precure conditions for this figure were for 1 hr and final bonds were done at 250℃.

    Figure 9 The phase diagram for BCB in the upper portion of the figure shows the transition from liquid to solid.The lower figures show the final film structure for various one hour pre-cure temperatures before alignment and bonding at 250℃.

    Other polymers have been identified as candidates for 3D integration application but thus far none have been adopted.BCB has certain drawbacks with cost and inter-via connections must be made after bonding and thinning.There is presently no commercial activity for BCB in 3D integration but some use in CMOS image sensors for high end applications in digital cameras.

    Table 1 summarizes the advantages and disadvantages of the three bonding techniques discussed for 3D applications.At this time the only applications in production are CMOS image sensor.These products use both the metal bonding technology utilizing Cu TSV’s and also the fusion bonding techniques at wafer level.

    Table I Comparison of Wafer Level Bonding Technologies for 3D Integration

    8 DIE-TO-WAFER BONDING

    Wafer level bonding only applies when the substrates are matched materials type,when die sizes are the same,and when both wafers have excellent yield.Thus die-to-wafer bonding is extensively used for heterogeneous integration and for mixed signal processes.It is also very useful and attractive for assembly of more than one size die onto the wafer and irregular population of the wafer.

    Figure 10 graphically illustrates the bottom-line in die-to-wafer vs.wafer-to-wafer choices.The placement of die is not simultaneously accurate and fast.A typical pick and place die bonder may do several 100’s or more of placements but with an accuracy of>10 μm.A precision die bonder such as the SET FC250 can achieve micron level alignment but may take over 1 hour to populate the wafer.Thus figure 10,accurately illustrates that when you have many small die which is synonymous with a large number of die to place,and you want a high degree of placement overlay then the wafer to wafer techniques are superior choices.The die bonder is inefficient and limited in abilities to perform advanced metallurgical bonds that require high temperatures or force.Since the placement of the die is already a throughput bottleneck if the desired bond is copper to copper diffusion process there are significant issues.Among the primary ones are how to heat to 300~400℃for several minutes

    Figure 10 Approximate cost as a function of die size and placement accuracy for C2W and W2W bonding technology(1).

    under a relatively high force without heating surrounding wafer locations.Thus many die-towafer scenarios use low temperature eutectic alloys to tack the wafers in location and then move the populated wafer to a thermal compression bonder to apply high force and high heat to all die at the same time.The solder is consumed in the diffusion reaction and if properly controlled the reflow of the solder will not degrade the alignment accuracy too severely.There are similar uses of polymers for temporary tacking of the die to the main substrates as well.

    9 SUMMARY

    Both wafer level and die-to-wafer bonding will be used in 3D integration.The economic benefit of wafer-to-wafer bonding applies primarily to small die size or very dense interconnects in which a high alignment accuracy is required.Wafer level bonding is a applicable to bonding of same size die and wafers from which the yields are both very high.Die-to-wafer bonding is preferred for mixed processes and is very economical for larger die that require >2 μm overlay accuracy.Perhaps,for some products the compromise will come in the form of die-to-wafer population and populated wafer thermal compression bonding as a second step.

    There is no production of 3D devices on the market and R&D activities continue to home in on viable high volume solutions.Equipment suppliers are meeting and exceeding roadmap requirements with new wafer level bonding options as the technology matures to a production worthy manufacturing option.

    [1]Yole 2007 MEMS Industry Report[B/OL].http://www.yole.fr/pagesAn/products/report_MEMS.asp

    [2]http://www.set-sas.fr/en/multipage.xml?pg=1&id=173582.[Z]

    [3]Bill Silver,“The evaluation and design of a Universal Alignment Target”,[C].rev 2.0,March 12,2000.

    [4]Chuan Seng Tan,Ronald J.Gutmann and L.Rafael Reif,”Wafer Level 3-D IC’s Process Technology”[C].(Springer,New York,2008).

    [5]Phil Garrou,“Handbook of 3D Integration”[C].(Wiley,Weinheim Germany,2008).

    [6]D.Gupta,D.R.Campbell,and P.S.,Chapter 7“Grain Boundary Diffusion”[C].Thin Films Interdiffusion and Re actions edited by J.M.Poate,K.N.Tu and I.W.Mayer,(Wiley,New York,1978)p.164.

    [7]Courtesy of STS[Z].

    [8]Pei-I Wang et.al.,“Low Temperature Copper-Nanorod Bonding for 3D Integration”[C].(Mater.Res.Soc.Symp.Proc.970,Pittsburg,PA,2007).

    [9]Paul Enquist,“Direct Bond Interconnect (DBI.) -Technology for Scaleable 3D SoCs”[C].(RTI Conference Proceedings on Semiconductor Integration and Packaging Accessing Technological Developments,Applications,and Key Enablers,Marriot San Francisco Airport Hotel,Burlingame,California,Oct.31-Nov.2,2006).

    猜你喜歡
    基本規(guī)律晶圓本源
    抓好“氧化還原反應(yīng)基本規(guī)律”的應(yīng)用
    改進(jìn)型晶圓預(yù)對(duì)準(zhǔn)算法
    半導(dǎo)體制造領(lǐng)域的晶圓預(yù)對(duì)準(zhǔn)系統(tǒng)綜述
    保函回歸本源
    追溯本源,自然生成*——《兩角差的余弦公式》的教學(xué)設(shè)計(jì)
    析錯(cuò)因找方法 溯本源尋對(duì)策
    聚焦典型現(xiàn)象掌握基本規(guī)律
    聚焦天體運(yùn)動(dòng)的基本規(guī)律
    纖維新材料:本源與生機(jī)
    隊(duì)列動(dòng)作技能教學(xué)的基本規(guī)律
    97在线人人人人妻| 精品一区在线观看国产| 国产在视频线精品| av在线老鸭窝| 国产成人精品在线电影| 九九久久精品国产亚洲av麻豆| 观看美女的网站| 国产精品久久久久久精品电影小说| 高清毛片免费看| 色5月婷婷丁香| 国产女主播在线喷水免费视频网站| 亚洲av成人精品一二三区| 亚洲情色 制服丝袜| 国产片特级美女逼逼视频| 亚洲精品第二区| 999精品在线视频| 99热这里只有精品一区| 久久婷婷青草| 纵有疾风起免费观看全集完整版| 大片电影免费在线观看免费| 亚洲国产精品成人久久小说| av专区在线播放| 在线天堂最新版资源| av播播在线观看一区| 免费av中文字幕在线| 一区二区三区乱码不卡18| 蜜桃久久精品国产亚洲av| 亚洲,欧美,日韩| 久久久午夜欧美精品| 老司机影院成人| 日本wwww免费看| 久久久久久久精品精品| 美女视频免费永久观看网站| 黄色一级大片看看| 日本午夜av视频| 国产精品女同一区二区软件| 美女视频免费永久观看网站| 日韩熟女老妇一区二区性免费视频| 日本色播在线视频| 中文字幕av电影在线播放| 啦啦啦啦在线视频资源| 91精品三级在线观看| 亚洲精品久久久久久婷婷小说| 国产亚洲午夜精品一区二区久久| 国产视频内射| 久久久久久久久久成人| 最新的欧美精品一区二区| 免费久久久久久久精品成人欧美视频 | 国产伦理片在线播放av一区| 91国产中文字幕| 搡老乐熟女国产| 久久久久国产精品人妻一区二区| 色5月婷婷丁香| 国产黄频视频在线观看| 高清不卡的av网站| 老女人水多毛片| 成人亚洲欧美一区二区av| 免费播放大片免费观看视频在线观看| videossex国产| 久久精品国产亚洲av天美| 国产在线免费精品| 亚洲国产精品专区欧美| 亚洲av免费高清在线观看| 精品亚洲乱码少妇综合久久| 美女脱内裤让男人舔精品视频| 精品国产一区二区久久| 美女cb高潮喷水在线观看| 日本91视频免费播放| 国产av码专区亚洲av| 桃花免费在线播放| 日本欧美国产在线视频| 赤兔流量卡办理| 男女边摸边吃奶| 夫妻午夜视频| 超碰97精品在线观看| 午夜福利,免费看| 国产精品成人在线| 校园人妻丝袜中文字幕| 亚洲不卡免费看| 精品人妻熟女毛片av久久网站| av女优亚洲男人天堂| 亚洲精品乱码久久久久久按摩| 国产高清不卡午夜福利| 观看av在线不卡| 又粗又硬又长又爽又黄的视频| 国产成人a∨麻豆精品| 亚洲精品中文字幕在线视频| 亚洲久久久国产精品| 日韩一本色道免费dvd| 桃花免费在线播放| 亚洲国产欧美在线一区| av女优亚洲男人天堂| 午夜免费男女啪啪视频观看| 日韩av不卡免费在线播放| 一级毛片电影观看| 久久久久国产精品人妻一区二区| 久久久久久久久久成人| 国产极品粉嫩免费观看在线 | 久久人人爽av亚洲精品天堂| 成年av动漫网址| 国产男女超爽视频在线观看| 日韩av免费高清视频| 日韩亚洲欧美综合| 少妇被粗大的猛进出69影院 | 少妇被粗大猛烈的视频| 好男人视频免费观看在线| 国产日韩欧美亚洲二区| 成人毛片a级毛片在线播放| 多毛熟女@视频| 亚洲精品成人av观看孕妇| a级片在线免费高清观看视频| 91国产中文字幕| xxxhd国产人妻xxx| 97在线人人人人妻| 91久久精品电影网| xxxhd国产人妻xxx| 91成人精品电影| 永久网站在线| 成人18禁高潮啪啪吃奶动态图 | 91午夜精品亚洲一区二区三区| 国产精品一区二区在线不卡| 亚洲国产欧美日韩在线播放| 人体艺术视频欧美日本| 男女国产视频网站| 久久久久久久久久久久大奶| 女人久久www免费人成看片| 亚洲精品成人av观看孕妇| 中文字幕制服av| 岛国毛片在线播放| 国产一区二区在线观看av| 国产av国产精品国产| 欧美日韩亚洲高清精品| 亚洲欧美精品自产自拍| 啦啦啦在线观看免费高清www| 国产一区亚洲一区在线观看| 国产日韩欧美视频二区| 黄色一级大片看看| 亚州av有码| 春色校园在线视频观看| 久久亚洲国产成人精品v| 国产一区二区三区av在线| 国产av国产精品国产| 精品人妻一区二区三区麻豆| 久久免费观看电影| 日韩强制内射视频| 丝瓜视频免费看黄片| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品专区欧美| 51国产日韩欧美| 久久久精品免费免费高清| 2022亚洲国产成人精品| 亚洲成人手机| 人妻 亚洲 视频| 超色免费av| 免费观看性生交大片5| 高清毛片免费看| 国产熟女欧美一区二区| 久久午夜综合久久蜜桃| 丝瓜视频免费看黄片| 久久99一区二区三区| 男女国产视频网站| 久久精品国产a三级三级三级| 高清午夜精品一区二区三区| 成人漫画全彩无遮挡| 飞空精品影院首页| 满18在线观看网站| 校园人妻丝袜中文字幕| 国产日韩欧美在线精品| 亚洲美女黄色视频免费看| 国产av国产精品国产| 又黄又爽又刺激的免费视频.| 国产免费一级a男人的天堂| √禁漫天堂资源中文www| 大香蕉久久成人网| 18禁在线无遮挡免费观看视频| 久久久a久久爽久久v久久| 日韩人妻高清精品专区| 卡戴珊不雅视频在线播放| 丁香六月天网| 91aial.com中文字幕在线观看| 91精品伊人久久大香线蕉| 丝袜喷水一区| 亚洲色图 男人天堂 中文字幕 | 美女国产高潮福利片在线看| 国产精品99久久久久久久久| 五月玫瑰六月丁香| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 一级毛片我不卡| 一区二区日韩欧美中文字幕 | 成人国产麻豆网| 2021少妇久久久久久久久久久| 欧美激情 高清一区二区三区| 99热国产这里只有精品6| 久久国内精品自在自线图片| 精品少妇黑人巨大在线播放| 桃花免费在线播放| 啦啦啦啦在线视频资源| 国产免费福利视频在线观看| 在线观看美女被高潮喷水网站| 亚洲精品乱码久久久v下载方式| 成人毛片a级毛片在线播放| 国产综合精华液| 97在线人人人人妻| 街头女战士在线观看网站| 亚洲成人手机| 欧美激情国产日韩精品一区| 一边亲一边摸免费视频| 久久久久久人妻| 国产女主播在线喷水免费视频网站| 9色porny在线观看| 欧美97在线视频| 欧美精品一区二区免费开放| 国产片特级美女逼逼视频| 国产成人一区二区在线| 久久人人爽人人爽人人片va| 久久精品国产鲁丝片午夜精品| 精品人妻偷拍中文字幕| 精品国产国语对白av| 一区二区日韩欧美中文字幕 | 亚洲内射少妇av| 欧美亚洲日本最大视频资源| 亚洲av欧美aⅴ国产| 观看美女的网站| 久久久a久久爽久久v久久| 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| 亚洲中文av在线| 一边亲一边摸免费视频| 在线观看人妻少妇| 人人妻人人澡人人看| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 久久影院123| 99久久人妻综合| 国产永久视频网站| 午夜福利影视在线免费观看| 十八禁网站网址无遮挡| 搡老乐熟女国产| 乱人伦中国视频| 亚洲欧美精品自产自拍| 最新中文字幕久久久久| 夫妻性生交免费视频一级片| 热99久久久久精品小说推荐| 欧美精品高潮呻吟av久久| 内地一区二区视频在线| 亚洲人成网站在线观看播放| 大话2 男鬼变身卡| 亚洲精品乱久久久久久| 日本vs欧美在线观看视频| 伦理电影免费视频| 午夜福利影视在线免费观看| 99久久人妻综合| 女性生殖器流出的白浆| 午夜av观看不卡| 欧美性感艳星| 亚洲精品第二区| 成年女人在线观看亚洲视频| 在线看a的网站| 国产精品秋霞免费鲁丝片| 嫩草影院入口| 国产乱人偷精品视频| 免费av不卡在线播放| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频| 国产精品久久久久久久久免| 久久久久久久久久久久大奶| 国产精品嫩草影院av在线观看| av有码第一页| 久久人人爽av亚洲精品天堂| 男人添女人高潮全过程视频| 亚洲伊人久久精品综合| 飞空精品影院首页| 黄片无遮挡物在线观看| 99热全是精品| 成人毛片a级毛片在线播放| 久久韩国三级中文字幕| 久久久久久久久久成人| 国产日韩一区二区三区精品不卡 | 天堂中文最新版在线下载| 中文字幕av电影在线播放| av视频免费观看在线观看| 成人国产av品久久久| 免费高清在线观看视频在线观看| a 毛片基地| 美女脱内裤让男人舔精品视频| 最近中文字幕高清免费大全6| 精品一区二区三卡| av免费在线看不卡| 成年av动漫网址| 2022亚洲国产成人精品| 久久久久国产精品人妻一区二区| 国产成人精品久久久久久| 黄色毛片三级朝国网站| 在线精品无人区一区二区三| 搡老乐熟女国产| 美女中出高潮动态图| 精品久久久久久电影网| 亚洲国产欧美日韩在线播放| 久久99蜜桃精品久久| 国产片特级美女逼逼视频| 99精国产麻豆久久婷婷| videossex国产| 久久精品国产亚洲av涩爱| 亚洲内射少妇av| tube8黄色片| 精品久久久久久久久亚洲| 欧美精品亚洲一区二区| 制服丝袜香蕉在线| 性色avwww在线观看| av有码第一页| 卡戴珊不雅视频在线播放| 亚洲久久久国产精品| 亚洲欧洲日产国产| 亚洲欧美色中文字幕在线| 成人国产麻豆网| 久热久热在线精品观看| 免费人妻精品一区二区三区视频| 免费看av在线观看网站| 夫妻性生交免费视频一级片| 好男人视频免费观看在线| 精品少妇黑人巨大在线播放| 精品少妇久久久久久888优播| 18+在线观看网站| 国产成人精品婷婷| 成年女人在线观看亚洲视频| 各种免费的搞黄视频| 久久久久久人妻| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 亚洲美女黄色视频免费看| 久久精品国产亚洲网站| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 精品酒店卫生间| 天堂8中文在线网| 久久毛片免费看一区二区三区| 免费久久久久久久精品成人欧美视频 | 亚洲精品色激情综合| 精品99又大又爽又粗少妇毛片| 这个男人来自地球电影免费观看 | 这个男人来自地球电影免费观看 | 亚洲欧美成人综合另类久久久| 亚洲av综合色区一区| 大香蕉久久成人网| 久久久久国产精品人妻一区二区| 久久久亚洲精品成人影院| 日本欧美国产在线视频| 永久免费av网站大全| 高清欧美精品videossex| 99视频精品全部免费 在线| 91精品国产国语对白视频| 国产探花极品一区二区| 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 国产片内射在线| 一级毛片aaaaaa免费看小| 97超视频在线观看视频| 大又大粗又爽又黄少妇毛片口| 亚洲一级一片aⅴ在线观看| 高清毛片免费看| 少妇被粗大猛烈的视频| 纯流量卡能插随身wifi吗| 男人操女人黄网站| 香蕉精品网在线| 国产午夜精品久久久久久一区二区三区| 国产视频内射| 中文欧美无线码| 热re99久久精品国产66热6| 18在线观看网站| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 久久99热6这里只有精品| 婷婷色麻豆天堂久久| 久久精品国产亚洲网站| 国产 一区精品| 另类精品久久| 国产熟女午夜一区二区三区 | 色婷婷av一区二区三区视频| 少妇精品久久久久久久| 黑人高潮一二区| 日韩视频在线欧美| 日韩av免费高清视频| 大又大粗又爽又黄少妇毛片口| 九色成人免费人妻av| 在线观看免费视频网站a站| 久久久国产一区二区| 午夜免费观看性视频| 一边亲一边摸免费视频| 亚洲精华国产精华液的使用体验| 伦理电影免费视频| 久久亚洲国产成人精品v| 黄片播放在线免费| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 插逼视频在线观看| av女优亚洲男人天堂| 天天操日日干夜夜撸| a级毛片黄视频| 国产免费一级a男人的天堂| 人妻少妇偷人精品九色| 亚洲一区二区三区欧美精品| 麻豆精品久久久久久蜜桃| 亚洲精品,欧美精品| 成人二区视频| 99热国产这里只有精品6| 老熟女久久久| 亚洲综合色惰| 国产淫语在线视频| 91久久精品国产一区二区三区| 97超碰精品成人国产| 青春草亚洲视频在线观看| 精品少妇黑人巨大在线播放| 美女内射精品一级片tv| 你懂的网址亚洲精品在线观看| 美女cb高潮喷水在线观看| 久久人妻熟女aⅴ| 国产精品久久久久久精品电影小说| 纵有疾风起免费观看全集完整版| a 毛片基地| 国产极品天堂在线| 国产精品久久久久久久久免| 美女国产视频在线观看| 在线观看一区二区三区激情| 一级a做视频免费观看| 欧美老熟妇乱子伦牲交| 国产黄片视频在线免费观看| 99精国产麻豆久久婷婷| 丝袜脚勾引网站| 超色免费av| 亚洲国产成人一精品久久久| 最近最新中文字幕免费大全7| 国产高清三级在线| 一级a做视频免费观看| 久久亚洲国产成人精品v| av国产精品久久久久影院| 女性生殖器流出的白浆| 热99国产精品久久久久久7| 久久免费观看电影| 美女视频免费永久观看网站| 精品国产一区二区久久| 国产精品麻豆人妻色哟哟久久| 国产亚洲欧美精品永久| 亚洲精品一二三| 色视频在线一区二区三区| 国产免费现黄频在线看| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 亚洲av综合色区一区| 少妇人妻 视频| 亚洲国产精品一区三区| 人妻一区二区av| av在线播放精品| 成人免费观看视频高清| 我要看黄色一级片免费的| 一级a做视频免费观看| 国产成人精品一,二区| 午夜久久久在线观看| 蜜桃在线观看..| 综合色丁香网| 亚洲人成77777在线视频| 五月天丁香电影| 一区二区三区精品91| 久热久热在线精品观看| 一本—道久久a久久精品蜜桃钙片| 中文字幕久久专区| 丰满迷人的少妇在线观看| 久久久久国产网址| 午夜福利影视在线免费观看| 午夜日本视频在线| 91精品国产九色| 桃花免费在线播放| 久久久欧美国产精品| 国精品久久久久久国模美| 大陆偷拍与自拍| 精品一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕 | 精品人妻在线不人妻| 亚洲情色 制服丝袜| 欧美激情极品国产一区二区三区 | 十八禁高潮呻吟视频| 五月玫瑰六月丁香| 色5月婷婷丁香| 久久韩国三级中文字幕| 国产免费一级a男人的天堂| 99热6这里只有精品| 26uuu在线亚洲综合色| 在线观看人妻少妇| 中国国产av一级| 成年人免费黄色播放视频| 国产成人免费无遮挡视频| 国产精品久久久久久久电影| 麻豆乱淫一区二区| 日本vs欧美在线观看视频| 人妻 亚洲 视频| 国产黄片视频在线免费观看| 永久网站在线| 国产精品一二三区在线看| 国产精品一国产av| 亚洲精品一区蜜桃| √禁漫天堂资源中文www| 欧美人与善性xxx| 国产免费一区二区三区四区乱码| 天天操日日干夜夜撸| 国产无遮挡羞羞视频在线观看| 99热网站在线观看| 国产av一区二区精品久久| 欧美性感艳星| 日本免费在线观看一区| 国产亚洲一区二区精品| 我的女老师完整版在线观看| 一区二区日韩欧美中文字幕 | av不卡在线播放| 蜜臀久久99精品久久宅男| 纯流量卡能插随身wifi吗| 精品一区二区免费观看| tube8黄色片| 久久久久人妻精品一区果冻| 久久鲁丝午夜福利片| 丰满少妇做爰视频| 婷婷色麻豆天堂久久| 午夜精品国产一区二区电影| 自拍欧美九色日韩亚洲蝌蚪91| 日韩成人伦理影院| 国模一区二区三区四区视频| 91久久精品电影网| 韩国高清视频一区二区三区| av福利片在线| 在线观看一区二区三区激情| 中文精品一卡2卡3卡4更新| 91精品一卡2卡3卡4卡| 天美传媒精品一区二区| 性高湖久久久久久久久免费观看| av电影中文网址| 亚洲欧美精品自产自拍| 国产视频内射| 人人妻人人澡人人看| 久久久久久久亚洲中文字幕| 在线观看国产h片| 精品少妇黑人巨大在线播放| 国语对白做爰xxxⅹ性视频网站| 午夜福利网站1000一区二区三区| 黄色视频在线播放观看不卡| 欧美日韩成人在线一区二区| 亚洲图色成人| 国产国拍精品亚洲av在线观看| 国产色婷婷99| 久久午夜综合久久蜜桃| 女人久久www免费人成看片| 亚洲av免费高清在线观看| 伊人亚洲综合成人网| 在线亚洲精品国产二区图片欧美 | 91成人精品电影| 五月玫瑰六月丁香| 亚洲,欧美,日韩| 亚洲成人手机| 成年美女黄网站色视频大全免费 | 男人操女人黄网站| 18禁观看日本| 一边亲一边摸免费视频| 国产伦理片在线播放av一区| 久久韩国三级中文字幕| 我的老师免费观看完整版| 欧美3d第一页| www.色视频.com| 午夜视频国产福利| 天堂8中文在线网| 亚洲经典国产精华液单| 国产精品久久久久成人av| 日本爱情动作片www.在线观看| 肉色欧美久久久久久久蜜桃| 日韩一区二区三区影片| 成人国产麻豆网| av专区在线播放| 亚洲欧美日韩卡通动漫| 欧美日韩一区二区视频在线观看视频在线| 国产老妇伦熟女老妇高清| 在线观看免费日韩欧美大片 | 91aial.com中文字幕在线观看| av黄色大香蕉| 欧美另类一区| 国产探花极品一区二区| 夜夜骑夜夜射夜夜干| 只有这里有精品99| 老熟女久久久| 精品久久久久久久久av| 成年人免费黄色播放视频| 免费日韩欧美在线观看| 18在线观看网站| 国产在线一区二区三区精| 激情五月婷婷亚洲| 中国美白少妇内射xxxbb| 亚洲婷婷狠狠爱综合网| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区| 国产一区二区在线观看av| 欧美变态另类bdsm刘玥| 大片免费播放器 马上看| 午夜日本视频在线| 精品99又大又爽又粗少妇毛片| 在线观看三级黄色| 成人午夜精彩视频在线观看| 中文字幕av电影在线播放| 天天操日日干夜夜撸| 飞空精品影院首页| 国产亚洲欧美精品永久| 日韩成人伦理影院| 人妻人人澡人人爽人人| 欧美日韩视频精品一区| 久久久a久久爽久久v久久| 国产综合精华液| 午夜福利在线观看免费完整高清在| 性色av一级| 国产成人免费观看mmmm| 国产精品人妻久久久久久|