• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一階線性微分方程解的漸進(jìn)性證明

      2010-09-11 02:48:00袁春華
      山東開放大學(xué)學(xué)報 2010年4期
      關(guān)鍵詞:理學(xué)院漸進(jìn)性春華

      袁春華

      (濟(jì)南大學(xué)理學(xué)院,山東 濟(jì)南 250022)

      一階線性微分方程解的漸進(jìn)性證明

      袁春華

      (濟(jì)南大學(xué)理學(xué)院,山東 濟(jì)南 250022)

      本文給出了一階線性微分方程解的漸近性證明常用的結(jié)論并對結(jié)論進(jìn)行了證明,通過舉例說明了應(yīng)用這些結(jié)論證明一階線性微分方程解的漸進(jìn)性非常簡便。

      一階線性微分方程;初值問題;連續(xù)

      1.基本知識

      2.基本結(jié)論

      對于滿足一定條件的一階線性微分方程,可以利用一階線性微分方程解表達(dá)式(1),對一階線性微分方程解的漸進(jìn)性進(jìn)行證明,證明時,常用到如下的相關(guān)結(jié)論.

      則對上述任給ε>0,取T=max{T0,T1},當(dāng)x>T時,由式(2)、(3)可知:

      證明:令F(x)=f(x)-b,則F(x)在[0,+∞)上連續(xù),且有由結(jié)論1可知:=0.

      從而

      3.結(jié)論應(yīng)用

      證明:不妨設(shè)y=y(x)是方程任一解且滿足 y=(0)=y0,初值問題滿足解的存在唯一性條件,由(1)式可知,該初值問題的解為:

      例2:設(shè)f(x)在[0,+∞)上連續(xù)可微,

      4.小結(jié)

      對上述例題,也可以直接用函數(shù)極限定義直接證明,但非常麻煩;利用上述結(jié)論證明有關(guān)一階線性微分方程解的漸進(jìn)性非常方便簡捷。

      [1]東北師范大學(xué)微分方程教研室.常微分方程[M].北京:高等教育出版社,2009.

      [2]王克,潘家齊.常微分方程學(xué)習(xí)指導(dǎo)書[M].北京:高等教育出版社,2007.

      [3]莊萬.常微分方程習(xí)題解[M].濟(jì)南:山東科學(xué)技術(shù)出版社,2008.

      [4]王高雄,周之銘,朱思銘,王壽松.常微分方程[M].北京:高等教育出版社,2004.

      book=59,ebook=1

      O175

      A

      1008—3340(2010)04—0059—02

      2010-08-28

      袁春華(1967-),男,講師,碩士,研究方向:交通規(guī)劃、智能優(yōu)化算法。

      猜你喜歡
      理學(xué)院漸進(jìn)性春華
      昆明理工大學(xué)理學(xué)院學(xué)科簡介
      昆明理工大學(xué)理學(xué)院簡介
      待到春華爛漫時
      黃河之聲(2020年5期)2020-05-21 08:24:38
      我們該如何表達(dá)苦難?——讀黃春華《扁腦殼》
      西安航空學(xué)院專業(yè)介紹
      ———理學(xué)院
      英語深層閱讀的漸進(jìn)性教學(xué)策略
      豬漸進(jìn)性萎縮性鼻炎——豬場不容無視的問題
      春華而后秋實
      海峽姐妹(2015年3期)2015-02-27 15:10:04
      不同圍壓下茅口灰?guī)r漸進(jìn)性破壞的試驗研究
      突破性創(chuàng)新與漸進(jìn)性創(chuàng)新選擇研究——以電視行業(yè)為例
      河南科技(2014年10期)2014-02-27 14:09:32
      阳原县| 万山特区| 襄城县| 广昌县| 河间市| 武川县| 静安区| 柏乡县| 洪泽县| 女性| 韶关市| 建平县| 密云县| 会同县| 平南县| 如东县| 曲松县| 根河市| 洪洞县| 佳木斯市| 仪陇县| 民权县| 兴国县| 长葛市| 安平县| 蕉岭县| 阿图什市| 教育| 全南县| 家居| 上林县| 烟台市| 武川县| 邓州市| 北川| 临沧市| 清水县| 左贡县| 南京市| 临清市| 北辰区|