• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE FORM INVARIANCES AND THE HOJMAN CONSERVED QUANTITIES FOR HAMILTON SYSTEMS*

    2010-09-08 03:13:56ZhangHongBin張宏彬GuShuLong顧書龍andChenHaiBo陳海波
    巢湖學(xué)院學(xué)報(bào) 2010年3期
    關(guān)鍵詞:海波責(zé)任編輯

    Zhang Hong-Bin(張宏彬),Gu Shu-Long(顧書龍)and Chen Hai-Bo(陳海波)

    (Department of Physics,Chaohu College,ChaohuAnhui238000)

    THE FORM INVARIANCES AND THE HOJMAN CONSERVED QUANTITIES FOR HAMILTON SYSTEMS*

    Zhang Hong-Bin(張宏彬),Gu Shu-Long(顧書龍)and Chen Hai-Bo(陳海波)

    (Department of Physics,Chaohu College,ChaohuAnhui238000)

    Abstract:The form invariance and the Lie symmetry are defined for Hamilton systems.A relation between the form invariance and the Lie symmetry is derived.The Hojman conserved quantity is constructed by using the generators of Lie symmetry.An approach to find Hojman conserved quantities in terms of the form invariance is presented.An example is given to illustrate the application of the results.

    Key words:Hamilton system;form invariance;Lie symmetry;Hojman conserved quantity;PACC:0320

    1 Introduction

    The symmetry of mechanical systems is one of the most important subjects in physics,which has been investigated for a long time.The symmetry of a mechanical system will be useful for integrating the equations of motion,since it is closed related to invariants(or first integrals)of this system.The modern approaches of finding invariants are mainly in terms of the Noether symmetry,the Lie symmetry and the Mei form invariance.The Noether symmetry is an invariance of the Hamilton action under the infinitesimal transformation of a continuous group[1].The Noether′s theorem associates one conserved quantity to each Noether symmetry.The Mei′s form invariance is an invariance of dynamical functions of system such as Lagrangian,Hamilton,non-potential generalized force and generalized constrained force etc,under the infinitesimal transformation[2-6].A new conserved quantity can be obtained by using Mei′s from invariance[7]. Lie′s method consists in finding the continuous symmetry transformations that leave a system of differential equations invariant.These symmetry transformations constitute a Lie group.Once you have obtained the symmetry group,there are some ways to find first integrals.In 1979 Lutzky[8]showed that constants of motion for a Lagrangian system are determined even by point symmetries which do not preserve the action, and demonstrated that the explicit form of these conserved quantities can be specified from a knowledge of the symmetry group generator.In 2003,Fu and Chen[9]studied non-Noether symmetries and conserved quantities of nonconservative dynamical systems.

    In 1992,Hojman[10]presented a new conservation law without using either Lagrangian or Hamilton,solely based on the existence of symmetries.This direct method has attracted much attention[11-18].In this paper,we study Hojman conserved quantities by using the Mei form invariance for the Hamilton systems.In section 2,the definitions of the form invariance and Lie symmetry are given.In section 3,the Hojman conserved quantity is constructed by using the generators of Lie symmetry for the Hamilton system.The relation between form invariance and Lie symmetry is deduced in section 4.A approach to find Hojman conserved quantities in terms of the form invariance is presented in section 5.Finally,a example is given to illustrate the application of the results.

    2 Definition and criterion of form invariance for Hamilton systems

    If the differential equations of motion of a mechanical system can be written in the form

    then such system is called a Lagrangian system.The Lagrangian systems include(but not limited to): holonomic conservative system,holonomic system with generalized forces derived from a generalized potential,systems of inverse problem of Lagrange mechanics[19-20],nonholonomic systems with the equations of motion of the corresponding to the holonomic system governed by Eq.(1),the Chaplygin systems with the Helmholtz potential[21-22],the nonholonomic potential systems whose free motion can be realized[23].

    Introducing the generalized momentums and the Hamilton

    then Eq.(1)may be written in the canonical form

    whereis the Hamilton.

    Introduce the infinitesimal transformations with respect to time,generalized coordinates and generalized momentums

    or their expansion formula

    where ε is an infinitesimal parameter,τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)are called infinitesimal g enerators.Under the infinitesimal transformations(5),Hamilton H(t,q,p)becomes H(t*,q*,p*).

    Definition 1:Under the infinitesimal transformation(5),if the canonical equations(3)keep their form invariant,i.e.,

    where

    then such invariance is called a form invariance of the Hamilton systems.

    Introduce the differential operator of the infinitesimal generators

    and its extensions

    Expanding H*,one has

    From Eqs.(6)—(10),the following criterion can be obtained.

    Criterion 1:The infinitesimal transformation(5)is a Mei's symmetric transformation of the system(3),if and only if the infinitesimal generators τ(t,q,p),ξk(t,q,p)and ηk(t,q,p)satisfy the following conditions

    Proof:Substituting Eq.(10)into Eqs.(6),using Eqs.(3),and neglecting and the higher infinitesimal terms,Eqs.(11)will be obtained.

    3 .The Hojman conserved quantity for Hamilton systems

    The basic idea of the Lie symmetry is to keep the equations of motion(3)invariant under the infinitesimal transformations(5).For convenience,Eqs.(3)are rewritten in following form

    where gs=?H/?psand hs=-?H/?q· s.

    Definition 2:The infinitesimal transformation(5)is a Lie′s symmetric transformationof the system(3),if and only if there exist functionsτ(t,q,p),ξs(t,q,p)and ηs(t,q,p)that satisfy the following determining equations

    where

    In terms of the generators of the Lie symmetry for equations(3),the following theorem concerning conserved quantities can be proved.

    Theorem 1:The system(3)possesses the following conserved quantuty

    If the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy the determining equations(13),

    and the function μ(t,q,p)admits the following equation

    Proof:From Eq.(15),one has

    It is straightforward to show that for any function A(t,q,p)[10]

    and substituting Eqs.(18)into Eq.(17)and using Eqs.(13),we obtain

    Finding the partial differential of Eq.(16)with respect to t,qkand pkrespectively,and substituting the results into Eq.(19),and using Eqs.(13),one can get

    By virture of above theorem,one can easily dudece following corollaries:

    Corollary 1:The system(3)possesses the following conserved quantity

    if the infintesimal generators τ(t,q,p)=0,ξs(t,q,p)and ηs(t,q,p)satisfy(22)

    and function admits the equation(16).This is the result of the literature[14].

    Corollary 2:The system(4)possesses the following conserved quantity

    If the infintesimal generators ξs(t,q,p)=0,τ(t,q,p)and ηs(t,q,p)satisfy(24)

    and function μ=μ(t,q,p)admits the equation(16).

    Corollary 3:The system(4)possesses the following conserved quantity:

    If the infinitesimal generators ηs(t,q,p)=0,τ(t,q,p)and ξs(t,q,p)satisfy(26)

    and function μ=μ(t,q,p)admits the equation(16).

    4 Necessary and sufficient condition under which the form invariance is a Lie symmetry

    From the deductions of Eqs.(11)and(13),it can be seen that the form invariance is generally different from the Lie symmetry.For seeking their relations,the equation(3)may be rewritten as follows:

    Then for the system(3),the determining equations of a Lie's symmetry have new form

    Some direction calculations yield

    Equatio(29)demonstrates the relation between the form invariance and the Lie symmetry.From the relation, the following proposition can be derived.

    Proposition 1:For the Hamilton system,the necessary and sufficient condition under which the form invariance is a Lie symmetry is that the following relations hold

    Let the sum of the coefficient of the terms which dependent on orrespectively equals zero,and the sum of the remainder of terms equals also zero,one has

    Proof:Substitution of Eqs.(11)and(30)into Eq.(29)leads to X(1)(F)=0 and X(1)(G)=0. According to the determining equations(28),we know that the form invariance is a Lie symmetry.

    Particularly,if τ=0,then the conditions(30)become

    5 Hojman conserved quantity deduced from form invariance

    The Hojman conserved quantity can be located by using the form invariance.

    Proposition 2:For the Hamilton system,under the infinitesimal transformation(5),if the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy Eqs.(11)and(30),and there exists a function μ= μ(t,q,p)admits the equation(16),then form invariance leads to the Hojman conserved quantity(15).

    Proof:If the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy Eqs.(11)and Eqs.(30),by using proposition 1,we know that the generators are also Lie symmetrical.And we can subsequently obtain the conserved quantity(15)by using the theorem 1.

    Proposition 3:For the Hamilton system,under the infinitesimal transformation(5),if the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy Eqs.(11)and(32),and there exists a function μ=μ(t,q,p)admits the equation(16),then form invariance leads to the Hojman conserved quantity(21).

    Proof:If the infinitesimal generators τ(t,q,p),ξs(t,q,p)and ηs(t,q,p)satisfy Eqs.(11)and(32), proposition 1 means that the generators are also Lie symmetrical.Corollary 1 yields subsequently the conserved quantity(21).

    6 An Illustrative example

    As an illustration of the theory developed in the preceding sections,consider the case of a simple degree of freedom linear damped oscillator

    First,transform Eq.(33)into a Hamilton system,and its Lagrangian is

    Therefore

    Eq.(11)leads to

    It can be easily verified that

    are two solution sets of Eq.(36).Since the generator(37)satisfies the Eq.(13),so it is also the Lie symmetry of the system(34).However,the generators(38)don’t satisfy the Eq.(13),so it isn’t the Lie symmetry of the system(34).From Eq.(16),one has

    Equation(39)exists a solution

    Inserting Eqs.(37)and(40)into Eq.(25)leads to conserved quantity

    7 Conclusions

    For Hamilton systems,we present an approach to find Hojman conserved quantities in terms of the form invariance.

    Acknowledgments:The research supported by the National Natural Science Foundation of China under Grant No.10872037 and the National Natural Science Foundation of Anhui Province under Grant No. 070416226.

    [1]Noether A E 1918 Nachr.Ges.Wiss.G·ttingen.Math.Phys.KI II 235

    [2]Mei F X 2000 J.Beijing Inst.Technol.9 120

    [3]Mei F X 2001 Chin.Phys.10 177

    [4]Mei F X and Chen X W 2001 Beijing Inst.Technol.10 138

    [5]Wang S Y and Mei F X 2001 Chin.Phys.10 373

    [6]Wang S Y and Mei F X 2002 Chin.Phys.11 5

    [7]Mei F X 2004 J.Dyna.Contrl.2 28.(in Chinese)

    [8]Lutzky M 1979 Phys.Lett.72A 86

    [9]Fu J L and Chen L Q 2003 Phys.Lett.317A 255

    [10]Hojman S A 1992 J.Phys.A:Math.Gen.25 L291

    [11]Gonález-Gascón F 1994 J.Phys.A:Math.Gen.27 L59

    [12]Lutzky M 1995 J.Phys.A:Math.Gen.28 L637

    [13]Pillay T and Leach P G L 1996 J.Phys.A:Math.Gen.29 6999

    [14]Mei F X 2002 Chin.Sci.Bull.47 1544

    [15]Mei F X 2003 Acta Phys.Sin.52 1048(in Chinese)

    [16]Zhang H B,Chen L Q and Gu S L 2004 Acta.Mech.Sinica.36 254(in Chinese)

    [17]Zhang H B,Chen L Q and Gu S L 2004 Commun.Thero.Phys.42 321

    [18]Zhang H B and Chen L Q 2005 J.Phys.Soc.Jap.74(3)905

    [19]Santilli R M 1978 Foundations of theoretical mechanics I.(New York:Springer-Verlag)

    [20]Mei F X 1988 Special problems in analytical mechanics.(Beijing:Beijing institute of technology Press)(in Chinese)

    [21]Novoselov V S 1966 Variational methods in mechanics.(Leningard:LGU).(in Russian)

    [22]Mei F X 1985 Foundations of mechanics of nonholonomic systems.(Beijing:Beijing institute of technology Press)(in Chinese)

    [23]Mei F X 1994 Acta.Mech.Sinica.26 470.(in Chinese)

    責(zé)任編輯:陳侃

    *Received March 17,2010

    Project supported by the National Natural Science Foundation of China under Grant No.10872037 and the National Natural Science Foundation of Anhui Province under Grant No.070416226.

    Biography:Zhang Hong-Bin(1963-),Male,Doctor,Professor.

    猜你喜歡
    海波責(zé)任編輯
    搏浪
    爭(zhēng)春
    山清水秀
    說海波
    English Abstracts
    我的寶寶要出生了
    English Abstracts
    EngIish Absttacts
    English Abstracts
    English Abstracts
    青春草视频在线免费观看| 亚洲丝袜综合中文字幕| 校园人妻丝袜中文字幕| 日本午夜av视频| 99国产精品免费福利视频| 80岁老熟妇乱子伦牲交| 人人妻人人看人人澡| 午夜免费观看性视频| 成人亚洲欧美一区二区av| 亚洲av中文字字幕乱码综合| 在线亚洲精品国产二区图片欧美 | 国产精品国产三级国产专区5o| 91久久精品国产一区二区成人| 欧美少妇被猛烈插入视频| 亚洲精品视频女| 国产 一区精品| 国产精品国产av在线观看| 国产免费又黄又爽又色| 中文在线观看免费www的网站| 亚洲精品一区蜜桃| 亚洲图色成人| 久久久久久久大尺度免费视频| 国产精品蜜桃在线观看| 免费在线观看成人毛片| 人妻少妇偷人精品九色| 亚洲国产精品成人久久小说| 亚洲欧美中文字幕日韩二区| 免费看日本二区| 99热这里只有是精品在线观看| 国产 一区 欧美 日韩| 国产在线视频一区二区| 亚洲天堂av无毛| 亚洲国产欧美人成| 国内精品宾馆在线| 亚洲av成人精品一区久久| 色综合色国产| 少妇人妻 视频| 在线观看美女被高潮喷水网站| 亚洲欧美中文字幕日韩二区| 91精品一卡2卡3卡4卡| 国产高潮美女av| 一本—道久久a久久精品蜜桃钙片| 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 伦精品一区二区三区| 国产精品.久久久| 99久久精品一区二区三区| 精品亚洲成国产av| 97在线人人人人妻| 亚洲人成网站在线播| 欧美变态另类bdsm刘玥| 亚洲中文av在线| 伦理电影大哥的女人| 国产精品av视频在线免费观看| 亚洲av国产av综合av卡| 免费人妻精品一区二区三区视频| 欧美日韩视频精品一区| 看非洲黑人一级黄片| 777米奇影视久久| 激情 狠狠 欧美| 国产高清三级在线| 国产日韩欧美亚洲二区| 老熟女久久久| av在线app专区| 如何舔出高潮| 国产大屁股一区二区在线视频| 99久久精品一区二区三区| 99re6热这里在线精品视频| 中文资源天堂在线| 我的老师免费观看完整版| 日本午夜av视频| 成人国产av品久久久| 国产男女超爽视频在线观看| 亚洲成人av在线免费| 成人毛片60女人毛片免费| 亚洲精品自拍成人| 在线观看一区二区三区| 十分钟在线观看高清视频www | 久久人妻熟女aⅴ| 国内少妇人妻偷人精品xxx网站| 亚洲精品亚洲一区二区| 一区二区三区精品91| 久久国产乱子免费精品| 搡女人真爽免费视频火全软件| 亚洲怡红院男人天堂| 亚洲精品,欧美精品| 男女下面进入的视频免费午夜| 视频区图区小说| 99热国产这里只有精品6| 免费久久久久久久精品成人欧美视频 | 中文字幕亚洲精品专区| 国产精品蜜桃在线观看| 新久久久久国产一级毛片| 男人添女人高潮全过程视频| 中文资源天堂在线| 人人妻人人澡人人爽人人夜夜| 熟女电影av网| 国产极品天堂在线| 少妇人妻 视频| 国产视频首页在线观看| 欧美xxxx黑人xx丫x性爽| av卡一久久| 久久久久网色| 韩国高清视频一区二区三区| 99热全是精品| 精品99又大又爽又粗少妇毛片| 亚洲美女搞黄在线观看| 成人综合一区亚洲| 中文资源天堂在线| av.在线天堂| 22中文网久久字幕| 少妇的逼好多水| 在线免费十八禁| 免费人成在线观看视频色| 欧美精品人与动牲交sv欧美| 国产精品女同一区二区软件| 中文字幕亚洲精品专区| 亚洲国产成人一精品久久久| 国产高潮美女av| 成年美女黄网站色视频大全免费 | 嘟嘟电影网在线观看| 日韩一区二区视频免费看| 亚洲av二区三区四区| 婷婷色综合大香蕉| 97超视频在线观看视频| 最近最新中文字幕免费大全7| 亚洲精品国产成人久久av| 好男人视频免费观看在线| 久久青草综合色| 婷婷色综合www| 久久99热6这里只有精品| 国产爽快片一区二区三区| 美女中出高潮动态图| 亚洲欧美日韩东京热| 欧美日韩在线观看h| 免费大片18禁| 中文字幕人妻熟人妻熟丝袜美| 插逼视频在线观看| 国产视频首页在线观看| 久久精品国产亚洲av天美| 欧美日韩综合久久久久久| 99久久中文字幕三级久久日本| 久久国内精品自在自线图片| 久久久欧美国产精品| 欧美日韩在线观看h| 少妇猛男粗大的猛烈进出视频| 老女人水多毛片| 亚洲av日韩在线播放| 黑人猛操日本美女一级片| 青春草国产在线视频| 欧美老熟妇乱子伦牲交| 99热网站在线观看| 最近2019中文字幕mv第一页| 人妻制服诱惑在线中文字幕| 国产亚洲91精品色在线| 久久精品久久久久久久性| 国产黄片美女视频| 免费久久久久久久精品成人欧美视频 | 国产欧美日韩一区二区三区在线 | kizo精华| 麻豆成人av视频| 亚洲经典国产精华液单| 91狼人影院| 99精国产麻豆久久婷婷| 国产一区二区三区av在线| 久久人人爽人人爽人人片va| 国产精品久久久久久av不卡| 麻豆乱淫一区二区| 免费人成在线观看视频色| 99视频精品全部免费 在线| 国产精品偷伦视频观看了| 国产午夜精品久久久久久一区二区三区| 婷婷色av中文字幕| 亚洲av在线观看美女高潮| 国产又色又爽无遮挡免| 国产精品一区二区三区四区免费观看| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| 精品久久久精品久久久| 久久精品国产鲁丝片午夜精品| 国产欧美日韩精品一区二区| 久久久久久久久久成人| 亚洲精品aⅴ在线观看| 黑人高潮一二区| 久久 成人 亚洲| 狂野欧美激情性bbbbbb| 国产乱人偷精品视频| 国产成人一区二区在线| 亚洲av二区三区四区| 色网站视频免费| 熟女电影av网| 亚洲精品久久久久久婷婷小说| 3wmmmm亚洲av在线观看| 国产视频首页在线观看| 美女cb高潮喷水在线观看| 纯流量卡能插随身wifi吗| 亚洲欧美成人精品一区二区| 肉色欧美久久久久久久蜜桃| 在线观看国产h片| 如何舔出高潮| 成人亚洲欧美一区二区av| 高清av免费在线| 久久久久性生活片| 一个人看的www免费观看视频| 亚洲av福利一区| 人妻系列 视频| 看十八女毛片水多多多| 久久人人爽人人爽人人片va| 午夜精品国产一区二区电影| 1000部很黄的大片| 久久韩国三级中文字幕| 成人美女网站在线观看视频| 欧美日韩在线观看h| av国产久精品久网站免费入址| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看| 六月丁香七月| a级一级毛片免费在线观看| 国产 一区精品| 亚洲va在线va天堂va国产| 在线播放无遮挡| 成人黄色视频免费在线看| 3wmmmm亚洲av在线观看| 日日撸夜夜添| 亚洲人与动物交配视频| 成人亚洲精品一区在线观看 | 久久97久久精品| 老女人水多毛片| 国产黄色免费在线视频| 亚洲国产最新在线播放| 欧美人与善性xxx| 国产成人免费观看mmmm| 热re99久久精品国产66热6| 成人亚洲欧美一区二区av| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 午夜福利在线在线| 美女内射精品一级片tv| 精品一品国产午夜福利视频| 日韩中字成人| 国产中年淑女户外野战色| 一个人看的www免费观看视频| 国产男女内射视频| 日日啪夜夜爽| 国产真实伦视频高清在线观看| 亚洲va在线va天堂va国产| 久久久久久人妻| 欧美+日韩+精品| 精品久久久久久电影网| 国产美女午夜福利| 久久国产精品大桥未久av | 国产淫片久久久久久久久| 一个人看视频在线观看www免费| 亚洲伊人久久精品综合| 免费看av在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区四区激情视频| 成年女人在线观看亚洲视频| 我的女老师完整版在线观看| 婷婷色av中文字幕| 国产黄色免费在线视频| 在现免费观看毛片| 国产在线视频一区二区| 青春草亚洲视频在线观看| 观看免费一级毛片| 少妇人妻 视频| 久久99热6这里只有精品| 亚洲欧美一区二区三区黑人 | 久久久久久久大尺度免费视频| 日本黄大片高清| 天天躁日日操中文字幕| 亚洲,欧美,日韩| 有码 亚洲区| 国产在线一区二区三区精| 中文欧美无线码| 老司机影院成人| 亚洲欧美日韩东京热| 国产精品欧美亚洲77777| 亚洲不卡免费看| 亚洲av中文av极速乱| 美女cb高潮喷水在线观看| 亚洲最大成人中文| 免费大片18禁| 国产成人午夜福利电影在线观看| 九色成人免费人妻av| av线在线观看网站| 国产精品偷伦视频观看了| 久久久色成人| 最近中文字幕2019免费版| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 日韩三级伦理在线观看| 一区二区三区乱码不卡18| 成人美女网站在线观看视频| 久久久久久久久大av| 国产v大片淫在线免费观看| 1000部很黄的大片| 中文字幕精品免费在线观看视频 | 人妻 亚洲 视频| 日本午夜av视频| 在线免费十八禁| 亚洲成人av在线免费| 成人漫画全彩无遮挡| 夜夜爽夜夜爽视频| 十分钟在线观看高清视频www | 在线观看一区二区三区激情| 免费播放大片免费观看视频在线观看| 免费看日本二区| 亚洲av日韩在线播放| 美女内射精品一级片tv| 女人久久www免费人成看片| 欧美性感艳星| 蜜桃在线观看..| 久久人人爽人人爽人人片va| 亚洲人成网站高清观看| 国产成人91sexporn| 欧美 日韩 精品 国产| 亚洲激情五月婷婷啪啪| 简卡轻食公司| 我的老师免费观看完整版| 六月丁香七月| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 久久av网站| 黑人猛操日本美女一级片| 久久久久久久亚洲中文字幕| 日本vs欧美在线观看视频 | 国产精品99久久久久久久久| 一级毛片电影观看| 久久婷婷青草| 自拍欧美九色日韩亚洲蝌蚪91 | 久久鲁丝午夜福利片| 伦理电影免费视频| 欧美97在线视频| 日韩不卡一区二区三区视频在线| 久久99热6这里只有精品| 交换朋友夫妻互换小说| 精品久久久精品久久久| av福利片在线观看| 高清不卡的av网站| 日日摸夜夜添夜夜添av毛片| 激情五月婷婷亚洲| 久久久精品免费免费高清| av免费在线看不卡| 欧美高清性xxxxhd video| 只有这里有精品99| 久久人人爽人人片av| 女性生殖器流出的白浆| 我的女老师完整版在线观看| 大香蕉97超碰在线| 午夜免费男女啪啪视频观看| 交换朋友夫妻互换小说| 亚洲国产精品专区欧美| 一级毛片我不卡| 免费少妇av软件| 日韩av不卡免费在线播放| 国产综合精华液| 亚洲av在线观看美女高潮| 最后的刺客免费高清国语| 中文乱码字字幕精品一区二区三区| 亚洲国产精品999| 亚洲内射少妇av| 国产高清三级在线| 免费不卡的大黄色大毛片视频在线观看| 在线亚洲精品国产二区图片欧美 | 免费看光身美女| 欧美另类一区| 久久精品熟女亚洲av麻豆精品| 一边亲一边摸免费视频| 联通29元200g的流量卡| 一边亲一边摸免费视频| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 熟女av电影| 深爱激情五月婷婷| 国产欧美亚洲国产| 美女内射精品一级片tv| 你懂的网址亚洲精品在线观看| 亚洲欧美清纯卡通| 国产高潮美女av| 国产美女午夜福利| 日本与韩国留学比较| a级毛色黄片| av播播在线观看一区| 国产无遮挡羞羞视频在线观看| 日本与韩国留学比较| 干丝袜人妻中文字幕| 深夜a级毛片| 三级国产精品片| 汤姆久久久久久久影院中文字幕| 成年免费大片在线观看| 精华霜和精华液先用哪个| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 又爽又黄a免费视频| 色婷婷av一区二区三区视频| 日本欧美视频一区| 免费av中文字幕在线| 蜜桃在线观看..| 欧美一区二区亚洲| 亚洲国产日韩一区二区| 国产免费一区二区三区四区乱码| 亚洲第一区二区三区不卡| 大香蕉97超碰在线| 日韩av在线免费看完整版不卡| 久久精品国产亚洲网站| 国产一区二区三区av在线| 国产精品蜜桃在线观看| 日本vs欧美在线观看视频 | 我的老师免费观看完整版| 国产精品一区www在线观看| 22中文网久久字幕| a级毛色黄片| 亚洲天堂av无毛| 成年av动漫网址| 久久99热这里只有精品18| 丝袜喷水一区| 精品久久国产蜜桃| 欧美人与善性xxx| 欧美zozozo另类| 看十八女毛片水多多多| 毛片女人毛片| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 欧美日韩视频精品一区| 美女高潮的动态| 久久国产乱子免费精品| 国产黄色视频一区二区在线观看| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 最近最新中文字幕大全电影3| 高清日韩中文字幕在线| 美女中出高潮动态图| 日韩制服骚丝袜av| 中文在线观看免费www的网站| 深夜a级毛片| 高清毛片免费看| 久久精品人妻少妇| 亚洲国产精品专区欧美| 一级黄片播放器| 久久精品国产鲁丝片午夜精品| 免费观看a级毛片全部| 嫩草影院入口| 国产欧美日韩精品一区二区| 亚洲精品乱久久久久久| 青春草国产在线视频| 亚洲丝袜综合中文字幕| 一本色道久久久久久精品综合| a 毛片基地| 国产精品不卡视频一区二区| 色哟哟·www| 特大巨黑吊av在线直播| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 久久国产精品男人的天堂亚洲 | 国产成人精品福利久久| 久久久久人妻精品一区果冻| 中文乱码字字幕精品一区二区三区| 欧美日韩亚洲高清精品| 亚洲av中文av极速乱| 国精品久久久久久国模美| 国产综合精华液| 亚洲美女搞黄在线观看| 国产精品福利在线免费观看| 91精品国产国语对白视频| 国产高清三级在线| 中国三级夫妇交换| 国产精品国产三级国产专区5o| 人人妻人人澡人人爽人人夜夜| av不卡在线播放| 人体艺术视频欧美日本| 久久国产精品男人的天堂亚洲 | 能在线免费看毛片的网站| 日韩国内少妇激情av| 啦啦啦在线观看免费高清www| 亚洲精华国产精华液的使用体验| 亚洲内射少妇av| 亚洲,欧美,日韩| 国产高清国产精品国产三级 | 久久久国产一区二区| 国产精品伦人一区二区| freevideosex欧美| 国产精品嫩草影院av在线观看| 男女边摸边吃奶| 97热精品久久久久久| 欧美精品一区二区大全| 一本一本综合久久| 一区二区三区精品91| 人妻少妇偷人精品九色| 免费观看a级毛片全部| 久久精品国产亚洲网站| 久久99热这里只有精品18| 99热这里只有精品一区| 成人黄色视频免费在线看| 亚洲图色成人| 九九久久精品国产亚洲av麻豆| 成人美女网站在线观看视频| 日韩中文字幕视频在线看片 | 久久久国产一区二区| 熟女av电影| 欧美少妇被猛烈插入视频| 免费大片黄手机在线观看| 亚洲精品久久午夜乱码| 网址你懂的国产日韩在线| 久久6这里有精品| 国产精品国产av在线观看| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 国产精品久久久久成人av| 成人免费观看视频高清| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 韩国av在线不卡| 成人毛片a级毛片在线播放| 国产视频内射| 国产极品天堂在线| 高清毛片免费看| 亚洲美女视频黄频| 亚洲av中文字字幕乱码综合| 激情五月婷婷亚洲| 看十八女毛片水多多多| 嫩草影院入口| 亚洲精品亚洲一区二区| 狂野欧美激情性bbbbbb| 日本av免费视频播放| 一区二区三区乱码不卡18| 欧美人与善性xxx| 深爱激情五月婷婷| 一级毛片aaaaaa免费看小| av又黄又爽大尺度在线免费看| 高清视频免费观看一区二区| 97超视频在线观看视频| 人妻系列 视频| 深夜a级毛片| 性色av一级| 欧美日韩一区二区视频在线观看视频在线| 国产视频内射| 国产黄频视频在线观看| 精品人妻熟女av久视频| 男的添女的下面高潮视频| 国产亚洲午夜精品一区二区久久| 日韩大片免费观看网站| 国产伦精品一区二区三区四那| 日本猛色少妇xxxxx猛交久久| 天堂俺去俺来也www色官网| 少妇被粗大猛烈的视频| 在线亚洲精品国产二区图片欧美 | www.av在线官网国产| 男人和女人高潮做爰伦理| 高清午夜精品一区二区三区| 性色av一级| av播播在线观看一区| tube8黄色片| 在线观看三级黄色| 亚洲精品,欧美精品| 91精品国产九色| 国产国拍精品亚洲av在线观看| 日本欧美视频一区| 色吧在线观看| 免费少妇av软件| 一本—道久久a久久精品蜜桃钙片| 欧美日本视频| 在线观看国产h片| 欧美日韩一区二区视频在线观看视频在线| 婷婷色综合www| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| xxx大片免费视频| 久久国产精品男人的天堂亚洲 | 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 亚洲成人中文字幕在线播放| 女性被躁到高潮视频| 亚洲成色77777| 午夜免费鲁丝| 国产黄片美女视频| 综合色丁香网| 午夜视频国产福利| 丰满迷人的少妇在线观看| 99久久精品一区二区三区| 久久久久精品久久久久真实原创| tube8黄色片| 日韩不卡一区二区三区视频在线| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 建设人人有责人人尽责人人享有的 | 直男gayav资源| 日韩中文字幕视频在线看片 | 久久久亚洲精品成人影院| 亚洲精品国产av成人精品| 国产成人精品久久久久久| 免费在线观看成人毛片| av在线观看视频网站免费| 欧美一级a爱片免费观看看| 亚洲欧洲国产日韩| 免费看不卡的av| av不卡在线播放| 国产av精品麻豆| 91精品伊人久久大香线蕉| 亚洲一区二区三区欧美精品| 最近手机中文字幕大全| 国产真实伦视频高清在线观看| 成人二区视频| 国产免费一级a男人的天堂| 国产黄色视频一区二区在线观看| 欧美日韩视频精品一区| 久久精品国产亚洲av天美| 国产欧美另类精品又又久久亚洲欧美| 亚洲第一av免费看| 久久久国产一区二区| 久久精品熟女亚洲av麻豆精品| 精品久久国产蜜桃| 日韩在线高清观看一区二区三区| 色婷婷久久久亚洲欧美| 菩萨蛮人人尽说江南好唐韦庄|