• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Dietary Cholic Acid on Apoptosis and Proliferation of Large Intestinal Epithelial Cells in Irradiation-Exposed Rats

    2010-09-06 03:19:48XUHongISHIZUKASatoshiSONGHuanlu
    食品科學(xué) 2010年19期
    關(guān)鍵詞:膽酸盲腸大腸

    XU Hong,ISHIZUKA Satoshi,SONG Huan-lu

    (1. Beijing Key Laboratory of Food Flavor Chemistry, School of Chemical and Environmental Engineering, Beijing Technology and Business University, Beijing 100048, China;2. Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan)

    Effect of Dietary Cholic Acid on Apoptosis and Proliferation of Large Intestinal Epithelial Cells in Irradiation-Exposed Rats

    XU Hong1,ISHIZUKA Satoshi2,SONG Huan-lu1

    (1. Beijing Key Laboratory of Food Flavor Chemistry, School of Chemical and Environmental Engineering, Beijing Technology and Business University, Beijing 100048, China;2. Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan)

    The effect of dietary cholic acid (CA) on the acute response of the rat large intestinal epithelial cells following a singledose irradiation was investigated. Rats were exposed to whole-body gamma-irradiation after being fed a control or 0.2% CA diet for 10 days. The rats were then sacrificed at 1, 3, 6, 12 h and 24 h post-irradiation. Segments of cecum and distal colon were collected for histochemical analysis. Apoptosis in the epithelial cells of cecum and distal colon was stimulated and peaked at 3 h postirradiation in both dietary groups, however, in CA group, apoptosis was markedly inhibited at 6 h post-irradiation in the distal colon. In epithelial cells of rats fed the control diet, the number of bromodeoxyuridine (BrdU)-incorporated cells began to decrease at 1 h post-irradiation in both distal colon and cecum. Interestingly, the proliferation of the cells was transiently stimulated by CA intake before decreasing. It should be noted that the effect of dietary CA on proliferation and apoptosis in the colonic epithelial cells was more significant than that in the cecal epithelial cells. In conclusion, these results demonstrate that dietary CA alters the regeneration regularity of colonic cells and serves as an inhibitor of apoptosis in the intestinal epithelial cells following DNA damage induced by gamma-irradiation.

    cholic acid (CA);gamma-irradiation;intestinal epithelial cells;proliferation;apoptosis

    Dietary factors are implicated in the etiology of human cancer. In epidemiological observations, high fat diet is positively related to the occurrence of colon cancer[1]. An important way by which fat might exert its effect is the stimulation of bile acid secretion. Bile acids are metabolites of cholesterol metabolism, and function as gut epithelium trophic factors and detergents for the absorption of cholesterol and fatsoluble vitamins. There are different forms of bile acids. Theprimary bile acids, cholic (CA) and chenodeoxycholic (CDCA) acids, are derived via two different metabolic pathways from cholesterol in the liver and transported via bile to the intestine; secondary bile acids such as deoxycholic (DCA) and lithocholic (LCA) acids are formed from CA and CDCA, respectively. The effect of bile acids was thought to influence colon carcinogenesis including mediating loss of colonic surface epithelium[2], DNA damage[3], inducing cell proliferation[4], increasing ornithine decarboxylase activity[5], suppressing the expression of HLA genes[6-8], activating protein kinase C[9], increasing cell membrane permeability[10], regulating gene transcription[11]and inhibiting DNA polymeraseβ[12]. However, studies on CA alone are limited compared to other bile acids such as DCA and LCA.

    Ionizing irradiation is known to induce tumors in the colon[13-15]and to increase the risk of colorectal cancer[16]. Ishizuka et al.[17]reported that irradiation of gamma-ray (60Co) induced aberrant rat colon crypt foci, a biomarker of colorectal cancer. From histochemical point of view, intestinal epithelium is a highly hierarchical organ in which stem cell positions are well defined in terms of the spatial arrangement within the crypt[18]. A few stem cells locate at the base of crypt in large intestine, which are very sensitive even to low dose ionizing irradiation. Irradiation doses as low as 0.01-0.05 Gy can induce apoptosis in the stem cell position. The extreme sensitivity possibly helps eliminate stem cells which undergo significant genome damage, which might Otherwise increase the risk of neoplasia.

    The objective of this study was to investigate the effect of dietary CA on acute response of rat large intestinal epithelial cells to DNA damage, induced by a single dose of gamma-ray at 4 Gy as an ionizing irradiation source and using the histochemical analysis as the main experimental method.

    1 Materials and Methods

    1.1 Animals, reagents and instruments

    This study complied with the Animal Experimental Guides according to the Committee of Experimental Animal Care of Hokkaido University. 3-week-old male WKAH/ HKmSlc (Japan SLC, Inc., Hamamatsu, Shizuoka, Japan) were housed individually in stainless steel wire-bottom cages in an air-conditioned room kept at approximately 23 ℃ and 12 h cycle of light (08:00-20:00): dark (20:00-08:00). After acclimation period of 6 d, the rats were divided into two dietary groups that contained 30 rats per group, and provided ad libitum access to either the control or the CA diet and drinking water for 10 d. The ingredients of the experimental diets were shown in Table 1. Body weight and food intake were measured daily during the whole experimental period.

    BrdU, fluorodeoxyurindine (Sigma Chemical, Steinheim, Germany); OCT compound (Sakura Finetecnical, Tokyo) ; anti-BrdU monoclonal antibody (clone OS94.6, Calbiochem, Cambridge, MA) ; pepsin (Wako Pure Chemical Industries, LTD., Osaka, Japan); biotinylated rabbit anti-mouse IgG+A+M (H+L; Zymed Laboratories, San Francisco, CA); peroxidaseconjugated streptavidin (Cosmo Bio, Tokyo, Japan).

    Cobalt-60 irradiator (Cobalt-60 Teletherapy Apparatus RCR-120-C3, Toshiba Co., Japan).

    Table1 Ingredients of the experimental diets g/kg diet

    1.2 Gamma- irradiation

    At the end of test diet, 25 unanaesthetized rats from each dietary group (50 rats total) were exposed to a whole- body irradiation of 4 Gy (dose rate: 0.39 Gy/min) using cobalt-60 irradiator, in Central Institute of Isotope Science, Hokkaido University. The exposure was performed between 09:00-10:00 .

    1.3 Histochemical analysis of acute response after exposure to gamma-irradiation

    For histochemical studies, ten groups of irradiated rats were sacrificed at 1, 3, 6, 12 h, or 24 h post-irradiation (n=5/ dietary group in each time point), meanwhile two groups (n=5/ dietary group) of non-irradiated rats were sacrificed as the treatment controls, which were described as 0 h post-irradiation in the results. One hour prior to sacrifice (just after the exposure in case of 1 h post-irradiation), each rat was injected with a bromodeoxyuridine (BrdU, 15 mg/kg body weight) solution containing 15 mg BrdU and 1.5 mg fluorodeoxyurindine per 1 mL saline. Following sacrifice under anesthesia with sodium pentobarbital, segments of the cecum and distal colon were flushed with saline, embeddedin OCT compound, rapidly frozen in liquid nitrogen, and stored at -80℃. Frozen sections from these samples were prepared and stained with anti-BrdU monoclonal antibody, and fixed in 10% formalin in phosphate buffered saline. The samples were then soaked in 3% hydrogen peroxide in methanol to block endogenous peroxidase activity, treated with 0.4 mg/mL pepsin (0.1 mol/L HCl), and then with 10% normal rabbit serum to reduce nonspecific binding. After incubation with the primary antibody as mentioned above, samples were incubated with biotinylated rabbit anti-mouse Ig(G+A+M). Samples were then incubated with peroxidaseconjugated streptavidin, and 3,3'-diaminobenzidine tetrahydrochloride was used as the chromogen. After BrdU staining, these sections were counterstained with hematoxylin. For detecting apoptosis and mitotic cells, hematoxylin-eosin (HE) staining was performed. Apoptosis was observed on the evidence of morphological characteristics, such as cell shrinkage, chromatin condensation, and nuclear fragmentation[20]. Mitotic cells were identified by means of chromatin condensation in the absence of cytoplasmic and nuclear shrinkage. In many mitotic cells, discrete chromosomal structure can be observed, in addition, mitotic cells appear horizontally displaced from the other epithelial-lining cells, toward the lumen of the intestine. Their cellular morphologies were shown in Fig.1. Finally, numbers of BrdU-incorporated cells, apoptotic cells, mitotic cells in the epithelial layer were scored in every cell position from the bottom to top along longitudinal half crypt axis of the cecum and distal colon, according to the method of Ijiri and Potten[21]. Fifty half-crypts were scored in each individual rat. The index was the percentage calculated by the number of apoptotic epithelium and BrdU-incorporated cells against the total number of epithelial cells in the same crypt, which were expressed as Apop-index and BrdU-index, respectively.

    Fig.1 Images of BrdU staining and HE staining.

    1.4 Statistical analyses

    All statistics were analyzed using JMP software (SAS Institute, Cary, NC). Data are shown as mean±SD. Statistical differences among groups sacrificed at different time points (0, 1, 3, 6, 12, 24h after irradiation) were performed using Tukey-Kramer, s test, and those between the control and CA dietary groups were performed using Student ,s-t test. Differences were considered significant when P<0.05.

    2 Results and Analysis

    2.1 Initial body weight, body weight gain, and food intake

    Table2 Initial body weight, body weight gain, and food intake (n=30)

    Table 2 shows that dietary CA significantly suppressed the food intake and body weight gain of rats, compared to the control diet.

    2.2 Regulation of the number of apoptotic cells

    Fig.2 Changes of the number of apoptotic cells in the distal colon (A) and the cecum (B) after exposure to a single dose of gamma-ray (4 Gy).

    Changes in the number of apoptotic cells after gammairradiation are shown in Fig.2. The highest number of apoptotic cells was observed at 3 h post-irradiation in both dietary groups. But at 6 h post-irradiation, dietary CA significantly attenuated apoptosis in the distal colon. In contrast, the changes of apoptosis in the cecal epithelial cells of rats fed the CA diet were similar to those rats fed the control diet.

    2.3 Regulation of the number of mitotic cells

    Fig.3 Regulation of the number of mitotic cells in the distal colon (A) and the cecum (B) after exposure to a single dose of gamma-ray (4 Gy).

    No significant change in the number of mitosis was observed in the distal colon after exposure to a single dose of gamma-ray at 4 Gy (Fig. 3). In the cecum, irradiation decreased the number of mitotic cells in the rats fed the CA diet until 6 h post-irradiation before steadily recover. However, dietary CA did not have significant effect on mitosis on both sites of large intestine, compared to the control diet.

    2.4 Regulation of the number of BrdU-incorporated cells

    Fig.4 Regulation of the number of BrdU-incorporated epithelial cells in the distal colon (A) and the cecum (B) after exposure to a single dose of gamma-ray (4 Gy).

    In both distal colon and cecum, the number of BrdU-incorporated cells in rats fed the CA diet transiently increased until 1 h post-irradiation (Fig. 4), and then decreased rapidly afterwards. Moreover, the CA intake strongly stimulated cell proliferation at 1, 3, 6 h and 12 h post-irradiation in the distal colon and at 3 h post-irradiation in the cecum, compared to the control diet.

    2.5 Regulation of the total epithelial cell number

    Fig. 5 Regulation of the total number of epithelial cells inthe distal colon (A) and the cecum (B) after exposure to a single dose of gammaray (4 Gy).

    The intake of CA diet increased the total number of epithelial cells, especially in the distal colon (Fig. 5). In thedistal colon, no significant changes were observed in the control groups throughout the course of experiment, while the total epithelial cells in the CA groups transiently increased at 1, 3 h and 6 h post-irradiation. In the cecum, the number of total epithelial cells in rats fed the control diet at 24 h post-irradiation was decreased, and at 1, 3 h and 12 h postirradiation, the number in rats fed the CA diet was increased.

    2.6 Apoptotic cells and BrdU-incorporated cells against the total number of epithelial cells

    Apop-index in the distal colon reached a high level at 3 h and 6 h after irradiation in both dietary groups, and the CA diet had an inhibitory effect on it at both of time points. But no dietary effects on the apoptosis of epithelial cells were observed in the cecum (Table 3). BrdU-index in the distal colon was significantly higher at 1, 3, 6 h and 12 h postirradiation in CA groups than in control groups, while in the cecum, the CA diet only increased at 3 h after irradiation (Table 2).

    Table3 Apoptotic cells and BrdU-incorporated cells against the total number of epithelial cells in the distal colon and the cecum

    3 Discussion

    Each crypt is an active unit of epithelial cells that proliferate and senesce in a certain sequence that maintains its architecture and highly ordered functions. The findings in the present study provide more insight into how dietary CA affects apoptosis and cell cycle in the damaged intestinal epithelium.

    The process of apoptosis is believed to represent programmed or genetically determined self-deletion or suicide involved in individual cells. Potten[22]reported that following exposure, the appearance of new apoptotic cells was extremely rapid in the small intestine, and increase of apoptosis per crypt began to be observed about 1.5 h after irradiation and reaches peak levels between 3 h and 6 h after irradiation. Similarly, as shown in Fig. 2 and Table 3, apoptosis in the cecum and distal colon was also stimulated and the highest number of apoptotic cells was observed at 3 h postirradiation in both dietary groups. Apoptosis has been considered as an important protective mechanism in the stem cell population for effectively recognizing and eliminating the damage[23]. However, dietary CA suppressed apoptosis marginally at 3 h and inhibited it markedly at 6 h postirradiation in the distal colon, compared to the control groups (Fig. 2). Therefore, this process did not seem to operate completely or was defective in the colon of rats fed the CA diet, thus cells with DNA damage had the potential to persist either carrying low levels of undetectable damage, damage that had been repaired, or damage that had been misrepaired. As a consequence, the cells in the colon of rats fed the CA diet might have a greater risk for perpetual genetic errors that might ultimately lead to cancers.

    Many independent studies have indicated that after irradiation, the cell cycle time of the majority of the cells in the crypt is reduced by approximately 20%[24-26]. The rapid changes in various proliferation indices can only occur in cells that are not killed via apoptosis or cells that are not completely reproductively sterilized[23]. Histochemical study showed (Fig. 4) that at 1 h post-irradiation the number of BrdU-incorporated cells in rats fed the control diet began to decrease and was lower than that in non-irradiated rats in both the distal colon and cecum due to the damage induced by gamma-rays. In contrast, the CA diet significantly stimulated proliferation after irradiation (Table 3, Fig. 4). At 1 h post-irradiation, proliferation in the CA group transiently increased in both sites. It should be noted that in the distal colon, the numbers of BrdU-incorporated cells in the CA groups were significantly higher than those in the control groups until 24 h post-irradiation. With this trend, we also found that the total numbers of epithelial cells in both sites of the CA groups were higher than the control groups after gamma-irradiation (Fig. 5). Based on the above findings of Potten[23], these interesting phenomena might all be due to the inhibition effect of dietary CA on apoptosis of damaged cells after irradiation. However, the cell mitosis after irradiation didnot seem to have direct relationship to the changes of apoptosis and proliferation of epithelial cells (Fig. 3).

    Another interesting finding in this study was that the effect of dietary CA on proliferation and apoptosis in the colonic epithelial cells was more prominent than that in the cecal epithelial cells (Fig. 2 and Fig. 4, Table 3). One of the speculations might be the difference in the microbiota between the cecum and colon. In the colon, secondary bile acid DCA is formed from conjugated forms of CA through deconjugation and 7 α-dehydroxylation by the anaerobic bacterial flora[27-28]. Weidema et al.[29]reported that the enhancing effect of CA on tumor formation might due to the formation of DCA. The secondary bile acids, DCA and LCA, were considered as the most important bile acids in the etiology of colon cancer in humans[30].

    In summary, data in the present study suggest that the dietary CA increases the proliferation rate of colonic cells and transiently serves as an inhibitor of apoptosis in rat intestinal epithelia following a single irradiation of 4 Gy, which may lead to the continuous proliferation of the risky cells and eventually result in the increase of colon cancer occurrence.

    [1]WILLETT W. The search for the causes of breast and colon cancer[J]. Nature, 1989, 338: 389-394.

    [2]CRAVEN P A, PFANSTIEL J, SAITO R, et al. Relationship between loss of rat colonic surface epithelium induced by deoxycholate and initiation of the subsequent proliferatiotive response[J]. Cancer Res, 1986, 46: 5754-5759.

    [3]SUZUKI K, BRUCE W R. Increase by deoxycholic acid of the colonic nuclear damage induced by known carcinogens in C57BL/6J mice[J]. J Natl Cancer Inst, 1986, 76: 1129-1132.

    [4]SIMANOWSKI U A, SEITZ H K, CZYGAN P, et al. Chronic ursodeoxycholic acid-and chenodeoxycholic acid-feeding-induced changes of colon mucosal cell proliferation in rats[J]. J Natl Cancer Inst, 1987, 79:163-166.

    [5]HU P J, BAER A R, WARGOVICH M J. Calcium and phosphate: effect of two dietary confounders on cooling epithelial cellular proliferation[J]. Nutr Res, 1989, 9: 545-553.

    [6]RIGAS B, TSIOULIAS G J, ALLAN C, et al. The effect of bile acids and piroxiam on MHC antigen expression in rat colonocyts during colon cancer development[J]. Immunology, 1994, 83: 319-323.

    [7]ARVIND P, PAPAVASSILIOU E D, TSIOULIAS G J, et al. Lithocholic acid inhibits the expression of HLA class I genes in colon adenocarcinoma cells. Differential effect on HLA-A, -B, and -C[J]. Mol Immunol, 1994, 31: 607-614.

    [8]ARVIND P, PAPAVASSILIOU E D, TSIOULIAS G J, et al. PGE2 down-regulates the expression of HLA-DR in human colon adenocarcinoma cell lines[J]. Biochemistry, 1995, 34: 5604-5609.

    [9]PONGRACZ J, CLARK P, NEOPTOLEMOS J P, et al. Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids[J]. Int J Cancer, 1995, 61: 35-39.

    [10]BREUER N F, GOEBELL H. Bile acids and cancer of the large bowel [J]. Dig Dis, 1987, 5(2): 65-77.

    [11]ZHI-YING Z, BERNSTEIN H, BERNSTEIN C, et al. Bile acid activation of the gadd 153 promoter and of p53-independent apoptosis: relevance to colon cancer[J]. Cell Death Differ, 1996, 3(4): 407-414.

    [12]OGAWA A, MURATE T, SUZUKI M, et al. Lithocholic acid, a putative tumor promoter, inhibits mammalian DNA polymeraseβ[J]. Jpn J Cancer Res,1998, 89: 1154-1159.

    [13]BOND V P, SWIFT M N, TOBIAS C A, et al. Bowel lesions following single deutron irradiation[J]. Fed Proc, 1952, 11: 408-409.

    [14]ERSHOFF B H, BAJWA G S, FIELD J B, et al. Comparative effects of purified diets and a natural food stock ration on the tumor incidence of mice exposed to multiple sublethal doses of total-body X-irradiation[J]. Cancer Res,1969, 29:780-788.

    [15]DENMAN D L, KIRCHNER F R, OSBORNE J W. Induction of colonic adenocarcinoma in the rat by X-irradiation[J]. Cancer Res,1978, 38: 1899-1905.

    [16]SANDLER R S, SANDLER D P. Radiation-induced cancers of the colon and rectum: assessing the risk[J]. Gastroenterology, 1983, 84: 51-57.

    [17]ISHIZUKA S, ITO S, ONUMA M, et al. Ingestion of sugar beet fiber enhances irradiation-induced aberrant crypt foci in the rat colon under an apoptosis-suppressed condition[J]. Carcinogenesis, 1999, 20: 1005-1009.

    [18]POTTEN C S. Stem cells in gastrointestinal epithelium: numbers, characteristics and death[J]. Phil Trans R Soc Lond B, 1998, 353: 821-830.

    [19]REEVES P G, NIELSEN F H, Jr, FAHEY G C. AIN-93 purified diets for laboratory in the rodents: Final report of the American Institute of Nutrition ad hoc Writing Committee on the reformulation of the AIN-76A rodent diet[J]. J Nutr, 1993, 123:1939-1951.

    [20]KERR J F, WYLLIE A H, CUEEIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer,1972, 26: 239-257.

    [21]IJIRI K, POTTEN C S. Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation[J]. Br J Cancer, 1983, 47: 175-185.

    [22]POTTEN C S. Extreme sensitivity of some intestinal crypt cells κ to γ and irradiation[J]. Nature,1977, 269: 518-521.

    [23]POTTEN C S, HENDRY J H. Radiation and gut[M]. The Netherlands: Elsevier Science, 1995: 61-84.

    [24]LESHER S. Compensatory reaction in intestinal crypt cells after 300 roentgens of cobalt60gamma-irradiation[J]. Radiat Res, 1967, 32: 510-519.

    [25]POTTEN C S. Cell cycles in cell hierarchies[J]. Int J Radiat Biol, 1986, 49: 257-278.

    [26]POTTEN C S, CHADWICK C, IJIRI K, et al. The recruitability and cell cycle status of intestinal stem cell[J]. Int J Cell Cloning, 1984, 2(2): 126-140.

    [27]BERNSTEIN H, BERNSTEIN C, PAYNE C M, et al. Bile acids as carcinogens in human gastrointestinal cancers[J]. Mutat Res, 2005, 589: 47-65.

    [28]DEBRUYNE P R, BRUYNEEL E A, LI Xuedong, et al. The role of bile acids in carcinogenesis[J]. Mutat Res, 2001, 480: 359-369.

    [29]WEIDEMA W F, DESCHENER E E, COHEN B I, et al. Acute effects of dietary cholic acid and methylazoxymethanol acetate on colon epithelial cell proliferation; metabolism of bile salts and neutral sterols in conventional and germfree SD rats[J]. J Natl Cancer Inst, 1985, 74: 665-670.

    [30]HILL M J. Bile flow and colon cancer[J]. Mutat Res, 1990, 238: 313-320.

    膳食膽酸對輻射后的大鼠大腸上皮細(xì)胞凋亡與增殖的影響

    徐 虹1,石塚敏2,宋煥祿1
    (1.北京工商大學(xué)化學(xué)與環(huán)境工程學(xué)院,食品風(fēng)味化學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100048;2.日本北海道大學(xué)大學(xué)院農(nóng)學(xué)研究科,札幌市 060-8589)

    研究膳食膽酸對大腸上皮細(xì)胞在單劑量輻射之后急性反應(yīng)的影響。各組實(shí)驗(yàn)大鼠在喂食空白膳食或者0.2%膽酸膳食10d之后接受全身γ射線照射,然后分別在輻射后1、3、6、12、24h被處死。盲腸和遠(yuǎn)端結(jié)腸樣品被采集進(jìn)行組織化學(xué)研究。結(jié)果顯示:空白和膽酸膳食組的大鼠,其盲腸和遠(yuǎn)端結(jié)腸上皮細(xì)胞的凋亡均在輻射后被激發(fā),并在輻射后3h后達(dá)到最高峰。然而,膳食膽酸在輻射6h后開始顯著抑制遠(yuǎn)端結(jié)腸上皮細(xì)胞的凋亡。比較空白膳食各組, 在大鼠接受輻射1h后盲腸和遠(yuǎn)端結(jié)腸兩個部位的BrdU標(biāo)記的細(xì)胞數(shù)量都開始減少,而膽酸的攝入?yún)s使上皮細(xì)胞的增殖瞬時增加。比較兩個實(shí)驗(yàn)部位,膳食膽酸的攝入對遠(yuǎn)端結(jié)腸部位上皮細(xì)胞增殖和凋亡的影響比對盲腸部位上皮細(xì)胞的影響更大。綜上所述,膳食膽酸的攝入改變了結(jié)腸細(xì)胞更新規(guī)律,并且對輻射后DNA受損傷的大腸上皮細(xì)胞的凋亡有抑制作用。

    膽酸;射線;腸道上皮細(xì)胞;增殖;凋亡

    TS201.4

    A

    1002-6630(2010)19-0375-06

    2010-04-19

    徐虹(1977—),女,講師,博士,研究方向?yàn)槭称窢I養(yǎng)與安全。E-mail:xuhong@th.btbu.edu.cn

    猜你喜歡
    膽酸盲腸大腸
    高效液相色譜法測定復(fù)方胰酶片中膽酸和牛磺豬去氧膽酸的含量
    雞盲腸肝炎的流行病學(xué)、臨床特征、實(shí)驗(yàn)室檢查和防治措施
    大腸鏡檢陰性慢性腹瀉與末端回腸病變的關(guān)系分析與探討
    采用Illumina MiSeq測序技術(shù)分析斷奶幼兔盲腸微生物群落的多樣性
    大口喝水促排便
    血清甘膽酸測定在急性心肌梗死時對肝臟損傷的診斷價值
    大腸俞穴調(diào)理腸胃大腸俞 通絡(luò)調(diào)水止病痛
    中老年健康(2014年7期)2014-05-30 09:01:27
    痰熱清注射液中熊膽氧化成分的推測
    中成藥(2014年4期)2014-04-01 08:43:42
    熊去氧膽酸治療重度慢性乙型肝炎伴膽汁淤積的療效觀察
    皮膚病從肺與大腸論治
    久久国内精品自在自线图片| 精品久久国产蜜桃| 成人三级黄色视频| 国产精品乱码一区二三区的特点| 熟女人妻精品中文字幕| 国模一区二区三区四区视频| 久久午夜福利片| 超碰av人人做人人爽久久| 国产精品爽爽va在线观看网站| 国产精品人妻久久久影院| 国产成人福利小说| 我要搜黄色片| 春色校园在线视频观看| 午夜精品一区二区三区免费看| h日本视频在线播放| 深夜a级毛片| 亚洲国产欧美在线一区| videossex国产| 高清毛片免费看| 久久久久国产网址| 日韩制服骚丝袜av| 久久久久九九精品影院| 亚洲图色成人| 免费av不卡在线播放| 啦啦啦韩国在线观看视频| 日韩,欧美,国产一区二区三区 | 一本一本综合久久| 精品久久久噜噜| 三级男女做爰猛烈吃奶摸视频| 男人舔女人下体高潮全视频| 69人妻影院| 春色校园在线视频观看| 蜜桃久久精品国产亚洲av| 亚洲av中文字字幕乱码综合| 欧美最新免费一区二区三区| 五月伊人婷婷丁香| 深爱激情五月婷婷| 国产中年淑女户外野战色| 亚洲av成人精品一区久久| 亚洲在久久综合| 国产精品综合久久久久久久免费| 久久婷婷人人爽人人干人人爱| 日本av手机在线免费观看| 国产精品熟女久久久久浪| 国产av一区在线观看免费| 欧美+日韩+精品| 91久久精品电影网| 国国产精品蜜臀av免费| 精华霜和精华液先用哪个| 中文字幕av成人在线电影| 亚洲国产欧美在线一区| 亚洲欧美日韩高清专用| 国产激情偷乱视频一区二区| 国产精品一区二区性色av| 七月丁香在线播放| 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品 | 我的老师免费观看完整版| 日日撸夜夜添| 2021少妇久久久久久久久久久| 亚洲精品一区蜜桃| 国产高清不卡午夜福利| 黑人高潮一二区| 亚洲精品国产av成人精品| 久久久久久久久久久丰满| 成年版毛片免费区| 免费电影在线观看免费观看| 精品欧美国产一区二区三| 国产又黄又爽又无遮挡在线| 日本黄大片高清| 亚州av有码| 男插女下体视频免费在线播放| 中文字幕人妻熟人妻熟丝袜美| 伦精品一区二区三区| 一个人看视频在线观看www免费| 欧美+日韩+精品| 国产成人精品一,二区| 女人被狂操c到高潮| 性插视频无遮挡在线免费观看| 久久久精品94久久精品| 国产高清视频在线观看网站| 久久久久久伊人网av| 日韩大片免费观看网站 | 国产黄片视频在线免费观看| 嫩草影院新地址| 亚洲欧美日韩卡通动漫| 欧美成人a在线观看| 天天躁日日操中文字幕| 国产在视频线精品| 成人性生交大片免费视频hd| 在线播放无遮挡| 亚洲精品久久久久久婷婷小说 | 国产日韩欧美在线精品| 一区二区三区高清视频在线| 激情 狠狠 欧美| 三级国产精品片| 中文资源天堂在线| 日韩精品有码人妻一区| 最近手机中文字幕大全| 国产激情偷乱视频一区二区| 深夜a级毛片| 午夜亚洲福利在线播放| 久久精品国产鲁丝片午夜精品| 一级黄色大片毛片| 亚洲av成人av| 少妇熟女欧美另类| 天天一区二区日本电影三级| 国产成人91sexporn| 最近手机中文字幕大全| 国产又色又爽无遮挡免| 国产三级在线视频| 亚洲高清免费不卡视频| 国产淫语在线视频| 国产精品无大码| 欧美zozozo另类| 成年av动漫网址| 国产高清不卡午夜福利| 一级毛片电影观看 | 国产精品综合久久久久久久免费| 成人特级av手机在线观看| 韩国高清视频一区二区三区| h日本视频在线播放| 国产精品一及| 欧美xxxx性猛交bbbb| 久久久久久久久中文| 人人妻人人澡欧美一区二区| 丰满少妇做爰视频| 国产精品野战在线观看| www日本黄色视频网| 18禁在线无遮挡免费观看视频| 老师上课跳d突然被开到最大视频| 永久网站在线| 深爱激情五月婷婷| 国产 一区 欧美 日韩| 精品一区二区三区人妻视频| 免费观看人在逋| 欧美高清性xxxxhd video| 成人亚洲欧美一区二区av| 久久久久久久久久黄片| 久久99热6这里只有精品| 日韩国内少妇激情av| 成人国产麻豆网| 久久国内精品自在自线图片| 亚洲国产日韩欧美精品在线观看| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 成年版毛片免费区| 97在线视频观看| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 99九九线精品视频在线观看视频| 精品人妻一区二区三区麻豆| 午夜福利在线在线| 18禁裸乳无遮挡免费网站照片| 青春草视频在线免费观看| 神马国产精品三级电影在线观看| videossex国产| 中文字幕久久专区| 亚洲精品成人久久久久久| 国模一区二区三区四区视频| kizo精华| 久久久久久久久大av| 亚洲国产精品成人久久小说| 国产精品国产高清国产av| 国产精品久久久久久精品电影| 麻豆成人午夜福利视频| 大香蕉久久网| 亚洲内射少妇av| 欧美3d第一页| 日本黄大片高清| 中国国产av一级| 午夜福利成人在线免费观看| 一区二区三区高清视频在线| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 国产三级在线视频| 亚洲av免费高清在线观看| 看黄色毛片网站| 国产精品日韩av在线免费观看| 精品无人区乱码1区二区| 少妇高潮的动态图| 久久精品综合一区二区三区| 99久久成人亚洲精品观看| 久久久久久九九精品二区国产| 我要看日韩黄色一级片| 乱码一卡2卡4卡精品| 日韩一本色道免费dvd| 最近中文字幕高清免费大全6| 真实男女啪啪啪动态图| 国产 一区精品| 亚洲国产最新在线播放| 久久久久久久久久成人| 一边亲一边摸免费视频| 如何舔出高潮| 亚洲精品亚洲一区二区| 久久久久九九精品影院| 亚洲最大成人中文| 国产亚洲午夜精品一区二区久久 | 最近的中文字幕免费完整| 黄色配什么色好看| 淫秽高清视频在线观看| 又黄又爽又刺激的免费视频.| 亚洲精品日韩在线中文字幕| 男插女下体视频免费在线播放| 国产亚洲精品av在线| 免费av毛片视频| 午夜激情欧美在线| av.在线天堂| 一级毛片电影观看 | 久久国产乱子免费精品| 日韩 亚洲 欧美在线| 岛国毛片在线播放| 哪个播放器可以免费观看大片| 我要看日韩黄色一级片| 国产精华一区二区三区| 少妇熟女欧美另类| 又黄又爽又刺激的免费视频.| 亚洲,欧美,日韩| 纵有疾风起免费观看全集完整版 | 日韩av在线免费看完整版不卡| 亚洲国产精品专区欧美| 丝袜美腿在线中文| 麻豆乱淫一区二区| 美女被艹到高潮喷水动态| 亚洲欧美精品自产自拍| 搡女人真爽免费视频火全软件| 一个人免费在线观看电影| 亚洲一区高清亚洲精品| 久久久久久九九精品二区国产| 丝袜美腿在线中文| 国产成人一区二区在线| 亚洲av成人av| 老师上课跳d突然被开到最大视频| 国产精品福利在线免费观看| 国产黄色视频一区二区在线观看 | 乱系列少妇在线播放| 黄色一级大片看看| 国产亚洲最大av| 精品久久久久久久久久久久久| 国产极品天堂在线| 久久久国产成人免费| 看十八女毛片水多多多| 搡老妇女老女人老熟妇| 免费av观看视频| 久久久久久久久大av| 欧美丝袜亚洲另类| 永久网站在线| 丰满少妇做爰视频| 成年版毛片免费区| 18禁在线播放成人免费| 日韩欧美国产在线观看| 边亲边吃奶的免费视频| 色播亚洲综合网| 十八禁国产超污无遮挡网站| 久久久久久九九精品二区国产| 69av精品久久久久久| 赤兔流量卡办理| 美女国产视频在线观看| 欧美另类亚洲清纯唯美| 国产 一区精品| 精品人妻熟女av久视频| 寂寞人妻少妇视频99o| 日韩av在线大香蕉| 日本熟妇午夜| 99九九线精品视频在线观看视频| 日韩视频在线欧美| 亚洲av免费在线观看| 女的被弄到高潮叫床怎么办| 欧美日本亚洲视频在线播放| 热99re8久久精品国产| 国产熟女欧美一区二区| 亚洲五月天丁香| 欧美激情国产日韩精品一区| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 国产精品久久久久久精品电影| 国产精品伦人一区二区| 欧美日本亚洲视频在线播放| 国产麻豆成人av免费视频| 国产熟女欧美一区二区| 能在线免费看毛片的网站| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 成人欧美大片| 天堂√8在线中文| 亚洲国产精品久久男人天堂| 色噜噜av男人的天堂激情| 青春草国产在线视频| 麻豆久久精品国产亚洲av| 亚洲精品影视一区二区三区av| 国产伦一二天堂av在线观看| 国产视频首页在线观看| 波多野结衣巨乳人妻| 亚洲精品乱久久久久久| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 建设人人有责人人尽责人人享有的 | 中文亚洲av片在线观看爽| av视频在线观看入口| 日韩成人伦理影院| 国产精品三级大全| 国产精品野战在线观看| 亚洲国产欧美人成| a级一级毛片免费在线观看| 国产精品,欧美在线| 精品久久久久久成人av| 看非洲黑人一级黄片| 韩国高清视频一区二区三区| 亚洲精品,欧美精品| 亚洲欧美一区二区三区国产| 久久久亚洲精品成人影院| 在现免费观看毛片| 精品熟女少妇av免费看| 禁无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 嫩草影院入口| 波野结衣二区三区在线| 美女内射精品一级片tv| 亚洲最大成人中文| 久久6这里有精品| 中国美白少妇内射xxxbb| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 亚洲欧洲日产国产| 波多野结衣巨乳人妻| 一边亲一边摸免费视频| 日韩视频在线欧美| 国产成人福利小说| 成人午夜精彩视频在线观看| 精品久久国产蜜桃| 看黄色毛片网站| 亚洲欧洲日产国产| 中文字幕av在线有码专区| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 久久久久久伊人网av| av线在线观看网站| 亚洲av.av天堂| 在线播放国产精品三级| av免费在线看不卡| 丝袜美腿在线中文| 成年版毛片免费区| av国产久精品久网站免费入址| 欧美不卡视频在线免费观看| av卡一久久| 久久鲁丝午夜福利片| 欧美一区二区亚洲| 高清视频免费观看一区二区 | 欧美丝袜亚洲另类| 神马国产精品三级电影在线观看| 三级国产精品片| 亚洲精品日韩在线中文字幕| 老司机影院成人| 成年女人看的毛片在线观看| 国产精华一区二区三区| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 插逼视频在线观看| 日本一二三区视频观看| 国产免费福利视频在线观看| 亚洲国产色片| 男女啪啪激烈高潮av片| 最近的中文字幕免费完整| 麻豆久久精品国产亚洲av| 男人和女人高潮做爰伦理| 高清午夜精品一区二区三区| 日本欧美国产在线视频| 久久久久久九九精品二区国产| 亚洲欧美中文字幕日韩二区| 91午夜精品亚洲一区二区三区| 国产真实乱freesex| 男的添女的下面高潮视频| 精品一区二区三区视频在线| 国产爱豆传媒在线观看| 最近的中文字幕免费完整| 亚洲精品亚洲一区二区| 啦啦啦啦在线视频资源| 亚洲精品成人久久久久久| 老司机福利观看| 在线观看一区二区三区| 尤物成人国产欧美一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 青春草视频在线免费观看| 少妇的逼好多水| 免费一级毛片在线播放高清视频| 国产成人免费观看mmmm| 成人二区视频| 国内少妇人妻偷人精品xxx网站| 我要看日韩黄色一级片| 国产精品永久免费网站| 99热精品在线国产| 免费看光身美女| 国产精品av视频在线免费观看| av女优亚洲男人天堂| 色综合色国产| 国产男人的电影天堂91| 女人被狂操c到高潮| 亚洲第一区二区三区不卡| 我要搜黄色片| 国产探花在线观看一区二区| 精品国产三级普通话版| 人妻系列 视频| 全区人妻精品视频| 免费观看人在逋| 国产探花在线观看一区二区| 看非洲黑人一级黄片| 三级毛片av免费| 国产老妇女一区| 免费大片18禁| 一级爰片在线观看| 国产一区二区在线观看日韩| 国产精品一区www在线观看| 日韩国内少妇激情av| 床上黄色一级片| 亚洲国产精品国产精品| 成人三级黄色视频| 免费黄色在线免费观看| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 欧美又色又爽又黄视频| 晚上一个人看的免费电影| 亚洲av成人精品一二三区| 国产综合懂色| 国产成人福利小说| 高清视频免费观看一区二区 | 亚洲成人久久爱视频| 婷婷色麻豆天堂久久 | 亚洲av男天堂| 亚洲丝袜综合中文字幕| 听说在线观看完整版免费高清| 国产成人freesex在线| 日韩av在线大香蕉| 成年女人看的毛片在线观看| 少妇人妻精品综合一区二区| av国产免费在线观看| 国产久久久一区二区三区| 丰满人妻一区二区三区视频av| 国产探花在线观看一区二区| 一级二级三级毛片免费看| 免费看光身美女| 好男人视频免费观看在线| 午夜福利在线观看免费完整高清在| 国产人妻一区二区三区在| 免费看a级黄色片| 亚洲欧美精品综合久久99| 看非洲黑人一级黄片| 午夜久久久久精精品| 国产国拍精品亚洲av在线观看| 小蜜桃在线观看免费完整版高清| 观看美女的网站| 欧美不卡视频在线免费观看| 国产精品熟女久久久久浪| 国产三级中文精品| 国产精品蜜桃在线观看| 爱豆传媒免费全集在线观看| 中文字幕av在线有码专区| 日本av手机在线免费观看| 免费av不卡在线播放| 午夜视频国产福利| 亚洲av福利一区| 日韩在线高清观看一区二区三区| 99国产精品一区二区蜜桃av| 免费观看在线日韩| 韩国av在线不卡| 日本午夜av视频| videos熟女内射| 国产一区二区亚洲精品在线观看| 伊人久久精品亚洲午夜| 能在线免费看毛片的网站| 成人毛片a级毛片在线播放| 国产69精品久久久久777片| 久久这里只有精品中国| 成人一区二区视频在线观看| 一个人免费在线观看电影| 成人亚洲欧美一区二区av| 亚洲欧美中文字幕日韩二区| 久久国产乱子免费精品| 最近最新中文字幕大全电影3| 麻豆国产97在线/欧美| 色5月婷婷丁香| 午夜福利在线观看吧| 中文天堂在线官网| 特大巨黑吊av在线直播| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内精品宾馆在线| 2021天堂中文幕一二区在线观| 国产久久久一区二区三区| 国产国拍精品亚洲av在线观看| 欧美日韩国产亚洲二区| 18禁裸乳无遮挡免费网站照片| 日韩一本色道免费dvd| 国产精品蜜桃在线观看| 亚洲av福利一区| 高清视频免费观看一区二区 | 久久久a久久爽久久v久久| АⅤ资源中文在线天堂| 亚洲最大成人中文| 国产精品嫩草影院av在线观看| 国产三级在线视频| 乱码一卡2卡4卡精品| 日韩强制内射视频| 高清在线视频一区二区三区 | 国产又黄又爽又无遮挡在线| 激情 狠狠 欧美| 亚洲经典国产精华液单| 亚洲欧美中文字幕日韩二区| eeuss影院久久| 天堂网av新在线| 亚洲av一区综合| 中文亚洲av片在线观看爽| 免费在线观看成人毛片| 亚洲综合色惰| 97超碰精品成人国产| 免费搜索国产男女视频| 一区二区三区高清视频在线| 嫩草影院新地址| 高清午夜精品一区二区三区| 韩国高清视频一区二区三区| 国产精品,欧美在线| 亚洲欧美成人精品一区二区| 最后的刺客免费高清国语| 久久久午夜欧美精品| 久久精品国产鲁丝片午夜精品| 欧美一区二区国产精品久久精品| 一个人看的www免费观看视频| 精品人妻熟女av久视频| 搡女人真爽免费视频火全软件| 99久久精品一区二区三区| 日韩av在线大香蕉| 日韩人妻高清精品专区| 国产精品伦人一区二区| 亚洲国产欧洲综合997久久,| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久com| 国产精品无大码| 亚洲在线自拍视频| 在线观看美女被高潮喷水网站| av.在线天堂| 婷婷色av中文字幕| 国产亚洲91精品色在线| 日本熟妇午夜| 国产真实乱freesex| 久久久久精品久久久久真实原创| a级一级毛片免费在线观看| 日本av手机在线免费观看| 三级国产精品欧美在线观看| 中文字幕制服av| 欧美精品国产亚洲| 国产精品国产高清国产av| 久99久视频精品免费| 欧美日韩精品成人综合77777| 中文字幕久久专区| 少妇猛男粗大的猛烈进出视频 | 永久网站在线| 女的被弄到高潮叫床怎么办| 国产精品三级大全| 波野结衣二区三区在线| 久久99热6这里只有精品| 日韩三级伦理在线观看| 亚洲国产精品合色在线| 最近2019中文字幕mv第一页| 久久久成人免费电影| 在线播放无遮挡| 春色校园在线视频观看| 五月伊人婷婷丁香| 看片在线看免费视频| 天天躁日日操中文字幕| 日本五十路高清| 国产色爽女视频免费观看| 嫩草影院新地址| 国内少妇人妻偷人精品xxx网站| 99久久人妻综合| 成人漫画全彩无遮挡| 欧美日韩一区二区视频在线观看视频在线 | 国产精品野战在线观看| 男人舔女人下体高潮全视频| 国产黄色小视频在线观看| 一级毛片aaaaaa免费看小| 舔av片在线| 久久精品国产亚洲av涩爱| 91精品伊人久久大香线蕉| 黄色日韩在线| 久久国内精品自在自线图片| 久久久久久九九精品二区国产| 99热这里只有是精品在线观看| 3wmmmm亚洲av在线观看| av线在线观看网站| 亚州av有码| 少妇的逼水好多| 我要搜黄色片| 日本黄色视频三级网站网址| 非洲黑人性xxxx精品又粗又长| 色噜噜av男人的天堂激情| 联通29元200g的流量卡| 校园人妻丝袜中文字幕| 你懂的网址亚洲精品在线观看 | h日本视频在线播放| 日韩亚洲欧美综合| 2022亚洲国产成人精品| 欧美成人精品欧美一级黄| 国产私拍福利视频在线观看| 可以在线观看毛片的网站| 天美传媒精品一区二区| 插逼视频在线观看| 午夜激情福利司机影院| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久噜噜| 美女xxoo啪啪120秒动态图| 女人久久www免费人成看片 | 永久免费av网站大全| 建设人人有责人人尽责人人享有的 | 国语自产精品视频在线第100页| 亚洲四区av| 蜜臀久久99精品久久宅男| 国产精品伦人一区二区|