• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Dietary Cholic Acid on Apoptosis and Proliferation of Large Intestinal Epithelial Cells in Irradiation-Exposed Rats

    2010-09-06 03:19:48XUHongISHIZUKASatoshiSONGHuanlu
    食品科學(xué) 2010年19期
    關(guān)鍵詞:膽酸盲腸大腸

    XU Hong,ISHIZUKA Satoshi,SONG Huan-lu

    (1. Beijing Key Laboratory of Food Flavor Chemistry, School of Chemical and Environmental Engineering, Beijing Technology and Business University, Beijing 100048, China;2. Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan)

    Effect of Dietary Cholic Acid on Apoptosis and Proliferation of Large Intestinal Epithelial Cells in Irradiation-Exposed Rats

    XU Hong1,ISHIZUKA Satoshi2,SONG Huan-lu1

    (1. Beijing Key Laboratory of Food Flavor Chemistry, School of Chemical and Environmental Engineering, Beijing Technology and Business University, Beijing 100048, China;2. Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan)

    The effect of dietary cholic acid (CA) on the acute response of the rat large intestinal epithelial cells following a singledose irradiation was investigated. Rats were exposed to whole-body gamma-irradiation after being fed a control or 0.2% CA diet for 10 days. The rats were then sacrificed at 1, 3, 6, 12 h and 24 h post-irradiation. Segments of cecum and distal colon were collected for histochemical analysis. Apoptosis in the epithelial cells of cecum and distal colon was stimulated and peaked at 3 h postirradiation in both dietary groups, however, in CA group, apoptosis was markedly inhibited at 6 h post-irradiation in the distal colon. In epithelial cells of rats fed the control diet, the number of bromodeoxyuridine (BrdU)-incorporated cells began to decrease at 1 h post-irradiation in both distal colon and cecum. Interestingly, the proliferation of the cells was transiently stimulated by CA intake before decreasing. It should be noted that the effect of dietary CA on proliferation and apoptosis in the colonic epithelial cells was more significant than that in the cecal epithelial cells. In conclusion, these results demonstrate that dietary CA alters the regeneration regularity of colonic cells and serves as an inhibitor of apoptosis in the intestinal epithelial cells following DNA damage induced by gamma-irradiation.

    cholic acid (CA);gamma-irradiation;intestinal epithelial cells;proliferation;apoptosis

    Dietary factors are implicated in the etiology of human cancer. In epidemiological observations, high fat diet is positively related to the occurrence of colon cancer[1]. An important way by which fat might exert its effect is the stimulation of bile acid secretion. Bile acids are metabolites of cholesterol metabolism, and function as gut epithelium trophic factors and detergents for the absorption of cholesterol and fatsoluble vitamins. There are different forms of bile acids. Theprimary bile acids, cholic (CA) and chenodeoxycholic (CDCA) acids, are derived via two different metabolic pathways from cholesterol in the liver and transported via bile to the intestine; secondary bile acids such as deoxycholic (DCA) and lithocholic (LCA) acids are formed from CA and CDCA, respectively. The effect of bile acids was thought to influence colon carcinogenesis including mediating loss of colonic surface epithelium[2], DNA damage[3], inducing cell proliferation[4], increasing ornithine decarboxylase activity[5], suppressing the expression of HLA genes[6-8], activating protein kinase C[9], increasing cell membrane permeability[10], regulating gene transcription[11]and inhibiting DNA polymeraseβ[12]. However, studies on CA alone are limited compared to other bile acids such as DCA and LCA.

    Ionizing irradiation is known to induce tumors in the colon[13-15]and to increase the risk of colorectal cancer[16]. Ishizuka et al.[17]reported that irradiation of gamma-ray (60Co) induced aberrant rat colon crypt foci, a biomarker of colorectal cancer. From histochemical point of view, intestinal epithelium is a highly hierarchical organ in which stem cell positions are well defined in terms of the spatial arrangement within the crypt[18]. A few stem cells locate at the base of crypt in large intestine, which are very sensitive even to low dose ionizing irradiation. Irradiation doses as low as 0.01-0.05 Gy can induce apoptosis in the stem cell position. The extreme sensitivity possibly helps eliminate stem cells which undergo significant genome damage, which might Otherwise increase the risk of neoplasia.

    The objective of this study was to investigate the effect of dietary CA on acute response of rat large intestinal epithelial cells to DNA damage, induced by a single dose of gamma-ray at 4 Gy as an ionizing irradiation source and using the histochemical analysis as the main experimental method.

    1 Materials and Methods

    1.1 Animals, reagents and instruments

    This study complied with the Animal Experimental Guides according to the Committee of Experimental Animal Care of Hokkaido University. 3-week-old male WKAH/ HKmSlc (Japan SLC, Inc., Hamamatsu, Shizuoka, Japan) were housed individually in stainless steel wire-bottom cages in an air-conditioned room kept at approximately 23 ℃ and 12 h cycle of light (08:00-20:00): dark (20:00-08:00). After acclimation period of 6 d, the rats were divided into two dietary groups that contained 30 rats per group, and provided ad libitum access to either the control or the CA diet and drinking water for 10 d. The ingredients of the experimental diets were shown in Table 1. Body weight and food intake were measured daily during the whole experimental period.

    BrdU, fluorodeoxyurindine (Sigma Chemical, Steinheim, Germany); OCT compound (Sakura Finetecnical, Tokyo) ; anti-BrdU monoclonal antibody (clone OS94.6, Calbiochem, Cambridge, MA) ; pepsin (Wako Pure Chemical Industries, LTD., Osaka, Japan); biotinylated rabbit anti-mouse IgG+A+M (H+L; Zymed Laboratories, San Francisco, CA); peroxidaseconjugated streptavidin (Cosmo Bio, Tokyo, Japan).

    Cobalt-60 irradiator (Cobalt-60 Teletherapy Apparatus RCR-120-C3, Toshiba Co., Japan).

    Table1 Ingredients of the experimental diets g/kg diet

    1.2 Gamma- irradiation

    At the end of test diet, 25 unanaesthetized rats from each dietary group (50 rats total) were exposed to a whole- body irradiation of 4 Gy (dose rate: 0.39 Gy/min) using cobalt-60 irradiator, in Central Institute of Isotope Science, Hokkaido University. The exposure was performed between 09:00-10:00 .

    1.3 Histochemical analysis of acute response after exposure to gamma-irradiation

    For histochemical studies, ten groups of irradiated rats were sacrificed at 1, 3, 6, 12 h, or 24 h post-irradiation (n=5/ dietary group in each time point), meanwhile two groups (n=5/ dietary group) of non-irradiated rats were sacrificed as the treatment controls, which were described as 0 h post-irradiation in the results. One hour prior to sacrifice (just after the exposure in case of 1 h post-irradiation), each rat was injected with a bromodeoxyuridine (BrdU, 15 mg/kg body weight) solution containing 15 mg BrdU and 1.5 mg fluorodeoxyurindine per 1 mL saline. Following sacrifice under anesthesia with sodium pentobarbital, segments of the cecum and distal colon were flushed with saline, embeddedin OCT compound, rapidly frozen in liquid nitrogen, and stored at -80℃. Frozen sections from these samples were prepared and stained with anti-BrdU monoclonal antibody, and fixed in 10% formalin in phosphate buffered saline. The samples were then soaked in 3% hydrogen peroxide in methanol to block endogenous peroxidase activity, treated with 0.4 mg/mL pepsin (0.1 mol/L HCl), and then with 10% normal rabbit serum to reduce nonspecific binding. After incubation with the primary antibody as mentioned above, samples were incubated with biotinylated rabbit anti-mouse Ig(G+A+M). Samples were then incubated with peroxidaseconjugated streptavidin, and 3,3'-diaminobenzidine tetrahydrochloride was used as the chromogen. After BrdU staining, these sections were counterstained with hematoxylin. For detecting apoptosis and mitotic cells, hematoxylin-eosin (HE) staining was performed. Apoptosis was observed on the evidence of morphological characteristics, such as cell shrinkage, chromatin condensation, and nuclear fragmentation[20]. Mitotic cells were identified by means of chromatin condensation in the absence of cytoplasmic and nuclear shrinkage. In many mitotic cells, discrete chromosomal structure can be observed, in addition, mitotic cells appear horizontally displaced from the other epithelial-lining cells, toward the lumen of the intestine. Their cellular morphologies were shown in Fig.1. Finally, numbers of BrdU-incorporated cells, apoptotic cells, mitotic cells in the epithelial layer were scored in every cell position from the bottom to top along longitudinal half crypt axis of the cecum and distal colon, according to the method of Ijiri and Potten[21]. Fifty half-crypts were scored in each individual rat. The index was the percentage calculated by the number of apoptotic epithelium and BrdU-incorporated cells against the total number of epithelial cells in the same crypt, which were expressed as Apop-index and BrdU-index, respectively.

    Fig.1 Images of BrdU staining and HE staining.

    1.4 Statistical analyses

    All statistics were analyzed using JMP software (SAS Institute, Cary, NC). Data are shown as mean±SD. Statistical differences among groups sacrificed at different time points (0, 1, 3, 6, 12, 24h after irradiation) were performed using Tukey-Kramer, s test, and those between the control and CA dietary groups were performed using Student ,s-t test. Differences were considered significant when P<0.05.

    2 Results and Analysis

    2.1 Initial body weight, body weight gain, and food intake

    Table2 Initial body weight, body weight gain, and food intake (n=30)

    Table 2 shows that dietary CA significantly suppressed the food intake and body weight gain of rats, compared to the control diet.

    2.2 Regulation of the number of apoptotic cells

    Fig.2 Changes of the number of apoptotic cells in the distal colon (A) and the cecum (B) after exposure to a single dose of gamma-ray (4 Gy).

    Changes in the number of apoptotic cells after gammairradiation are shown in Fig.2. The highest number of apoptotic cells was observed at 3 h post-irradiation in both dietary groups. But at 6 h post-irradiation, dietary CA significantly attenuated apoptosis in the distal colon. In contrast, the changes of apoptosis in the cecal epithelial cells of rats fed the CA diet were similar to those rats fed the control diet.

    2.3 Regulation of the number of mitotic cells

    Fig.3 Regulation of the number of mitotic cells in the distal colon (A) and the cecum (B) after exposure to a single dose of gamma-ray (4 Gy).

    No significant change in the number of mitosis was observed in the distal colon after exposure to a single dose of gamma-ray at 4 Gy (Fig. 3). In the cecum, irradiation decreased the number of mitotic cells in the rats fed the CA diet until 6 h post-irradiation before steadily recover. However, dietary CA did not have significant effect on mitosis on both sites of large intestine, compared to the control diet.

    2.4 Regulation of the number of BrdU-incorporated cells

    Fig.4 Regulation of the number of BrdU-incorporated epithelial cells in the distal colon (A) and the cecum (B) after exposure to a single dose of gamma-ray (4 Gy).

    In both distal colon and cecum, the number of BrdU-incorporated cells in rats fed the CA diet transiently increased until 1 h post-irradiation (Fig. 4), and then decreased rapidly afterwards. Moreover, the CA intake strongly stimulated cell proliferation at 1, 3, 6 h and 12 h post-irradiation in the distal colon and at 3 h post-irradiation in the cecum, compared to the control diet.

    2.5 Regulation of the total epithelial cell number

    Fig. 5 Regulation of the total number of epithelial cells inthe distal colon (A) and the cecum (B) after exposure to a single dose of gammaray (4 Gy).

    The intake of CA diet increased the total number of epithelial cells, especially in the distal colon (Fig. 5). In thedistal colon, no significant changes were observed in the control groups throughout the course of experiment, while the total epithelial cells in the CA groups transiently increased at 1, 3 h and 6 h post-irradiation. In the cecum, the number of total epithelial cells in rats fed the control diet at 24 h post-irradiation was decreased, and at 1, 3 h and 12 h postirradiation, the number in rats fed the CA diet was increased.

    2.6 Apoptotic cells and BrdU-incorporated cells against the total number of epithelial cells

    Apop-index in the distal colon reached a high level at 3 h and 6 h after irradiation in both dietary groups, and the CA diet had an inhibitory effect on it at both of time points. But no dietary effects on the apoptosis of epithelial cells were observed in the cecum (Table 3). BrdU-index in the distal colon was significantly higher at 1, 3, 6 h and 12 h postirradiation in CA groups than in control groups, while in the cecum, the CA diet only increased at 3 h after irradiation (Table 2).

    Table3 Apoptotic cells and BrdU-incorporated cells against the total number of epithelial cells in the distal colon and the cecum

    3 Discussion

    Each crypt is an active unit of epithelial cells that proliferate and senesce in a certain sequence that maintains its architecture and highly ordered functions. The findings in the present study provide more insight into how dietary CA affects apoptosis and cell cycle in the damaged intestinal epithelium.

    The process of apoptosis is believed to represent programmed or genetically determined self-deletion or suicide involved in individual cells. Potten[22]reported that following exposure, the appearance of new apoptotic cells was extremely rapid in the small intestine, and increase of apoptosis per crypt began to be observed about 1.5 h after irradiation and reaches peak levels between 3 h and 6 h after irradiation. Similarly, as shown in Fig. 2 and Table 3, apoptosis in the cecum and distal colon was also stimulated and the highest number of apoptotic cells was observed at 3 h postirradiation in both dietary groups. Apoptosis has been considered as an important protective mechanism in the stem cell population for effectively recognizing and eliminating the damage[23]. However, dietary CA suppressed apoptosis marginally at 3 h and inhibited it markedly at 6 h postirradiation in the distal colon, compared to the control groups (Fig. 2). Therefore, this process did not seem to operate completely or was defective in the colon of rats fed the CA diet, thus cells with DNA damage had the potential to persist either carrying low levels of undetectable damage, damage that had been repaired, or damage that had been misrepaired. As a consequence, the cells in the colon of rats fed the CA diet might have a greater risk for perpetual genetic errors that might ultimately lead to cancers.

    Many independent studies have indicated that after irradiation, the cell cycle time of the majority of the cells in the crypt is reduced by approximately 20%[24-26]. The rapid changes in various proliferation indices can only occur in cells that are not killed via apoptosis or cells that are not completely reproductively sterilized[23]. Histochemical study showed (Fig. 4) that at 1 h post-irradiation the number of BrdU-incorporated cells in rats fed the control diet began to decrease and was lower than that in non-irradiated rats in both the distal colon and cecum due to the damage induced by gamma-rays. In contrast, the CA diet significantly stimulated proliferation after irradiation (Table 3, Fig. 4). At 1 h post-irradiation, proliferation in the CA group transiently increased in both sites. It should be noted that in the distal colon, the numbers of BrdU-incorporated cells in the CA groups were significantly higher than those in the control groups until 24 h post-irradiation. With this trend, we also found that the total numbers of epithelial cells in both sites of the CA groups were higher than the control groups after gamma-irradiation (Fig. 5). Based on the above findings of Potten[23], these interesting phenomena might all be due to the inhibition effect of dietary CA on apoptosis of damaged cells after irradiation. However, the cell mitosis after irradiation didnot seem to have direct relationship to the changes of apoptosis and proliferation of epithelial cells (Fig. 3).

    Another interesting finding in this study was that the effect of dietary CA on proliferation and apoptosis in the colonic epithelial cells was more prominent than that in the cecal epithelial cells (Fig. 2 and Fig. 4, Table 3). One of the speculations might be the difference in the microbiota between the cecum and colon. In the colon, secondary bile acid DCA is formed from conjugated forms of CA through deconjugation and 7 α-dehydroxylation by the anaerobic bacterial flora[27-28]. Weidema et al.[29]reported that the enhancing effect of CA on tumor formation might due to the formation of DCA. The secondary bile acids, DCA and LCA, were considered as the most important bile acids in the etiology of colon cancer in humans[30].

    In summary, data in the present study suggest that the dietary CA increases the proliferation rate of colonic cells and transiently serves as an inhibitor of apoptosis in rat intestinal epithelia following a single irradiation of 4 Gy, which may lead to the continuous proliferation of the risky cells and eventually result in the increase of colon cancer occurrence.

    [1]WILLETT W. The search for the causes of breast and colon cancer[J]. Nature, 1989, 338: 389-394.

    [2]CRAVEN P A, PFANSTIEL J, SAITO R, et al. Relationship between loss of rat colonic surface epithelium induced by deoxycholate and initiation of the subsequent proliferatiotive response[J]. Cancer Res, 1986, 46: 5754-5759.

    [3]SUZUKI K, BRUCE W R. Increase by deoxycholic acid of the colonic nuclear damage induced by known carcinogens in C57BL/6J mice[J]. J Natl Cancer Inst, 1986, 76: 1129-1132.

    [4]SIMANOWSKI U A, SEITZ H K, CZYGAN P, et al. Chronic ursodeoxycholic acid-and chenodeoxycholic acid-feeding-induced changes of colon mucosal cell proliferation in rats[J]. J Natl Cancer Inst, 1987, 79:163-166.

    [5]HU P J, BAER A R, WARGOVICH M J. Calcium and phosphate: effect of two dietary confounders on cooling epithelial cellular proliferation[J]. Nutr Res, 1989, 9: 545-553.

    [6]RIGAS B, TSIOULIAS G J, ALLAN C, et al. The effect of bile acids and piroxiam on MHC antigen expression in rat colonocyts during colon cancer development[J]. Immunology, 1994, 83: 319-323.

    [7]ARVIND P, PAPAVASSILIOU E D, TSIOULIAS G J, et al. Lithocholic acid inhibits the expression of HLA class I genes in colon adenocarcinoma cells. Differential effect on HLA-A, -B, and -C[J]. Mol Immunol, 1994, 31: 607-614.

    [8]ARVIND P, PAPAVASSILIOU E D, TSIOULIAS G J, et al. PGE2 down-regulates the expression of HLA-DR in human colon adenocarcinoma cell lines[J]. Biochemistry, 1995, 34: 5604-5609.

    [9]PONGRACZ J, CLARK P, NEOPTOLEMOS J P, et al. Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids[J]. Int J Cancer, 1995, 61: 35-39.

    [10]BREUER N F, GOEBELL H. Bile acids and cancer of the large bowel [J]. Dig Dis, 1987, 5(2): 65-77.

    [11]ZHI-YING Z, BERNSTEIN H, BERNSTEIN C, et al. Bile acid activation of the gadd 153 promoter and of p53-independent apoptosis: relevance to colon cancer[J]. Cell Death Differ, 1996, 3(4): 407-414.

    [12]OGAWA A, MURATE T, SUZUKI M, et al. Lithocholic acid, a putative tumor promoter, inhibits mammalian DNA polymeraseβ[J]. Jpn J Cancer Res,1998, 89: 1154-1159.

    [13]BOND V P, SWIFT M N, TOBIAS C A, et al. Bowel lesions following single deutron irradiation[J]. Fed Proc, 1952, 11: 408-409.

    [14]ERSHOFF B H, BAJWA G S, FIELD J B, et al. Comparative effects of purified diets and a natural food stock ration on the tumor incidence of mice exposed to multiple sublethal doses of total-body X-irradiation[J]. Cancer Res,1969, 29:780-788.

    [15]DENMAN D L, KIRCHNER F R, OSBORNE J W. Induction of colonic adenocarcinoma in the rat by X-irradiation[J]. Cancer Res,1978, 38: 1899-1905.

    [16]SANDLER R S, SANDLER D P. Radiation-induced cancers of the colon and rectum: assessing the risk[J]. Gastroenterology, 1983, 84: 51-57.

    [17]ISHIZUKA S, ITO S, ONUMA M, et al. Ingestion of sugar beet fiber enhances irradiation-induced aberrant crypt foci in the rat colon under an apoptosis-suppressed condition[J]. Carcinogenesis, 1999, 20: 1005-1009.

    [18]POTTEN C S. Stem cells in gastrointestinal epithelium: numbers, characteristics and death[J]. Phil Trans R Soc Lond B, 1998, 353: 821-830.

    [19]REEVES P G, NIELSEN F H, Jr, FAHEY G C. AIN-93 purified diets for laboratory in the rodents: Final report of the American Institute of Nutrition ad hoc Writing Committee on the reformulation of the AIN-76A rodent diet[J]. J Nutr, 1993, 123:1939-1951.

    [20]KERR J F, WYLLIE A H, CUEEIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer,1972, 26: 239-257.

    [21]IJIRI K, POTTEN C S. Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation[J]. Br J Cancer, 1983, 47: 175-185.

    [22]POTTEN C S. Extreme sensitivity of some intestinal crypt cells κ to γ and irradiation[J]. Nature,1977, 269: 518-521.

    [23]POTTEN C S, HENDRY J H. Radiation and gut[M]. The Netherlands: Elsevier Science, 1995: 61-84.

    [24]LESHER S. Compensatory reaction in intestinal crypt cells after 300 roentgens of cobalt60gamma-irradiation[J]. Radiat Res, 1967, 32: 510-519.

    [25]POTTEN C S. Cell cycles in cell hierarchies[J]. Int J Radiat Biol, 1986, 49: 257-278.

    [26]POTTEN C S, CHADWICK C, IJIRI K, et al. The recruitability and cell cycle status of intestinal stem cell[J]. Int J Cell Cloning, 1984, 2(2): 126-140.

    [27]BERNSTEIN H, BERNSTEIN C, PAYNE C M, et al. Bile acids as carcinogens in human gastrointestinal cancers[J]. Mutat Res, 2005, 589: 47-65.

    [28]DEBRUYNE P R, BRUYNEEL E A, LI Xuedong, et al. The role of bile acids in carcinogenesis[J]. Mutat Res, 2001, 480: 359-369.

    [29]WEIDEMA W F, DESCHENER E E, COHEN B I, et al. Acute effects of dietary cholic acid and methylazoxymethanol acetate on colon epithelial cell proliferation; metabolism of bile salts and neutral sterols in conventional and germfree SD rats[J]. J Natl Cancer Inst, 1985, 74: 665-670.

    [30]HILL M J. Bile flow and colon cancer[J]. Mutat Res, 1990, 238: 313-320.

    膳食膽酸對輻射后的大鼠大腸上皮細(xì)胞凋亡與增殖的影響

    徐 虹1,石塚敏2,宋煥祿1
    (1.北京工商大學(xué)化學(xué)與環(huán)境工程學(xué)院,食品風(fēng)味化學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100048;2.日本北海道大學(xué)大學(xué)院農(nóng)學(xué)研究科,札幌市 060-8589)

    研究膳食膽酸對大腸上皮細(xì)胞在單劑量輻射之后急性反應(yīng)的影響。各組實(shí)驗(yàn)大鼠在喂食空白膳食或者0.2%膽酸膳食10d之后接受全身γ射線照射,然后分別在輻射后1、3、6、12、24h被處死。盲腸和遠(yuǎn)端結(jié)腸樣品被采集進(jìn)行組織化學(xué)研究。結(jié)果顯示:空白和膽酸膳食組的大鼠,其盲腸和遠(yuǎn)端結(jié)腸上皮細(xì)胞的凋亡均在輻射后被激發(fā),并在輻射后3h后達(dá)到最高峰。然而,膳食膽酸在輻射6h后開始顯著抑制遠(yuǎn)端結(jié)腸上皮細(xì)胞的凋亡。比較空白膳食各組, 在大鼠接受輻射1h后盲腸和遠(yuǎn)端結(jié)腸兩個部位的BrdU標(biāo)記的細(xì)胞數(shù)量都開始減少,而膽酸的攝入?yún)s使上皮細(xì)胞的增殖瞬時增加。比較兩個實(shí)驗(yàn)部位,膳食膽酸的攝入對遠(yuǎn)端結(jié)腸部位上皮細(xì)胞增殖和凋亡的影響比對盲腸部位上皮細(xì)胞的影響更大。綜上所述,膳食膽酸的攝入改變了結(jié)腸細(xì)胞更新規(guī)律,并且對輻射后DNA受損傷的大腸上皮細(xì)胞的凋亡有抑制作用。

    膽酸;射線;腸道上皮細(xì)胞;增殖;凋亡

    TS201.4

    A

    1002-6630(2010)19-0375-06

    2010-04-19

    徐虹(1977—),女,講師,博士,研究方向?yàn)槭称窢I養(yǎng)與安全。E-mail:xuhong@th.btbu.edu.cn

    猜你喜歡
    膽酸盲腸大腸
    高效液相色譜法測定復(fù)方胰酶片中膽酸和牛磺豬去氧膽酸的含量
    雞盲腸肝炎的流行病學(xué)、臨床特征、實(shí)驗(yàn)室檢查和防治措施
    大腸鏡檢陰性慢性腹瀉與末端回腸病變的關(guān)系分析與探討
    采用Illumina MiSeq測序技術(shù)分析斷奶幼兔盲腸微生物群落的多樣性
    大口喝水促排便
    血清甘膽酸測定在急性心肌梗死時對肝臟損傷的診斷價值
    大腸俞穴調(diào)理腸胃大腸俞 通絡(luò)調(diào)水止病痛
    中老年健康(2014年7期)2014-05-30 09:01:27
    痰熱清注射液中熊膽氧化成分的推測
    中成藥(2014年4期)2014-04-01 08:43:42
    熊去氧膽酸治療重度慢性乙型肝炎伴膽汁淤積的療效觀察
    皮膚病從肺與大腸論治
    我的老师免费观看完整版| 亚洲乱码一区二区免费版| 国产精品,欧美在线| 日韩强制内射视频| 麻豆乱淫一区二区| 午夜日韩欧美国产| 老熟妇仑乱视频hdxx| 男女啪啪激烈高潮av片| 久久久久久九九精品二区国产| 亚洲精品日韩在线中文字幕 | 99在线人妻在线中文字幕| 国模一区二区三区四区视频| 又爽又黄a免费视频| 婷婷亚洲欧美| 久久久成人免费电影| 久久6这里有精品| 久久久久久国产a免费观看| 日本一二三区视频观看| 国产在线精品亚洲第一网站| 国产精品一区二区性色av| 菩萨蛮人人尽说江南好唐韦庄 | 日韩中字成人| 91久久精品国产一区二区成人| 成人二区视频| 欧美人与善性xxx| 欧美+亚洲+日韩+国产| 国产欧美日韩精品亚洲av| 最近手机中文字幕大全| 日韩大尺度精品在线看网址| 国产爱豆传媒在线观看| 亚洲国产欧美人成| 国产视频内射| 国产成人一区二区在线| 美女免费视频网站| 卡戴珊不雅视频在线播放| 欧美成人精品欧美一级黄| 国产精品99久久久久久久久| 最新中文字幕久久久久| 18禁在线无遮挡免费观看视频 | 亚洲av美国av| 国产精品女同一区二区软件| 99国产精品一区二区蜜桃av| 久久久久久大精品| 俄罗斯特黄特色一大片| 欧美不卡视频在线免费观看| 日本成人三级电影网站| 成年版毛片免费区| 国产黄片美女视频| 日本熟妇午夜| 欧美最新免费一区二区三区| 国产极品精品免费视频能看的| 波多野结衣高清无吗| 亚洲成人精品中文字幕电影| 看非洲黑人一级黄片| 国产成人福利小说| 日韩 亚洲 欧美在线| 精品国内亚洲2022精品成人| 国产女主播在线喷水免费视频网站 | 国产私拍福利视频在线观看| 成人av在线播放网站| 日韩大尺度精品在线看网址| 亚洲真实伦在线观看| 乱人视频在线观看| 99热这里只有是精品在线观看| 久久久久久久久中文| 国产一级毛片七仙女欲春2| 无遮挡黄片免费观看| www日本黄色视频网| 欧美+亚洲+日韩+国产| 日韩中字成人| 最新中文字幕久久久久| 国产成人91sexporn| 国产午夜精品久久久久久一区二区三区 | 成人高潮视频无遮挡免费网站| 色播亚洲综合网| 久久久久久久午夜电影| 成人漫画全彩无遮挡| 欧美色欧美亚洲另类二区| 97超碰精品成人国产| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 亚洲av不卡在线观看| 少妇高潮的动态图| 日本精品一区二区三区蜜桃| 午夜精品在线福利| 国产成人一区二区在线| 男女下面进入的视频免费午夜| 欧美激情在线99| 欧美高清性xxxxhd video| 一个人看的www免费观看视频| 日韩制服骚丝袜av| 久久午夜亚洲精品久久| 久久久久久久久中文| 麻豆久久精品国产亚洲av| 男人舔女人下体高潮全视频| 精品久久久久久久久av| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 国产麻豆成人av免费视频| 午夜激情福利司机影院| 三级毛片av免费| 亚洲精品456在线播放app| 国产久久久一区二区三区| 免费av观看视频| 久久精品人妻少妇| 91在线精品国自产拍蜜月| 成人二区视频| 精品一区二区三区av网在线观看| 啦啦啦韩国在线观看视频| 精品人妻一区二区三区麻豆 | 国产91av在线免费观看| 国产成人a区在线观看| 一个人看视频在线观看www免费| 免费观看在线日韩| 男女做爰动态图高潮gif福利片| or卡值多少钱| 97热精品久久久久久| 国产欧美日韩一区二区精品| 国产淫片久久久久久久久| 国产亚洲av嫩草精品影院| 亚洲欧美日韩高清专用| 国产69精品久久久久777片| 老司机福利观看| 欧洲精品卡2卡3卡4卡5卡区| 一本精品99久久精品77| 大又大粗又爽又黄少妇毛片口| 麻豆国产av国片精品| 亚洲av成人av| 听说在线观看完整版免费高清| 欧美xxxx黑人xx丫x性爽| 成人二区视频| 黄色配什么色好看| 日韩三级伦理在线观看| 免费在线观看成人毛片| 亚洲成人av在线免费| 久久人人爽人人爽人人片va| 日本撒尿小便嘘嘘汇集6| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 老司机影院成人| 小蜜桃在线观看免费完整版高清| 九九久久精品国产亚洲av麻豆| 男插女下体视频免费在线播放| 国产精品电影一区二区三区| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 99热精品在线国产| 午夜a级毛片| 国产成人影院久久av| 青春草视频在线免费观看| 亚洲精品日韩在线中文字幕 | 少妇人妻精品综合一区二区 | 欧美三级亚洲精品| 观看美女的网站| 国产乱人偷精品视频| 日本熟妇午夜| 国产国拍精品亚洲av在线观看| 欧美色欧美亚洲另类二区| 婷婷亚洲欧美| 狂野欧美激情性xxxx在线观看| 女人被狂操c到高潮| 亚洲专区国产一区二区| 嫩草影院精品99| 男人狂女人下面高潮的视频| 尾随美女入室| 一进一出抽搐gif免费好疼| 国产精品,欧美在线| 久久久精品94久久精品| 午夜福利在线观看吧| 欧美丝袜亚洲另类| 精品久久久久久久久久免费视频| 亚洲,欧美,日韩| 国内少妇人妻偷人精品xxx网站| 日日撸夜夜添| 中文字幕精品亚洲无线码一区| 亚洲国产精品合色在线| 欧美一区二区国产精品久久精品| 久久精品国产亚洲av天美| 我的老师免费观看完整版| 在线观看美女被高潮喷水网站| 又爽又黄a免费视频| 天天躁夜夜躁狠狠久久av| av在线天堂中文字幕| a级毛色黄片| 国产精品女同一区二区软件| 少妇猛男粗大的猛烈进出视频 | 老熟妇乱子伦视频在线观看| 18禁黄网站禁片免费观看直播| 超碰av人人做人人爽久久| 国产淫片久久久久久久久| 国内精品久久久久精免费| 不卡一级毛片| 激情 狠狠 欧美| 国产av一区在线观看免费| 97碰自拍视频| 99久国产av精品国产电影| 亚洲,欧美,日韩| 美女黄网站色视频| 桃色一区二区三区在线观看| 国产一级毛片七仙女欲春2| 在线观看美女被高潮喷水网站| 中文在线观看免费www的网站| 国产三级中文精品| 久久九九热精品免费| 搞女人的毛片| a级毛片免费高清观看在线播放| 免费看av在线观看网站| 国产精品综合久久久久久久免费| 日本a在线网址| 人妻丰满熟妇av一区二区三区| 亚洲精品成人久久久久久| 精品欧美国产一区二区三| 精品少妇黑人巨大在线播放 | 婷婷六月久久综合丁香| 欧美中文日本在线观看视频| 22中文网久久字幕| 夜夜爽天天搞| 内射极品少妇av片p| 久久久久久久久久黄片| 亚洲精品456在线播放app| 日本一本二区三区精品| 午夜a级毛片| 51国产日韩欧美| 波野结衣二区三区在线| а√天堂www在线а√下载| 精品久久久久久久久久免费视频| 搡女人真爽免费视频火全软件 | 国产午夜福利久久久久久| 日本免费a在线| 精品久久久久久久久久免费视频| 久久久成人免费电影| 国产精品一二三区在线看| 日日摸夜夜添夜夜添av毛片| 深夜a级毛片| 亚洲激情五月婷婷啪啪| 老熟妇仑乱视频hdxx| 国产一区二区激情短视频| 麻豆成人午夜福利视频| 国产高清三级在线| 国内精品美女久久久久久| 久久精品影院6| 久久午夜亚洲精品久久| 天堂av国产一区二区熟女人妻| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频 | 久久精品夜色国产| 国产精品国产高清国产av| 五月玫瑰六月丁香| 一进一出抽搐动态| 亚洲丝袜综合中文字幕| 美女免费视频网站| 亚洲欧美日韩高清专用| 国产精品不卡视频一区二区| 人人妻人人澡欧美一区二区| 18禁在线播放成人免费| 国产人妻一区二区三区在| 日本在线视频免费播放| 搞女人的毛片| 国产男靠女视频免费网站| 99在线人妻在线中文字幕| 日日啪夜夜撸| 国产精品三级大全| 最近2019中文字幕mv第一页| 日日摸夜夜添夜夜添小说| 日本五十路高清| 欧美zozozo另类| 成人精品一区二区免费| 亚洲av成人av| 国产成人a区在线观看| 男女下面进入的视频免费午夜| 一级黄片播放器| av.在线天堂| 91久久精品国产一区二区成人| 亚洲成av人片在线播放无| 亚洲国产欧洲综合997久久,| 男女那种视频在线观看| 亚洲美女视频黄频| 成人二区视频| 亚洲精品一区av在线观看| 精品欧美国产一区二区三| 人人妻人人澡人人爽人人夜夜 | 欧美国产日韩亚洲一区| 久久久久国产精品人妻aⅴ院| 色在线成人网| 免费观看人在逋| 成年免费大片在线观看| 男插女下体视频免费在线播放| 日日摸夜夜添夜夜添av毛片| 长腿黑丝高跟| 久久久久久久亚洲中文字幕| 亚洲一级一片aⅴ在线观看| 99久国产av精品| 男人舔奶头视频| 国产精品嫩草影院av在线观看| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 亚洲在线观看片| 亚洲美女视频黄频| 亚洲一区高清亚洲精品| 2021天堂中文幕一二区在线观| 国产片特级美女逼逼视频| 国产精品1区2区在线观看.| 在线观看美女被高潮喷水网站| 看片在线看免费视频| 国产精品人妻久久久影院| 亚洲美女搞黄在线观看 | 色尼玛亚洲综合影院| 国产真实伦视频高清在线观看| 51国产日韩欧美| av在线蜜桃| 最后的刺客免费高清国语| 色综合色国产| 丝袜美腿在线中文| 看免费成人av毛片| av在线天堂中文字幕| 免费人成在线观看视频色| 国产av在哪里看| 亚洲欧美中文字幕日韩二区| 精品福利观看| 天堂动漫精品| 老司机影院成人| 国产精品电影一区二区三区| 国产成人精品久久久久久| 97超视频在线观看视频| 成人漫画全彩无遮挡| 国产单亲对白刺激| 尤物成人国产欧美一区二区三区| 看十八女毛片水多多多| 日韩欧美三级三区| 一本一本综合久久| 国产在线男女| 18禁黄网站禁片免费观看直播| 中国美女看黄片| 麻豆一二三区av精品| 亚洲精品日韩在线中文字幕 | 五月玫瑰六月丁香| 久99久视频精品免费| 国产成人a区在线观看| 国产av在哪里看| 亚洲婷婷狠狠爱综合网| 美女被艹到高潮喷水动态| 婷婷六月久久综合丁香| 非洲黑人性xxxx精品又粗又长| 亚洲三级黄色毛片| 观看免费一级毛片| 在线a可以看的网站| 国产精品一区二区三区四区久久| 久久人人爽人人片av| 亚洲av中文字字幕乱码综合| 成人鲁丝片一二三区免费| 亚洲欧美日韩东京热| 日本五十路高清| 俄罗斯特黄特色一大片| 亚洲美女搞黄在线观看 | 精品国产三级普通话版| 久久久精品94久久精品| 99久国产av精品国产电影| 亚洲av中文字字幕乱码综合| 国产三级在线视频| 免费看美女性在线毛片视频| 特大巨黑吊av在线直播| 日本黄大片高清| av在线天堂中文字幕| 老师上课跳d突然被开到最大视频| 亚洲一区二区三区色噜噜| 哪里可以看免费的av片| 性欧美人与动物交配| 日韩精品中文字幕看吧| 99热只有精品国产| 亚洲久久久久久中文字幕| avwww免费| 九九爱精品视频在线观看| 日本 av在线| 久久精品国产亚洲av天美| 热99在线观看视频| 国内久久婷婷六月综合欲色啪| 菩萨蛮人人尽说江南好唐韦庄 | 精品免费久久久久久久清纯| 人妻制服诱惑在线中文字幕| 性插视频无遮挡在线免费观看| h日本视频在线播放| 亚洲婷婷狠狠爱综合网| 欧美三级亚洲精品| 国产真实乱freesex| 三级国产精品欧美在线观看| 亚洲国产精品成人久久小说 | 色哟哟·www| 赤兔流量卡办理| 成人特级av手机在线观看| 看片在线看免费视频| 久久久久久大精品| 熟妇人妻久久中文字幕3abv| 丰满乱子伦码专区| 日本一本二区三区精品| 国产精品免费一区二区三区在线| 久久久久久久亚洲中文字幕| 亚洲国产欧美人成| 成人永久免费在线观看视频| 久久6这里有精品| 免费无遮挡裸体视频| videossex国产| 国产高清不卡午夜福利| 国产精品嫩草影院av在线观看| 亚洲成人久久性| 国产精品美女特级片免费视频播放器| 国产精品久久久久久亚洲av鲁大| 亚洲精品456在线播放app| 黄片wwwwww| 别揉我奶头 嗯啊视频| av免费在线看不卡| 亚洲丝袜综合中文字幕| 国产精品精品国产色婷婷| 中文资源天堂在线| 日韩av在线大香蕉| 全区人妻精品视频| 精品欧美国产一区二区三| 我的老师免费观看完整版| 最近2019中文字幕mv第一页| 最好的美女福利视频网| 亚洲av电影不卡..在线观看| 国产高清激情床上av| 天堂影院成人在线观看| 欧美精品国产亚洲| 免费av观看视频| 一个人免费在线观看电影| 特级一级黄色大片| 波多野结衣高清无吗| 露出奶头的视频| av在线老鸭窝| av在线蜜桃| 嫩草影院入口| 欧美一级a爱片免费观看看| 夜夜看夜夜爽夜夜摸| 岛国在线免费视频观看| 日本一本二区三区精品| 亚洲真实伦在线观看| 日韩欧美精品免费久久| 看免费成人av毛片| 日韩欧美精品免费久久| 我的老师免费观看完整版| 99riav亚洲国产免费| 亚洲中文字幕日韩| 欧美成人a在线观看| 免费观看在线日韩| 在线免费观看不下载黄p国产| 国产高清视频在线观看网站| 国产精品永久免费网站| 国产 一区精品| 国产黄色视频一区二区在线观看 | 久久久久久伊人网av| 日韩 亚洲 欧美在线| 一级毛片久久久久久久久女| 啦啦啦韩国在线观看视频| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 18禁裸乳无遮挡免费网站照片| 免费在线观看影片大全网站| 亚洲成a人片在线一区二区| 欧美日韩在线观看h| 精品午夜福利视频在线观看一区| 一级a爱片免费观看的视频| 午夜精品国产一区二区电影 | 国产精品一及| 国产在线男女| 丝袜美腿在线中文| 亚洲专区国产一区二区| 久久6这里有精品| 色尼玛亚洲综合影院| 国产亚洲精品综合一区在线观看| 国产精品国产三级国产av玫瑰| 人妻久久中文字幕网| 国产av在哪里看| 国产黄色视频一区二区在线观看 | 免费高清视频大片| 亚洲人成网站高清观看| 99在线人妻在线中文字幕| 色5月婷婷丁香| 18禁在线无遮挡免费观看视频 | 蜜桃亚洲精品一区二区三区| 国产精品国产三级国产av玫瑰| 国产高清三级在线| 激情 狠狠 欧美| 看十八女毛片水多多多| 午夜爱爱视频在线播放| www日本黄色视频网| 国产精品一区二区免费欧美| 欧美性感艳星| 中文亚洲av片在线观看爽| 午夜激情福利司机影院| 热99在线观看视频| 成人一区二区视频在线观看| 91在线精品国自产拍蜜月| 日本黄色视频三级网站网址| 免费在线观看成人毛片| 日韩欧美一区二区三区在线观看| 国产激情偷乱视频一区二区| 亚洲国产精品成人综合色| 国内精品美女久久久久久| 亚洲一区高清亚洲精品| 日韩欧美三级三区| 成人永久免费在线观看视频| 男插女下体视频免费在线播放| 亚洲精品在线观看二区| 国产久久久一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产成人freesex在线 | 亚洲精品日韩av片在线观看| 国产又黄又爽又无遮挡在线| 最近视频中文字幕2019在线8| 国语自产精品视频在线第100页| 在线免费十八禁| 日本色播在线视频| 国产色婷婷99| 日日干狠狠操夜夜爽| 成人亚洲欧美一区二区av| 久久久久九九精品影院| 少妇的逼水好多| 99久久久亚洲精品蜜臀av| 午夜免费激情av| 亚洲中文字幕日韩| 性色avwww在线观看| 国产视频一区二区在线看| 成年女人永久免费观看视频| 成人美女网站在线观看视频| 国产高清视频在线观看网站| 久久久久精品国产欧美久久久| 3wmmmm亚洲av在线观看| 美女高潮的动态| 欧美日韩在线观看h| 成年免费大片在线观看| 天天躁夜夜躁狠狠久久av| 精品一区二区三区视频在线| av天堂中文字幕网| 91在线精品国自产拍蜜月| 精品少妇黑人巨大在线播放 | 久久精品国产亚洲av天美| 搡女人真爽免费视频火全软件 | 一个人看的www免费观看视频| 女人十人毛片免费观看3o分钟| 久久久久久久久久成人| 男女之事视频高清在线观看| 久久久久免费精品人妻一区二区| 日韩欧美免费精品| 日韩成人伦理影院| 欧美性感艳星| 国产精品国产高清国产av| 成人av在线播放网站| 最新中文字幕久久久久| 赤兔流量卡办理| 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区精品小视频在线| 亚洲久久久久久中文字幕| 久久久久久久午夜电影| 变态另类成人亚洲欧美熟女| 国产精品一二三区在线看| 免费不卡的大黄色大毛片视频在线观看 | 3wmmmm亚洲av在线观看| av专区在线播放| 欧美成人a在线观看| 日日啪夜夜撸| 日本一本二区三区精品| 91在线精品国自产拍蜜月| 91久久精品电影网| 国内久久婷婷六月综合欲色啪| 国产精品三级大全| 网址你懂的国产日韩在线| 少妇人妻精品综合一区二区 | or卡值多少钱| 你懂的网址亚洲精品在线观看 | 少妇人妻精品综合一区二区 | 91久久精品国产一区二区三区| 成人亚洲欧美一区二区av| 欧美3d第一页| 亚洲18禁久久av| 久久鲁丝午夜福利片| 日韩 亚洲 欧美在线| 男女做爰动态图高潮gif福利片| 亚洲精华国产精华液的使用体验 | 亚洲在线自拍视频| 69人妻影院| 亚洲激情五月婷婷啪啪| 老女人水多毛片| 久久综合国产亚洲精品| 我的老师免费观看完整版| 亚洲精品乱码久久久v下载方式| 我要看日韩黄色一级片| 国产极品精品免费视频能看的| 午夜精品国产一区二区电影 | 天天躁日日操中文字幕| 波多野结衣高清无吗| 亚洲人成网站高清观看| 91久久精品国产一区二区成人| 神马国产精品三级电影在线观看| 又黄又爽又刺激的免费视频.| 午夜亚洲福利在线播放| 午夜福利高清视频| 国产久久久一区二区三区| 美女xxoo啪啪120秒动态图| 悠悠久久av| 久久久久精品国产欧美久久久| 天美传媒精品一区二区| 大型黄色视频在线免费观看| 老女人水多毛片| 亚洲aⅴ乱码一区二区在线播放| 午夜福利在线在线| 午夜精品一区二区三区免费看| 91在线精品国自产拍蜜月| 亚洲精品亚洲一区二区| 精品久久久久久久久久免费视频| 免费人成视频x8x8入口观看| 2021天堂中文幕一二区在线观| 欧美潮喷喷水| 午夜免费激情av|