• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of direct computing of one-way coupling technique in seismic analysis of concrete gravity dam

    2010-08-12 08:51:00QuocCongTRINHLiaojunZHANG
    Water Science and Engineering 2010年1期

    Quoc Cong TRINH*, Liao-jun ZHANG

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    Application of direct computing of one-way coupling technique in seismic analysis of concrete gravity dam

    Quoc Cong TRINH*, Liao-jun ZHANG

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    A dam-reservoir system subjected to an earthquake is a nonlinear system, because the fluid equations are always nonlinear regardless of the linear or nonlinear model used for the dam body. Therefore, transient analysis is necessary. In this study, dam-reservoir interaction during earthquake excitation was modeled by utilizing coupled finite element equations based on the Eulerian approach. Direct computing of the one-way coupling technique was used to solve the coupled equations. This technique is based on a simple assumption that the fluid hydrodynamic pressure is applied to the dam body while the deformation of the dam has no influence on the water field. Seismic response analysis of the Sonla concrete gravity dam constructed in Sonla Province, Vietnam was carried out as a verification example. The results of the methodology introduced are in close agreement with results of the iterative method and the solution procedure is found to be less time-consuming than that of the iterative method. This method is very convenient and can be easily implemented in finite element programs with fluid-structure interaction modules.

    dam-reservoir interaction; time domain; one-way coupling; Sonla Dam

    1 Introduction

    A dam-reservoir system is a fluid-structure interaction problem. This system can be categorized as a coupled field system in which two physical domains, fluid and structure, interact at the interface. Most dam-reservoir analyses are based on one of two approaches: the Eulerian approach or the Lagrangian approach (Olson and Bathe 1983). In the Eulerian approach, displacements are the variables in the solid domain and pressures are the variables in the fluid domain. In the Lagrangian approach, the behavior of the fluid and structure is expressed in terms of displacements. Seismic analyses of dam-reservoir systems have been carried out using the Eulerian and Lagrangian approaches (Singhal 1991; Calayir et al. 1996; Bayraktar et al. 1996).

    Analysis of dam-reservoir systems subjected to earthquake loads is a complex problem. There are different approaches to the solution of the coupled field problem. Traditionally, the frequency domain approach is utilized to obtain the linear dynamic response of the dam (Chopra et al. 1980). However, it is not applicable to nonlinear problems and does not reflectthe dam behavior during an earthquake period. Another approach to determining the linear and nonlinear response of the dam-reservoir system is the added mass approach. This approach is computationally very efficient but may not be suitable for analysis of cracking in the dam structure (Ghaemian and Ghobarah 1999).

    A dam-reservoir system subjected to a strong earthquake is likely to behave nonlinearly, even though the concrete material of the dam remains elastic. Therefore, a transient analysis of the structure interacting with a fluid and subjected to earthquake ground motion is necessary for a realistic analysis. In general, an algorithm based on the iterative solvers can be applied. However, these methods require a large amount of memory and computing time. In this study, a formulation of fluid systems based on the Eulerian approach was obtained using the finite element method. The coupled equation of water-dam interaction was solved by utilizing direct computing of a one-way coupling technique based on the simplifying assumption that deformation of the dam does not influence the water field. Following from this, the Sonla gravity dam was analyzed in the time history domain with this technique.

    2 Coupled finite element equation of dam-reservoir system

    Dam-reservoir interaction is represented by two coupled differential equations of the second order. The equations of the dam and the reservoir can be written as (Ghaemian and Ghobarah 1999)

    whereMis the mass matrix,Cis the damping matrix, andKis the stiffness matrix of the dam body;G,C′, andK′ are the assembled matrices of the fluid domain;Qis the coupling matrix (Zienkiewicz and Taylor 2000);f1is the vector of static load;U,, andare the vectors of displacement, velocity and acceleration of the dam body, respectively;P,, andare the vectors of hydrodynamic pressure, the first and the second order of the time derivatives of vectorP, respectively;U˙˙′ is the ground acceleration;ρis the density of the fluid; andFis the vector of force due to acceleration at the dam-reservoir and reservoir-foundation boundaries and due to truncation at the far boundary.

    3 Direct computing of one-way coupling technique for solving coupled equation

    A direct integration scheme is used to find the displacement and hydrodynamic pressure at the end of timeti+1, using the displacement and hydrodynamic pressure at timeti. In 1959, Newmark developed a step-by-step integration method based on the following equations (Chopra 2001):

    where Δtis the time step.γandβare the integration parameters determining the stability and accuracy characteristics of the method. Typical selections ofandare satisfactory from all points of view.

    The coupled Eqs. (1) and (2) at timeti+1can be written as follows:

    where

    In this equation, the fluid and solid solution variables are fully coupled. In general, an iterative solution is used to solve the coupled equations. However, since the assumption is that deformation of the dam is minimal, its influence on hydrodynamic pressure can be ignored. Therefore, this coupled equation can be solved without using an iterative scheme.

    From the assumption thatUi+1equals zero, based on Eq. (4),can be obtained:

    4 Application in seismic analysis of Sonla Dam

    The analysis of Sonla Dam was considered as a verification example. Sonla Dam is located on the Da River in Sonla Province, Vietnam. It is 130 m high and 95 m wide at the bottom. Analysis of dam-reservoir interaction has been implemented in ADINA (automatic dynamic incremental nonlinear analysis) using the one-way coupling algorithm described above. The accuracy and efficiency of this software has been tested with many numerical examples (Bathe 2002).

    4.1 Selected model

    Two cases of the Sonla concrete gravity dam with different reservoir levels were analyzed to demonstrate the applicability and accuracy of the proposed methods. In the first case, a full reservoir with a height of 122 m above the base was considered. In the second case, the water level of the reservoir was the dead water level with a height of 82 m above the base. The dam-reservoir system was analyzed using a two-dimensional model with a unit thickness that is well accepted for a typical gravity dam. The dam and the reservoir were respectively represented by 608 four-node and 425 four-node isoparametric quadrilateral solid and fluidfinite elements for the first case, and 608 four-node and 300 four-node isoparametric quadrilateral solid and fluid finite elements for the second case. A fluid-structure interaction boundary condition was applied upstream of the dam and at the bottom of the reservoir. Initial conditions were a hydrostatic load and self-weight of the dam. The massless foundation input model was used in this study (Bayraktar et al. 2005). The finite element mesh in the first case is shown in Fig. 1.

    Fig. 1 Finite element mesh of Sonla Dam-reservoir-foundation system for case 1

    In order to determine the hydrodynamic pressure on the dam due to horizontal ground motion with the assumption of a finite reservoir, the reservoir must be truncated at a reasonable distance. The Sommerfeld boundary condition, which is based on the assumption that, at a great distance from the dam face, the outgoing wave can be considered a plane wave, is commonly used. Hanna and Humar (1982), Humar and Roufaiel (1983), and Sharan (1986, 1987) used a radiation condition that models the loss of the outgoing wave over a wide range of excitation frequencies. In this analysis, the Sharan (1986) radiation boundary condition was applied at a distance from the dam equal to five times the dam height. Truncation of the boundary was equivalent to adding dampers and springs to absorb the outgoing waves.

    4.2 Basic parameters and loads

    The concrete was assumed to be homogeneous and isotropic. The modulus of elasticity, unit weight, and Poisson’s ratio of the concrete were taken to be 25.5 GPa, 2 449 kg/m3, and 0.167, respectively. The water was considered a compressible fluid with a weight density of 1020 kg/m3. The Rayleigh damping matrix was applied and the corresponding coefficients were determined such that equivalent damping for the frequencies close to the first and the third mode of vibration would be 5%.

    The dam was subjected to a self-weight load, hydrostatic load, hydrodynamic load, and earthquake load. The seismic excitation considered in this study was an acceleration spectrum given by the Vietnam Institute for Building Science and Technology (2006). The artificial acceleration history curve was computed from the acceleration spectrum correlatively. The response spectrum at the location of Sonla Dam and artificial acceleration are shown in Fig. 2 and Fig. 3, respectively.

    Fig. 2 Response spectrum

    Fig. 3 Time history of acceleration

    4.3 Analysis results

    Two cases of the Sonla concrete gravity dam with different reservoir levels were analyzed. In the first case, a full reservoir was considered and the structure had a fundamental frequency of 2.08 Hz. The second case had a typical configuration of a concrete gravity dam with a fundamental frequency of 2.40 Hz and a dead water level.

    For comparison purposes, the Sonla Dam model was analyzed using both the one-way and the iterative methods. The results for the first case are presented in Fig. 4, and the results for case 2 are presented in Fig. 5. The peakz-direction stress at the dam heel and the peak displacement at the dam crest for the two cases are shown in Table 1.

    Fig. 4 Analysis results for case 1

    Fig. 4 shows the time history for the horizontal component of displacement at the crest and the vertical-direction stress (z-direction stress) at the dam heel for the first case. The dam crest displacement was measured with respect to the base motion. As for verification, the model of Sonla Dam was also analyzed with the iterative method. It is observed that the histories of displacements andz-direction stress follow very similar trends. The horizontal displacement at the dam crest andz-direction stress at the dam heel of the two methods for the second case are presented in Fig. 5. In this case, excellent agreement is found between the results obtained from the proposed method and the iterative method. Table 1 shows that the maximum values of displacement at the dam crest in the one-way coupling method are different by less than 6%, while the maximum values of thez-direction stress at the dam heel are different by less than 8%. Therefore, it can be concluded that results of the present studyare in good agreement with the results of the iterative computing method. Table 1 also shows that the calculation time of the one-way coupling method is much less than that of the iterative method. The solution procedure of this method is found to be 12 times less time-consuming than that of the iterative method.

    Fig. 5 Analysis results for case 2

    Table 1 Comparison between results of one-way coupling method and iterative method

    5 Conclusions

    A technique has been proposed for the dynamic analysis of concrete gravity dams. Coupled equations of dam-reservoir interaction based on the Eulerian approach were obtained and solved by utilizing the one-way coupling technique. The analysis of Sonla Dam was considered as a verifying example. A two-dimensional model of the dam-reservoir-foundation system was analyzed. The results were also compared with the results of the iterative method. Overall, the main conclusions are as follows:

    (1) The results of the present study are in close agreement with results of the iterative method.

    (2) The methodology introduced takes less calculation time and computer memory than other iterative methods. This is very significant to the models using a large number of finite elements.

    (3) The proposed method is very convenient and can be easily implemented in finite element programs with fluid-structure interaction modules.

    Bathe, K. J. 2002.ADINA Verification Manual. MA: ADINA R&D Inc.

    Bayraktar, A., Dumano?lu, A. A., and Calayir, Y. 1996. Asynchronous dynamic analysis of dam-reservoirfoundation systems by the Lagrangian approach.Computers & Structures, 58(5), 925-935. [doi:10.1016/0045-7949(95)00211-X]

    Bayraktar, A., Han?er, E., and Akk?se, M. 2005. Influence of base-rock characteristics on the stochastic dynamic response of dam-reservoir-foundation systems.Engineering Structures, 27(10), 1498-1508. [doi:10.1016/j.engstruct.2005.05.004]

    Calayir, Y., Dumano?lu, A. A., and Bayraktar, A. 1996. Earthquake analysis of gravity dam-reservoir systems using the Eulerian and Lagrangian approaches.Computers & Structures, 59(5), 877-890. [doi:10.1016/0045-7949(95)00309-6]

    Chopra, A. K., Chakrabarti, P., and Gupta, S. 1980.Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction Effects. Berkeley: Earthquake Engineering Research Center, University of California.

    Chopra, A. K. 2001.Dynamics of Structures: Theory and Applications to Earthquake Engineering(2nd Edition). New Jersey: Prentice-Hall.

    Ghaemian, M., and Ghobarah, A. 1999. Nonlinear seismic response of concrete gravity dams with dam-reservoir interaction.Engineering Structure, 21(4), 306-315. [doi:10.1016/S0141-0296(97)00208-3]

    Hanna, Y. G., and Humar, J. L. 1982. Boundary element analysis of fluid domain.Journal of the Engineering Mechanics Division, 108(2), 436-450.

    Humar, J., and Roufaiel, M. 1983. Finite element analysis of reservoir vibration.Journal of the Engineering Mechanics Division, 109(1), 215-230.

    Olson, L. G., and Bathe, K. J. 1983. A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems.Nuclear Engineering and Design, 76(2), 137-151. [doi: 10.1016/0029-5493(83)90130-9]

    Sharan, S. K. 1986. Modelling of radiation damping in fluids by finite elements.International Journal for Numerical Methods in Engineering, 23(5), 945-957. [doi:10.1002/nme.1620230514]

    Sharan, S. K. 1987. Time-domain analysis of infinite fluid vibration.International Journal for Numerical Methods in Engineering, 24, 945-958. [doi:10.1002/nme.1620240508]

    Singhal, A. C. 1991. Comparison of computer codes for seismic analysis of dams.Computers & Structures, 38(1), 107-112. [doi:10.1016/0045-7949(91)90128-9]

    Vietnam Institute for Building Science and Technology. 2006.Design of Structures for Earthquake Resistance. Hanoi: Standards Press of Vietnam. (in Vietnamese)

    Zienkiewicz, O. C., and Taylor, R. L. 2000.The Finite Element Method(5th Edition). Oxford: Butterworth-Heinemann.

    *Corresponding author (e-mail:quoccongdhtl@yahoo.com)

    Received Nov. 6, 2009; accepted Feb. 22, 2010

    精品亚洲成国产av| 欧美 日韩 精品 国产| 天堂俺去俺来也www色官网| 水蜜桃什么品种好| 欧美精品啪啪一区二区三区| 一区二区三区国产精品乱码| 9色porny在线观看| 黄色a级毛片大全视频| 精品久久久久久久久久免费视频 | 久99久视频精品免费| 99精品久久久久人妻精品| 香蕉国产在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 一区在线观看完整版| 国产欧美日韩综合在线一区二区| 中文字幕人妻熟女乱码| 波多野结衣一区麻豆| 国产av又大| 久99久视频精品免费| e午夜精品久久久久久久| 久久精品国产99精品国产亚洲性色 | 在线观看免费日韩欧美大片| 欧美成狂野欧美在线观看| 欧美色视频一区免费| 午夜老司机福利片| av片东京热男人的天堂| 欧美黄色淫秽网站| 色综合欧美亚洲国产小说| 国产亚洲欧美精品永久| 国产精品 欧美亚洲| 两个人看的免费小视频| 国精品久久久久久国模美| 一级毛片高清免费大全| 欧美乱码精品一区二区三区| 国产精品久久久久成人av| 9热在线视频观看99| 国产亚洲精品久久久久久毛片 | 成年人黄色毛片网站| 一区在线观看完整版| 免费在线观看亚洲国产| 欧美成人免费av一区二区三区 | 天堂俺去俺来也www色官网| 女人被躁到高潮嗷嗷叫费观| 嫩草影视91久久| 天天影视国产精品| 在线永久观看黄色视频| 精品人妻熟女毛片av久久网站| 女人久久www免费人成看片| 国产有黄有色有爽视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一青青草原| 黄色视频不卡| 叶爱在线成人免费视频播放| 国产成人精品久久二区二区91| 中亚洲国语对白在线视频| 久久久久国内视频| 后天国语完整版免费观看| 18禁黄网站禁片午夜丰满| 国产区一区二久久| 少妇的丰满在线观看| 国产精品欧美亚洲77777| 亚洲欧洲精品一区二区精品久久久| 高潮久久久久久久久久久不卡| 91在线观看av| 曰老女人黄片| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 一进一出好大好爽视频| 捣出白浆h1v1| 午夜福利一区二区在线看| 日韩精品免费视频一区二区三区| 久久婷婷成人综合色麻豆| www.自偷自拍.com| 国产一区在线观看成人免费| 国产不卡av网站在线观看| 天堂√8在线中文| 欧美日韩亚洲综合一区二区三区_| 精品福利永久在线观看| 桃红色精品国产亚洲av| 无人区码免费观看不卡| 精品午夜福利视频在线观看一区| av天堂久久9| 中文字幕高清在线视频| 热99国产精品久久久久久7| 国产乱人伦免费视频| 精品一区二区三区视频在线观看免费 | 精品久久久久久电影网| 亚洲avbb在线观看| 91老司机精品| 久久精品国产综合久久久| 手机成人av网站| 欧美 日韩 精品 国产| 亚洲成人免费av在线播放| 两个人免费观看高清视频| 日韩三级视频一区二区三区| 久久中文字幕一级| 久久久久久久久久久久大奶| 久久香蕉激情| 亚洲免费av在线视频| 欧美国产精品一级二级三级| 久久热在线av| 午夜91福利影院| 亚洲欧美日韩另类电影网站| 91字幕亚洲| 一区福利在线观看| 国产午夜精品久久久久久| 亚洲一码二码三码区别大吗| 男人操女人黄网站| 欧美黄色淫秽网站| 成人影院久久| 男男h啪啪无遮挡| 亚洲精品一卡2卡三卡4卡5卡| 午夜视频精品福利| 亚洲国产精品sss在线观看 | av天堂在线播放| 国产不卡av网站在线观看| 亚洲人成77777在线视频| 亚洲国产欧美一区二区综合| 波多野结衣一区麻豆| 久久久国产一区二区| 日日摸夜夜添夜夜添小说| www日本在线高清视频| 国产无遮挡羞羞视频在线观看| 91成人精品电影| 欧美激情 高清一区二区三区| 免费高清在线观看日韩| 亚洲五月婷婷丁香| 18禁裸乳无遮挡动漫免费视频| 久久热在线av| 色婷婷久久久亚洲欧美| 成人av一区二区三区在线看| 亚洲国产看品久久| 亚洲中文av在线| 中国美女看黄片| 亚洲一区高清亚洲精品| 久久人人爽av亚洲精品天堂| 无限看片的www在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产看品久久| 成人亚洲精品一区在线观看| 国产成人影院久久av| 欧美丝袜亚洲另类 | 亚洲欧美一区二区三区久久| 中文亚洲av片在线观看爽 | 欧美黄色淫秽网站| 亚洲精品久久午夜乱码| 老熟妇乱子伦视频在线观看| 丝瓜视频免费看黄片| 欧美老熟妇乱子伦牲交| 一夜夜www| 欧美人与性动交α欧美精品济南到| 久久久国产一区二区| 国产成人精品久久二区二区免费| 少妇 在线观看| 国产成人系列免费观看| 日韩熟女老妇一区二区性免费视频| 欧美精品人与动牲交sv欧美| 久久久精品国产亚洲av高清涩受| 国产高清videossex| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美乱妇无乱码| 国产亚洲欧美精品永久| 在线国产一区二区在线| 国产99白浆流出| 日韩欧美一区视频在线观看| 叶爱在线成人免费视频播放| 在线观看日韩欧美| 成人影院久久| 成年人午夜在线观看视频| 韩国精品一区二区三区| 欧美在线一区亚洲| 很黄的视频免费| 国产精品一区二区免费欧美| 成年版毛片免费区| 国产亚洲精品第一综合不卡| 欧美日本中文国产一区发布| 又大又爽又粗| 精品午夜福利视频在线观看一区| netflix在线观看网站| 999精品在线视频| 久久天堂一区二区三区四区| 99国产精品一区二区蜜桃av | 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久久久久大奶| 亚洲第一欧美日韩一区二区三区| 午夜日韩欧美国产| 黄色 视频免费看| 精品乱码久久久久久99久播| 电影成人av| 欧美一级毛片孕妇| 咕卡用的链子| 黑人巨大精品欧美一区二区蜜桃| 91精品三级在线观看| 1024视频免费在线观看| 亚洲综合色网址| 国产精品久久久久成人av| 人人妻,人人澡人人爽秒播| 精品人妻熟女毛片av久久网站| 最新的欧美精品一区二区| av网站在线播放免费| 欧美日韩国产mv在线观看视频| 大型黄色视频在线免费观看| 亚洲男人天堂网一区| 午夜福利在线观看吧| 欧美日韩亚洲国产一区二区在线观看 | 免费在线观看视频国产中文字幕亚洲| 18禁观看日本| 国产欧美亚洲国产| 亚洲色图 男人天堂 中文字幕| 久久影院123| 黄色成人免费大全| 日韩精品免费视频一区二区三区| 久久人妻熟女aⅴ| 最新在线观看一区二区三区| 91在线观看av| 成人国产一区最新在线观看| 在线天堂中文资源库| 大香蕉久久成人网| 国产高清videossex| 九色亚洲精品在线播放| 国产淫语在线视频| 亚洲精品中文字幕一二三四区| 久久久精品国产亚洲av高清涩受| 日日摸夜夜添夜夜添小说| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 大香蕉久久成人网| 亚洲在线自拍视频| 久久香蕉精品热| 国产不卡av网站在线观看| 色精品久久人妻99蜜桃| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 国产成人系列免费观看| 精品国产乱码久久久久久男人| 极品人妻少妇av视频| 精品国产国语对白av| av线在线观看网站| 女人久久www免费人成看片| 国产精品美女特级片免费视频播放器 | 中文字幕精品免费在线观看视频| 涩涩av久久男人的天堂| 亚洲av电影在线进入| 午夜老司机福利片| 国产成人精品久久二区二区免费| 91字幕亚洲| videosex国产| 三级毛片av免费| 国产成人精品久久二区二区免费| 欧美+亚洲+日韩+国产| 午夜福利在线免费观看网站| 美女 人体艺术 gogo| 王馨瑶露胸无遮挡在线观看| 亚洲伊人色综图| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲国产一区二区在线观看 | 午夜激情av网站| 日韩 欧美 亚洲 中文字幕| 满18在线观看网站| 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 日韩视频一区二区在线观看| 免费在线观看黄色视频的| 中文字幕av电影在线播放| 老熟妇仑乱视频hdxx| 99在线人妻在线中文字幕 | 国产亚洲av高清不卡| 在线免费观看的www视频| 国产精品偷伦视频观看了| 黄色怎么调成土黄色| 国产精品综合久久久久久久免费 | 黑人欧美特级aaaaaa片| 999久久久精品免费观看国产| 天堂动漫精品| 在线观看日韩欧美| 成人精品一区二区免费| av中文乱码字幕在线| 天天添夜夜摸| 狂野欧美激情性xxxx| 亚洲午夜精品一区,二区,三区| 久久精品aⅴ一区二区三区四区| 1024视频免费在线观看| www.熟女人妻精品国产| 国产亚洲精品久久久久久毛片 | 91老司机精品| 中文字幕制服av| 免费一级毛片在线播放高清视频 | 色综合婷婷激情| 国产在线一区二区三区精| 国产男女超爽视频在线观看| 操美女的视频在线观看| 老司机深夜福利视频在线观看| 国产又爽黄色视频| 最近最新中文字幕大全免费视频| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 深夜精品福利| 久久香蕉激情| 99精品在免费线老司机午夜| 纯流量卡能插随身wifi吗| 视频区欧美日本亚洲| 亚洲精品乱久久久久久| 亚洲国产精品合色在线| 国产91精品成人一区二区三区| 波多野结衣一区麻豆| 亚洲成人手机| 无遮挡黄片免费观看| 亚洲一码二码三码区别大吗| 国产高清国产精品国产三级| 12—13女人毛片做爰片一| 露出奶头的视频| 久久久久国产一级毛片高清牌| 手机成人av网站| 久久中文看片网| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 国产主播在线观看一区二区| 国产色视频综合| 91精品国产国语对白视频| 在线视频色国产色| 交换朋友夫妻互换小说| 最新美女视频免费是黄的| 中文字幕制服av| 欧美日韩乱码在线| www.熟女人妻精品国产| 亚洲精品国产区一区二| 老司机影院毛片| 国产精品98久久久久久宅男小说| 两个人免费观看高清视频| 成年人黄色毛片网站| 黑人操中国人逼视频| 99re在线观看精品视频| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品成人免费网站| 我的亚洲天堂| 国产精品影院久久| 亚洲七黄色美女视频| 中文字幕最新亚洲高清| 自线自在国产av| 99国产精品一区二区蜜桃av | 国产精品香港三级国产av潘金莲| 亚洲五月婷婷丁香| 一级毛片精品| 丁香欧美五月| 91国产中文字幕| 亚洲av成人一区二区三| 久久狼人影院| 两性夫妻黄色片| 午夜日韩欧美国产| av欧美777| 波多野结衣一区麻豆| 在线观看舔阴道视频| 国产高清激情床上av| 99香蕉大伊视频| 无限看片的www在线观看| 亚洲成人国产一区在线观看| 精品一区二区三区四区五区乱码| 激情在线观看视频在线高清 | 窝窝影院91人妻| 另类亚洲欧美激情| 老司机午夜福利在线观看视频| 国产视频一区二区在线看| 露出奶头的视频| 久久影院123| 精品亚洲成a人片在线观看| 午夜福利在线观看吧| 久久国产亚洲av麻豆专区| 日韩精品免费视频一区二区三区| 欧美日韩视频精品一区| 国产成+人综合+亚洲专区| 国产不卡av网站在线观看| x7x7x7水蜜桃| 又紧又爽又黄一区二区| 亚洲av日韩精品久久久久久密| 校园春色视频在线观看| ponron亚洲| 夜夜爽天天搞| 丝袜美足系列| 黄色女人牲交| 99久久精品国产亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区在线观看99| 国产片内射在线| 乱人伦中国视频| 丝袜人妻中文字幕| 美国免费a级毛片| 国产精品免费一区二区三区在线 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产有黄有色有爽视频| 91大片在线观看| 亚洲少妇的诱惑av| 超色免费av| 一本综合久久免费| 高清视频免费观看一区二区| 欧美丝袜亚洲另类 | 欧美在线黄色| 麻豆国产av国片精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品av麻豆狂野| 99re在线观看精品视频| 精品熟女少妇八av免费久了| 国产精品国产高清国产av | 啦啦啦视频在线资源免费观看| 在线观看免费视频网站a站| 视频区图区小说| 麻豆乱淫一区二区| 日韩视频一区二区在线观看| 国产高清国产精品国产三级| av免费在线观看网站| 午夜福利在线免费观看网站| 亚洲精品国产色婷婷电影| 日本五十路高清| 成人手机av| 欧美人与性动交α欧美软件| 久久久久精品人妻al黑| 亚洲国产中文字幕在线视频| av天堂在线播放| 国产av又大| 水蜜桃什么品种好| 黑丝袜美女国产一区| 亚洲欧美日韩高清在线视频| 亚洲片人在线观看| 99热网站在线观看| 美女视频免费永久观看网站| 亚洲av欧美aⅴ国产| 咕卡用的链子| www.999成人在线观看| 国产激情久久老熟女| 国产精品影院久久| 午夜精品在线福利| 水蜜桃什么品种好| 日韩欧美免费精品| 中文字幕av电影在线播放| 国产不卡av网站在线观看| 婷婷丁香在线五月| 亚洲av成人不卡在线观看播放网| 青草久久国产| 又黄又爽又免费观看的视频| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 国产精品久久久av美女十八| 69精品国产乱码久久久| 超碰成人久久| 免费高清在线观看日韩| 免费观看精品视频网站| 在线永久观看黄色视频| 777米奇影视久久| 女人被躁到高潮嗷嗷叫费观| 老鸭窝网址在线观看| 国产亚洲精品一区二区www | 欧美久久黑人一区二区| 亚洲片人在线观看| 国产亚洲欧美98| 亚洲专区中文字幕在线| 国产精品成人在线| 九色亚洲精品在线播放| 日本a在线网址| netflix在线观看网站| 在线观看舔阴道视频| 国产精品久久久av美女十八| 99久久国产精品久久久| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 亚洲专区字幕在线| 亚洲av日韩精品久久久久久密| 国产在线精品亚洲第一网站| 一区二区日韩欧美中文字幕| 久久精品国产99精品国产亚洲性色 | 久热这里只有精品99| 亚洲精品乱久久久久久| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 午夜激情av网站| 午夜亚洲福利在线播放| 亚洲中文日韩欧美视频| 99国产精品免费福利视频| √禁漫天堂资源中文www| 欧美av亚洲av综合av国产av| 午夜老司机福利片| 悠悠久久av| 视频在线观看一区二区三区| 久久久久国产精品人妻aⅴ院 | 9191精品国产免费久久| 欧美黑人欧美精品刺激| 高清av免费在线| av中文乱码字幕在线| 在线观看免费午夜福利视频| 亚洲欧美日韩另类电影网站| 久久人妻熟女aⅴ| 9191精品国产免费久久| 国产精品九九99| 窝窝影院91人妻| 91精品三级在线观看| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 中文字幕色久视频| 婷婷精品国产亚洲av在线 | 大型黄色视频在线免费观看| 国产欧美日韩一区二区精品| 丰满饥渴人妻一区二区三| 色精品久久人妻99蜜桃| 亚洲国产精品合色在线| 国内毛片毛片毛片毛片毛片| 色综合婷婷激情| 久久久水蜜桃国产精品网| 两个人看的免费小视频| 人妻 亚洲 视频| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| 操美女的视频在线观看| 丝瓜视频免费看黄片| 国产成人av教育| 18禁观看日本| av福利片在线| 三上悠亚av全集在线观看| 麻豆国产av国片精品| 丰满饥渴人妻一区二区三| 嫁个100分男人电影在线观看| 亚洲精品成人av观看孕妇| 精品福利永久在线观看| 欧美激情久久久久久爽电影 | 亚洲精品国产区一区二| 两性夫妻黄色片| 999久久久精品免费观看国产| 欧美亚洲 丝袜 人妻 在线| 久久国产精品影院| 18在线观看网站| 久久久精品区二区三区| 大香蕉久久成人网| 国产一区二区三区视频了| 久久性视频一级片| 在线观看www视频免费| 香蕉国产在线看| 国产成人欧美| 国产av又大| 悠悠久久av| 精品熟女少妇八av免费久了| 亚洲专区中文字幕在线| 三级毛片av免费| 婷婷精品国产亚洲av在线 | 人人妻,人人澡人人爽秒播| 日本wwww免费看| 亚洲少妇的诱惑av| 久久久久久亚洲精品国产蜜桃av| 极品少妇高潮喷水抽搐| 很黄的视频免费| 免费看a级黄色片| 精品久久蜜臀av无| 99re在线观看精品视频| 午夜久久久在线观看| 成年动漫av网址| 中文字幕最新亚洲高清| 人妻一区二区av| 怎么达到女性高潮| 久久精品人人爽人人爽视色| 亚洲av成人一区二区三| 国产精品av久久久久免费| 免费在线观看视频国产中文字幕亚洲| 少妇裸体淫交视频免费看高清 | cao死你这个sao货| 激情在线观看视频在线高清 | 亚洲午夜精品一区,二区,三区| 人成视频在线观看免费观看| av免费在线观看网站| 亚洲精品自拍成人| 国产精品亚洲一级av第二区| 欧美日韩成人在线一区二区| 99精品欧美一区二区三区四区| 欧美最黄视频在线播放免费 | 国产一区有黄有色的免费视频| 亚洲成国产人片在线观看| 丁香欧美五月| 自拍欧美九色日韩亚洲蝌蚪91| 国产又色又爽无遮挡免费看| 免费av中文字幕在线| 国产免费av片在线观看野外av| 两个人看的免费小视频| 久久久久精品人妻al黑| 国产1区2区3区精品| 国产精品av久久久久免费| 在线十欧美十亚洲十日本专区| 亚洲aⅴ乱码一区二区在线播放 | 夜夜躁狠狠躁天天躁| 国产午夜精品久久久久久| 看黄色毛片网站| 久久中文字幕人妻熟女| 日韩免费高清中文字幕av| 日本a在线网址| 精品福利观看| 嫁个100分男人电影在线观看| 黄色 视频免费看| 亚洲成a人片在线一区二区| 日本欧美视频一区| www.熟女人妻精品国产| 十八禁网站免费在线| 99久久99久久久精品蜜桃| 狠狠狠狠99中文字幕| 侵犯人妻中文字幕一二三四区| 男人操女人黄网站| 伊人久久大香线蕉亚洲五| 成年女人毛片免费观看观看9 | 国产色视频综合| av线在线观看网站| 老司机午夜福利在线观看视频| 亚洲精品一二三| 日日爽夜夜爽网站| 天堂中文最新版在线下载| 又紧又爽又黄一区二区| 日韩有码中文字幕| 在线视频色国产色| 最近最新中文字幕大全电影3 | 美女高潮到喷水免费观看|