• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration analysis of hydropower house based on fluid-structure coupling numerical method

    2010-11-02 13:34:20ShuheWEILiaojunZHANG
    Water Science and Engineering 2010年1期

    Shu-he WEI*, Liao-jun ZHANG

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    1 Introduction

    Mechanical vibration sources, electromagnetic vibration sources, and hydraulic vibration sources are generally considered the main causes of hydropower house vibration. The hydraulic vibration source is generally considered the uppermost vibration source. This includes the low frequency vortex rope in the draft tube, the intermediate and high frequency vortex rope, the hydraulic imbalance originating from uneven water seam clearance, and pressure fluctuations caused by pulsating currents in the turbine runner chamber. There are many documents and materials about flow passage turbulence and a lot of research has been conducted. Menter (1994)presented a shear-stress transport model that led to major improvements in the prediction of adverse pressure gradient flows. Yang and Cao (1998)presented a practical k-ε two-equation turbulence model to simulate the turbulent flow through a draft tube of the hydraulic turbine, and developed a set of governing equations for the turbulent flow. Tensor representation of the governing equations in body-fitted curvilinear coordinate systems was derived using Einstein’s expression. Ran et al. (2008)noted that the numerical methods are very important for predicting a head-discharge curve with positive slopes, and better agreement between calculation results and experimental data was achieved using the Spalart-Allmaras turbulence model and mesh strategy for numerical simulation.Based on the Navier-Stokes (N-S)equations and the standard k-ε turbulence model, Qian et al.(2007)simulated the three-dimensional unsteady multiphase flow in the whole passage of a Francis hydraulic turbine. The pressure pulsation was predicted and compared with experimental data at positions in the draft tube, in front of runner and guide vanes, and at the inlet of the spiral case. Zhang and Zhang (2009)established a three-dimensional finite element model for the #15 hydropower house of the Three Gorges Project (TGP)and performed a nonlinear dynamic analysis of response to pressure fluctuation. So far, there is no effective way to describe the mechanical vibration source, electromagnetic vibration source, and hydraulic vibration source, or to apply the load to the powerhouse and calculate the response of the concrete structure.

    Many papers on fluid-structure interactions and related topics have been published in recent years (Zhang and Hisada 2001; Ohayon 2001; Dettmer and Peri? 2006; Matthias 2003;Anwer et al. 2009; Mole et al. 2008). At present, comparatively little investigation has been conducted on this kind of fluid-solid coupling problem, which takes the coupling effects of turbulence and the structure into consideration. Therefore, it is necessary to use the fluid-structure coupling numerical method to analyze the response of the powerhouse and turbulence in the flow passage. This has significance to the vibration analysis of the powerhouse structure.

    Using a sliding mesh to deal with relative mesh movement and guarantee the continuity of physical variables, a coupling model of the powerhouse concrete structure, hydraulic turbine, and surrounding fluid was established by applying the shear stress transport (SST)model to the Reynolds equation in the fluid zone and using the Newmark method to solve the oscillation equations in the solid zone. The effects of fluid-structure interactions are considered by applying the kinematic and dynamic conditions to fluid-structure interfaces(FSI). Based on the characteristics of the hydropower house, a three-dimensional numerical model has been established.

    2 Analytical theory and method

    2.1 Basic equations

    The motion of a continuous fluid medium is governed by the principles of classical mechanics and thermodynamics. In a fixed Cartesian coordinate frame of reference, they can be expressed in conservative forms for mass and momentum, respectively (Ge and Sotiropoulos 2007):

    where t is the time, ρfis the fluid density, v is the fluid velocity vector, ffis the body force vector of the fluid medium, τfis the fluid stress tensor, and ? is the Hamilton operator.Leschnizer (1995)utilized the SST model to simulate turbulent flow in the passage of a hydropower house.

    Linear elastic vibration equations (Attila 2010)for solids can be written as

    where τsis the solid stress tensor, fsis the solid body force,is the particle acceleration vector in the solid zone, ρsis the solid density, and LTis the differential operator, which can be expressed as

    2.2 Kinematic and dynamic conditions at FSI

    The fundamental conditions applied to the FSI (Treyssede and Ben Tahar 2008; Van Vosse et al. 2003)are the kinematic condition (or displacement compatibility),

    and the dynamic condition (or traction equilibrium),

    Otherwise, if a slip condition is applied:

    The fluid and solid models are coupled as follows: The fluid nodal positions on the FSI are determined by the kinematic conditions. The displacements of the other fluid nodes are determined automatically by the program to preserve the initial mesh quality (Chen and Su 2009). The governing equations of fluid flow in arbitrary Lagrangian-Eulerian formulations are then solved. In steady-state analyses, the mesh velocities are always set to zero even when the fluid nodal displacements are updated. Accordingly, the fluid velocities at the FSI are zero.

    According to the dynamic conditions, on the other hand, the fluid traction is integrated into fluid force along the FSI and exerted onto the structure node (Chen and Su 2009):

    where hdis the virtual quantity of the solid displacement, F (t)is the fluid stress vector at the FSI, and dS is the increment of area of the FSI.

    For full Reynolds time-averaged N-S equations, the standard SIMPLE algorithm is used in pressure-velocity coupling. The fluid governing equation is discretized based on the finite volume method, the second-order upwind discretization scheme is adopted for the convection term, and the Newmark method is used for the solution of vibration equations.

    2.3 Computational conditions and finite element model

    A hydropower house in China was used as an example in this study. The hydropower house is 176.76 m long, 54.70 m wide, and 63.90 m high. The turbine installation elevation for the hydropower station is 1 299.15 m, the main equipment room elevation is 1 276.15 m, the erecting bay elevation is 1 312.40 m, and the base for the house is constructed on the bedrock.The hydropower house profile is shown in Fig. 1.

    The concrete structure and turbine of the powerhouse and the turbulence were modeled.The meshes are shown in Fig. 2. The concrete structure includes a draft tube, a dynamo floor,and a turbine floor. The concrete structure was divided into 43 996 elements. The flow passage is composed of a spiral case, a stay vane, and guide vanes. Turbulence in the flow passage was divided into 300 928 fluid elements. The powerhouse structures close to the bedrock were fixed in this model. Concrete and steel were the main materials in the calculation process and their parameters are shown in Table 1. The rotational speed of the hydraulic turbine was 100 r/min, the rotation frequency was fn= 1.67 Hz, the velocity in the spiral case inlet was 6.40 m/s, the time step was set at 0.002 s, and there were 3 000 steps in the calculation.

    Fig. 1 Profile of hydropower house (Unit: m)

    Fig. 2 Mesh of hydropower house

    Table 1 Material parameters

    The sliding mesh boundary condition was employed to allow meshes in different fluid regions to move relative to each other while the physical variables across the sliding interface remained continuous. The fluid-solid coupling effect was taken into account through the kinematic condition and the dynamic condition at the FSI.

    3 Analysis of turbulence velocity and pressure

    Fig. 3 and Fig. 4 show the velocity vector and pressure distribution of fluid in the flow passage at 4.80 s. The flow velocity is relatively high at the inlet of the hydraulic turbine, and the velocity decreases gradually through the hydraulic turbine runner. The fluid pressure is very high in the volute and decreases gradually in the direction of flow. The water moves through the hydraulic turbine runner and enters the draft tube. There is negative pressure in the draft tube. Part of the fluid kinetic energy is recovered by the draft tube.

    Fig. 3 Velocity vector of fluid in flow passage at t = 4.80 s

    Fig. 4 Pressure distribution of fluid in flow passage at t = 4.80 s

    The time history of fluid pressure and its spectrum analysis at the stay ring are shown in Fig. 5. The main frequency of fluid pressure included a low frequency of 0.42 Hz, an intermediate frequency of 20.02 Hz, and a high frequency of 40.03 Hz. Analysis shows that the low frequency of 0.42 Hz was equal to the frequency of the vortex rope in the draft tube,the influence of the vortex rope was relatively weak, and the amplitude of pressure was only 1 734 Pa. The intermediate frequency of 20.02 Hz was 12 times higher than the rotational frequency of the hydraulic turbine, and equal to the frequency of the hydraulic turbine blade.Likewise, the high frequency of 40.03 Hz was 24 times higher than the rotational frequency of the hydraulic turbine. It was equal to the rotational frequency of a guide blade.

    Fig. 5 Time history of fluid pressure and its spectrum analysis at stay ring

    4 Vibration analysis of powerhouse structure

    The vibrations of the dynamo floor were studied. Fig. 6 shows the band plot of displacement extreme, velocity extreme, and acceleration extreme of the dynamo floor, as well as the dynamo floor’s detection points. From the band plot we see that the maximum responses all occur on the dynamo floor. The maximum displacement was 0.008 mm, which is less than the regulation specification of 0.200 mm. The maximum velocity was 2.71 mm/s,which is less than the regulation specification of 5.00 mm/s. The maximum acceleration was 0.62 m/s2, which is less than the regulation specification of 1.00 m/s2. It can be concluded that the vibration met corresponding specifications and hydraulic vibration did not cause serious damage.

    In order to understand vibration response in the time domain and analyze spectrum characteristics and influences of the vibration sources, Figs. 7 through 9 show the displacement,velocity, and acceleration curves at detection point 4 in the time domain and their spectrum analysis. The main frequency of the displacement spectrum analysis at detection point 4 (Fig. 7)included an intermediate frequency of 20.02 Hz with an amplitude of 0.003 mm, which is equal to the rotational frequency of the hydraulic turbine blade, and a high frequency of 40.03 Hz with an amplitude 0.007 mm, which is equal to the rotational frequency of the guide blade. Thus, the floor vibration is mainly caused by static and dynamic disturbances of the hydraulic turbine blade.

    Fig. 6 Band plot of displacement, velocity, and acceleration extremes and detection points on dynamo floor

    Fig. 7 Time history of displacement and its spectrum analysis at detection point 4

    The main frequency of the velocity spectrum analysis at detection point 4 (Fig. 8)included a frequency of 80.00 Hz with an amplitude of 0.70 mm/s, which is equal to 48 times the rotational frequency of the hydraulic turbine, and a frequency of 60.00 Hz with an amplitude of 0.27 mm/s, which is equal to 36 times the rotational frequency of the hydraulic turbine. Thus, the floor velocity vibration is mainly caused by frequency doubling of the pressure fluctuations in the turbine runner, and the dynamic and static disturbances of the hydraulic turbine are the main source of vibration.

    The time history of acceleration and its spectrum analysis at detection point 4 are shown in Fig. 9. The acceleration amplitude at the frequency of 80.00 Hz, 48 times the rotational frequency of the hydraulic turbine, was relatively large, reaching 0.18 m/s2. In comparison with the acceleration amplitude at 80.00 Hz, the other acceleration amplitudes were smaller and distributed more widely. The analysis demonstrates that the acceleration response is the same as the velocity response, and both are caused by frequency doubling of pressure fluctuations in the turbine runner. The response of acceleration is distributed more widely than the velocity response. For certain calculation conditions, the low-frequency vortex rope does not have a dramatic influence on the vibration, so this study does not analyze this influence in detail. The model also does not consider the vibration energy pathway due to its excessive computation requirement.

    Fig. 8 Time history of velocity and its spectrum analysis at detection point 4

    Fig. 9 Time history of acceleration and its spectrum analysis at detection point 4

    5 Conclusions

    According to the characteristics of the hydropower house, a three-dimensional numerical model has been established. Numerical simulation of turbulent flow through the whole flow passage of the hydropower station and concrete structure vibration analysis in the time domain were carried out with the model. Some conclusions are drawn as follows:

    (1)Considering the effect of coupling the turbulence and the powerhouse structure, the time history response of both turbulent flow through the whole flow passage and powerhouse structure vibration were determined. This is a new attempt at vibration analysis of the hydropower house.

    (2)Analysis shows that the maximum responses all occurred on the dynamo floor, and that the vibrations met corresponding specifications for hydraulic vibration and did not cause serious damage.

    (3)It is proven with the spectrum analysis that floor vibration is mainly caused by static and dynamic disturbances of the hydraulic turbine blade.

    Anwer, S. F., Hasan, N., Sanghi, S., and Mukherjee, S. 2009. Computation of unsteady flows with moving boundaries using body fitted curvilinear moving grids. Computers and Structures, 87(11-12), 691-700.[doi:10.1016/j.compstruc.2008.11.002]

    Attila, P. 2010. Efficient solution of a vibration equation involving fractional derivatives. International Journal of Non-Linear Mechanics, 45(2), 169-175. [doi:10.1016/j.ijnonlinmec.2009.10.006]

    Chen, Y. H., and Su, Y. P. 2009. Application of ADINA to modeling of fluid-structure interaction in buried liquid-conveying pipeline. 2009 Second International Conference on Information and Computing Science,288-291. [doi:10.1109/ICIC.2009.383]

    Dettmer, W., and Peri?, D. 2006. A computational framework for fluid-structure interaction: Finite element formulation and applications. Computer Methods in Applied Mechanics and Engineering, 195(41-43),5754-5779. [doi:10.1016/j.cma.2005.10.019]

    Ge, L., and Sotiropoulos, F. 2007. A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex innersed boundaries. Journal of Computational Physics, 225(2), 1782-1809. [doi:10.1016/j.jcp.2007.02.017]

    Leschnizer, M. A. 1995. Computation of aerodynamic flows with turbulence-transport models based on second-moment closure. Computers and Fluids, 24(4), 377-392.

    Matthias, H. 2003. An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 193(1-2), 1-23. [doi:10.1016/j.cma.2003.09.006]

    Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. [doi:10.2514/3.12149]

    Mole, N., Bobovnik, G., Kutin, J., ?tok, B., and Bajsi?, I. 2008. An improved three-dimensional coupled fluid-structure model for Coriolis flowmeters. Journal of Fluids and Structures, 24(4), 559-575. [doi:10.1016/j.jfluidstructs.2007.10.004]

    Ohayon, R. 2001. Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Computer Methods in Applied Mechanics and Engineering, 190(24-25),3009-3019. [doi:10.1016/S0045-7825(00)00379-0]

    Qian, Z. D., Yang, J. D., and Huai, W. X. 2007. Numerical simulation and analysis of pressure pulsation in Francis hydraulic turbine with air admission. Journal of Hydrodynamics, Series B, 19(4), 467-472. [doi:10.1016/S1001-6058(07)60141-3]

    Ran, H. J., Luo, X. W., Zhang, Y., Zhuang, B. T., and Xu, H. Y. 2008. Numerical simulation of the unsteady flow in a high-head pump turbine and the runner improvement. Proceedings of the ASME Fluids Engineering Division Summer Conference, 1115-1123. New York: American Society of Mechanical Engineers.

    Shangguan, W. B., and Lu, Z. H. 2004. Modelling of a hydraulic engine mount with fluid-structure interaction finite element analysis. Journal of Sound and Vibration, 275(1-2), 193-221. [doi:10.1016/S0022-460X(03)00799-5]

    Treyssede, F., and Ben Tahar, M. 2009. Jump conditions for unsteady small perturbations at fluid-solid interfaces in the presence of initial flow and prestress. Wave Motion, 46(2), 155-167. [doi:10.106/j.wavemoti.2008.10.003]

    Van Vosse, F. N., Hart, J., Van Oijen, C. H. G. A., Bessems, D., Gunther, T. W. M., Segal, A., Wolters, B. J. B.M., Stijnen, J. M. A., and Baaijens, F. P. T. 2003. Finite-element-based computational methods for cardiovascular fluid-structure interaction. Journal of Engineering Mathematics, 47(3-4), 335-368. [doi:10.1023/B:ENGI.0000007985.17625.43]

    Yang, J. M., and Cao, S. L. 1998. Three dimensional turbulent flow simulation through a hydraulic turbine draft tube. Journal of Hydroelectric Engineering, (1), 85-92. (in Chinese)

    Zhang, C. H., and Zhang, Y. L. 2009. Nonlinear dynamic analysis of the Three Gorge Project powerhouse excited by pressure fluctuation. Journal of Zhejiang University-Science A, 10(9), 1231-1240. [doi:10.1631/jzus.A0820478]

    Zhang, Q., and Hisada, T. 2001. Analysis of fluid-structure interaction problems with structural buckling and large domain change by ALE finite element method. Computer Methods in Applied Mechanics and Engineering, 190(48), 6341-6357. [doi:10.1016/S0045-7825(01)00231-6]

    亚洲成人免费av在线播放| 欧洲精品卡2卡3卡4卡5卡区| 十八禁人妻一区二区| 黑丝袜美女国产一区| 亚洲熟妇熟女久久| 亚洲精品中文字幕在线视频| 成人av一区二区三区在线看| 精品国产亚洲在线| 少妇 在线观看| 黑人巨大精品欧美一区二区mp4| 女性被躁到高潮视频| 老司机亚洲免费影院| 国产精品99久久99久久久不卡| 欧美日韩av久久| 欧美精品啪啪一区二区三区| 亚洲自偷自拍图片 自拍| www日本在线高清视频| 国产精品一区二区精品视频观看| 国产乱人伦免费视频| 国产精品久久久久成人av| 91九色精品人成在线观看| 欧美日韩国产mv在线观看视频| 日日夜夜操网爽| 亚洲色图综合在线观看| 久久热在线av| 国产精品一区二区免费欧美| 欧美国产精品一级二级三级| 9色porny在线观看| 国产在线精品亚洲第一网站| 久久影院123| 久久热在线av| 黄色a级毛片大全视频| av一本久久久久| 伦理电影免费视频| 国产精品永久免费网站| www.熟女人妻精品国产| 黑人欧美特级aaaaaa片| www.熟女人妻精品国产| 国产精品免费大片| 男女高潮啪啪啪动态图| 正在播放国产对白刺激| 久久草成人影院| 国产亚洲欧美精品永久| 丰满人妻熟妇乱又伦精品不卡| 50天的宝宝边吃奶边哭怎么回事| 少妇猛男粗大的猛烈进出视频| 在线观看免费高清a一片| 亚洲色图综合在线观看| 一区福利在线观看| 成人精品一区二区免费| 99热国产这里只有精品6| 叶爱在线成人免费视频播放| 精品亚洲成a人片在线观看| 精品卡一卡二卡四卡免费| x7x7x7水蜜桃| 国产精品一区二区在线观看99| 男人舔女人的私密视频| 韩国av一区二区三区四区| e午夜精品久久久久久久| 少妇裸体淫交视频免费看高清 | 亚洲精品一二三| 国产精品98久久久久久宅男小说| 欧美成人免费av一区二区三区 | 中亚洲国语对白在线视频| 亚洲人成77777在线视频| 免费女性裸体啪啪无遮挡网站| 亚洲七黄色美女视频| 亚洲精品自拍成人| 中文欧美无线码| 69精品国产乱码久久久| 精品一区二区三区四区五区乱码| 两人在一起打扑克的视频| 亚洲成国产人片在线观看| 人妻久久中文字幕网| 高清在线国产一区| 精品国产乱子伦一区二区三区| 黄色毛片三级朝国网站| 香蕉久久夜色| 国产精品99久久99久久久不卡| 国产亚洲精品久久久久久毛片 | 电影成人av| 黄片大片在线免费观看| 老司机午夜十八禁免费视频| 成熟少妇高潮喷水视频| 91老司机精品| 热re99久久国产66热| 欧美激情久久久久久爽电影 | 午夜精品在线福利| 精品无人区乱码1区二区| 中文字幕色久视频| 国内久久婷婷六月综合欲色啪| 最新美女视频免费是黄的| 中文字幕高清在线视频| 高清欧美精品videossex| 亚洲欧美精品综合一区二区三区| 婷婷成人精品国产| 色在线成人网| 午夜福利一区二区在线看| 精品人妻熟女毛片av久久网站| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区激情视频| 男人舔女人的私密视频| 精品亚洲成国产av| 两个人免费观看高清视频| 天堂√8在线中文| 亚洲av第一区精品v没综合| 国产色视频综合| 免费在线观看亚洲国产| 欧美中文综合在线视频| 黄色怎么调成土黄色| 真人做人爱边吃奶动态| 无限看片的www在线观看| 亚洲五月色婷婷综合| 欧美日韩亚洲高清精品| 国产成人系列免费观看| 久久中文看片网| 亚洲久久久国产精品| 极品教师在线免费播放| 久久久久国内视频| 亚洲人成电影免费在线| 亚洲成a人片在线一区二区| 高清av免费在线| 精品久久久久久久久久免费视频 | 香蕉国产在线看| 亚洲人成77777在线视频| 黄片小视频在线播放| 精品人妻1区二区| 精品少妇一区二区三区视频日本电影| 一区二区三区国产精品乱码| 国产片内射在线| 可以免费在线观看a视频的电影网站| 青草久久国产| 亚洲av第一区精品v没综合| 亚洲久久久国产精品| 国产淫语在线视频| 午夜福利视频在线观看免费| 国产一区二区三区视频了| 欧美国产精品一级二级三级| 高潮久久久久久久久久久不卡| 搡老熟女国产l中国老女人| 国产视频一区二区在线看| 国产精品亚洲一级av第二区| 91成人精品电影| 黄片小视频在线播放| 丝袜美腿诱惑在线| 桃红色精品国产亚洲av| 国产区一区二久久| 9色porny在线观看| 免费日韩欧美在线观看| 12—13女人毛片做爰片一| 两个人免费观看高清视频| 黑丝袜美女国产一区| 超色免费av| 久久草成人影院| 久久 成人 亚洲| 精品福利观看| 成人国产一区最新在线观看| 少妇被粗大的猛进出69影院| 亚洲人成77777在线视频| 国产成人影院久久av| 国产成人欧美在线观看 | 人妻 亚洲 视频| 欧美日韩亚洲综合一区二区三区_| 91国产中文字幕| 国产精品 欧美亚洲| 咕卡用的链子| 超碰97精品在线观看| 亚洲片人在线观看| 久久久久久久午夜电影 | 亚洲熟女精品中文字幕| 欧美成人免费av一区二区三区 | 好男人电影高清在线观看| 国产精品国产av在线观看| 亚洲av电影在线进入| 欧美色视频一区免费| √禁漫天堂资源中文www| 色综合婷婷激情| 激情视频va一区二区三区| 亚洲第一av免费看| 国产精品.久久久| 一边摸一边抽搐一进一小说 | 超碰97精品在线观看| 亚洲国产看品久久| videosex国产| 青草久久国产| 欧美另类亚洲清纯唯美| 99国产精品99久久久久| 中文亚洲av片在线观看爽 | bbb黄色大片| 人人澡人人妻人| 亚洲精品成人av观看孕妇| 日本欧美视频一区| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| av天堂久久9| 在线观看免费高清a一片| 欧美亚洲日本最大视频资源| 一区福利在线观看| 狠狠婷婷综合久久久久久88av| x7x7x7水蜜桃| 国产1区2区3区精品| 12—13女人毛片做爰片一| 深夜精品福利| 久久久久久久久久久久大奶| 精品久久蜜臀av无| 久久精品国产综合久久久| 免费在线观看影片大全网站| 久久精品国产清高在天天线| 亚洲精品中文字幕一二三四区| x7x7x7水蜜桃| 怎么达到女性高潮| 水蜜桃什么品种好| 国产真人三级小视频在线观看| 亚洲av电影在线进入| 午夜精品久久久久久毛片777| 正在播放国产对白刺激| 下体分泌物呈黄色| 一级a爱片免费观看的视频| 女性生殖器流出的白浆| 91国产中文字幕| av一本久久久久| 激情在线观看视频在线高清 | 黄色片一级片一级黄色片| 黑人欧美特级aaaaaa片| 亚洲成人免费电影在线观看| 久久精品aⅴ一区二区三区四区| 男女下面插进去视频免费观看| 18禁裸乳无遮挡动漫免费视频| 中文字幕精品免费在线观看视频| 十八禁高潮呻吟视频| 欧美日韩亚洲综合一区二区三区_| bbb黄色大片| 王馨瑶露胸无遮挡在线观看| 91字幕亚洲| 日韩熟女老妇一区二区性免费视频| 91国产中文字幕| 日韩欧美在线二视频 | 久久久久久久午夜电影 | 国产极品粉嫩免费观看在线| 最近最新中文字幕大全电影3 | 看黄色毛片网站| 午夜精品国产一区二区电影| 天堂动漫精品| 两性夫妻黄色片| 久久人人爽av亚洲精品天堂| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 电影成人av| 午夜成年电影在线免费观看| 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 99热网站在线观看| 亚洲av片天天在线观看| 亚洲全国av大片| 19禁男女啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久免费视频了| 亚洲精品中文字幕在线视频| 日本精品一区二区三区蜜桃| 超色免费av| 午夜免费鲁丝| 国产高清视频在线播放一区| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 一级毛片女人18水好多| 婷婷成人精品国产| 天堂√8在线中文| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 午夜视频精品福利| 国产精品九九99| 国产熟女午夜一区二区三区| 淫妇啪啪啪对白视频| 悠悠久久av| 国产精品.久久久| 久久久久久亚洲精品国产蜜桃av| 99久久99久久久精品蜜桃| 精品人妻1区二区| 久久中文字幕一级| av网站在线播放免费| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av香蕉五月 | 国产精品1区2区在线观看. | 这个男人来自地球电影免费观看| 久久ye,这里只有精品| 国产精品98久久久久久宅男小说| 久久精品熟女亚洲av麻豆精品| 老鸭窝网址在线观看| 亚洲情色 制服丝袜| 女人被躁到高潮嗷嗷叫费观| 大香蕉久久网| 无人区码免费观看不卡| 国产成+人综合+亚洲专区| 亚洲第一av免费看| 精品福利永久在线观看| av一本久久久久| 妹子高潮喷水视频| 美女高潮到喷水免费观看| 99久久精品国产亚洲精品| 无限看片的www在线观看| 午夜福利乱码中文字幕| 最新的欧美精品一区二区| 脱女人内裤的视频| 天天躁夜夜躁狠狠躁躁| 精品久久久久久久毛片微露脸| 亚洲成国产人片在线观看| 欧美日韩av久久| 亚洲成人国产一区在线观看| 国产av又大| 黄片播放在线免费| 婷婷成人精品国产| 国产亚洲欧美在线一区二区| 亚洲人成伊人成综合网2020| 咕卡用的链子| 国产成人系列免费观看| 亚洲国产精品一区二区三区在线| 久久草成人影院| 欧美成人午夜精品| av有码第一页| av片东京热男人的天堂| 高潮久久久久久久久久久不卡| 中文字幕制服av| 中文字幕另类日韩欧美亚洲嫩草| 国产男女内射视频| 精品国产超薄肉色丝袜足j| 久久香蕉国产精品| 99久久精品国产亚洲精品| 不卡av一区二区三区| 久久久精品免费免费高清| 最近最新免费中文字幕在线| 精品久久久久久久久久免费视频 | 中文字幕av电影在线播放| 亚洲伊人色综图| 51午夜福利影视在线观看| 久久午夜综合久久蜜桃| 悠悠久久av| 午夜福利在线免费观看网站| 久久精品国产99精品国产亚洲性色 | 91大片在线观看| 国产欧美日韩一区二区三区在线| 国产男女超爽视频在线观看| 国产成人免费观看mmmm| 成年版毛片免费区| 国产精品二区激情视频| 亚洲成a人片在线一区二区| 亚洲专区国产一区二区| 十八禁网站免费在线| 国产单亲对白刺激| 国产亚洲一区二区精品| 叶爱在线成人免费视频播放| 日韩欧美在线二视频 | 丝袜人妻中文字幕| 国产精品电影一区二区三区 | 亚洲免费av在线视频| 老司机亚洲免费影院| 精品乱码久久久久久99久播| 国产欧美日韩综合在线一区二区| 国产在视频线精品| 亚洲第一青青草原| 欧美日韩一级在线毛片| 欧美 亚洲 国产 日韩一| 久久天堂一区二区三区四区| 国产欧美日韩综合在线一区二区| 中文字幕精品免费在线观看视频| 精品国产美女av久久久久小说| 国产欧美日韩综合在线一区二区| 老司机亚洲免费影院| 99精品欧美一区二区三区四区| 国产成人av教育| 久久国产精品影院| 亚洲熟妇熟女久久| 女人精品久久久久毛片| 国产精品免费视频内射| 女性生殖器流出的白浆| 久久久久视频综合| 动漫黄色视频在线观看| 女性生殖器流出的白浆| 久久久久久亚洲精品国产蜜桃av| 国产精品国产高清国产av | 99久久精品国产亚洲精品| 欧美激情久久久久久爽电影 | 午夜老司机福利片| 亚洲精品乱久久久久久| 中文字幕精品免费在线观看视频| 天天影视国产精品| 午夜福利在线观看吧| 黄色怎么调成土黄色| 婷婷精品国产亚洲av在线 | 中文字幕av电影在线播放| av线在线观看网站| 欧美日韩亚洲综合一区二区三区_| 免费久久久久久久精品成人欧美视频| 一区二区三区激情视频| 午夜福利在线免费观看网站| 熟女少妇亚洲综合色aaa.| 在线观看www视频免费| 天天添夜夜摸| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美日韩在线播放| 男女之事视频高清在线观看| 亚洲精品国产一区二区精华液| 婷婷成人精品国产| 性色av乱码一区二区三区2| 黑人欧美特级aaaaaa片| 日韩制服丝袜自拍偷拍| 麻豆av在线久日| 亚洲成人手机| 国产又色又爽无遮挡免费看| 国产色视频综合| 看黄色毛片网站| 在线观看免费视频网站a站| 久久午夜亚洲精品久久| 黑人操中国人逼视频| 精品一区二区三卡| 国产av又大| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 色老头精品视频在线观看| 亚洲精品美女久久久久99蜜臀| 日韩一卡2卡3卡4卡2021年| 国产精品98久久久久久宅男小说| 久久久水蜜桃国产精品网| 久久久久精品国产欧美久久久| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 亚洲av成人一区二区三| 国产高清激情床上av| 国产极品粉嫩免费观看在线| 亚洲午夜精品一区,二区,三区| 麻豆国产av国片精品| 18禁裸乳无遮挡动漫免费视频| 成人特级黄色片久久久久久久| 国产男女超爽视频在线观看| 国产人伦9x9x在线观看| av在线播放免费不卡| 国产精品秋霞免费鲁丝片| 亚洲熟女毛片儿| 亚洲av第一区精品v没综合| 啦啦啦视频在线资源免费观看| 久热这里只有精品99| 两人在一起打扑克的视频| 午夜两性在线视频| 久久中文字幕人妻熟女| 国产精品一区二区免费欧美| 国产真人三级小视频在线观看| 久久性视频一级片| 亚洲欧美日韩高清在线视频| 亚洲成人免费av在线播放| 久久性视频一级片| 欧美日韩av久久| 国产精品.久久久| 两人在一起打扑克的视频| 老司机深夜福利视频在线观看| 欧美午夜高清在线| 国产精品一区二区在线观看99| 热99re8久久精品国产| 国产精品一区二区在线不卡| 啦啦啦在线免费观看视频4| 国产精品 欧美亚洲| 最近最新中文字幕大全电影3 | 99国产精品一区二区三区| 亚洲av美国av| 熟女少妇亚洲综合色aaa.| 午夜影院日韩av| 久久这里只有精品19| 黄色 视频免费看| 日韩大码丰满熟妇| 手机成人av网站| 叶爱在线成人免费视频播放| 日日摸夜夜添夜夜添小说| 国产蜜桃级精品一区二区三区 | 好男人电影高清在线观看| 91国产中文字幕| 国产精品98久久久久久宅男小说| 精品国产乱码久久久久久男人| 怎么达到女性高潮| 人妻 亚洲 视频| 校园春色视频在线观看| 亚洲欧美色中文字幕在线| 国产精品秋霞免费鲁丝片| 每晚都被弄得嗷嗷叫到高潮| 国产黄色免费在线视频| www日本在线高清视频| av有码第一页| 免费观看精品视频网站| 欧美黄色片欧美黄色片| 午夜成年电影在线免费观看| 国产精品久久久av美女十八| av福利片在线| 亚洲精品国产区一区二| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 国产精品自产拍在线观看55亚洲 | 一本一本久久a久久精品综合妖精| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久av美女十八| 精品国产一区二区久久| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 水蜜桃什么品种好| 69av精品久久久久久| 欧美精品啪啪一区二区三区| 91av网站免费观看| 男男h啪啪无遮挡| 女人久久www免费人成看片| 人妻丰满熟妇av一区二区三区 | 国产av又大| 国产精品久久久久久精品古装| av天堂在线播放| 亚洲五月婷婷丁香| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片 | 国产精品乱码一区二三区的特点 | 欧美不卡视频在线免费观看 | 亚洲成a人片在线一区二区| 午夜激情av网站| 日韩欧美一区二区三区在线观看 | 亚洲免费av在线视频| 国产视频一区二区在线看| 女人久久www免费人成看片| 国产精品亚洲av一区麻豆| 亚洲精品成人av观看孕妇| 国产三级黄色录像| 91麻豆av在线| 老汉色∧v一级毛片| 亚洲精品国产精品久久久不卡| 91麻豆av在线| 欧美亚洲日本最大视频资源| 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 国产精品影院久久| 亚洲五月天丁香| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| 波多野结衣一区麻豆| 欧美人与性动交α欧美软件| 国产蜜桃级精品一区二区三区 | 叶爱在线成人免费视频播放| 欧美中文综合在线视频| 亚洲精品在线美女| 日韩视频一区二区在线观看| 国产亚洲欧美98| 亚洲精品成人av观看孕妇| 91成年电影在线观看| 久久青草综合色| 天堂√8在线中文| 亚洲色图综合在线观看| 国产精品九九99| 热re99久久国产66热| 五月开心婷婷网| 黄色毛片三级朝国网站| 亚洲熟妇熟女久久| 亚洲精品av麻豆狂野| 国产一区二区激情短视频| 国产激情欧美一区二区| 欧美日本中文国产一区发布| 亚洲欧美日韩高清在线视频| 亚洲精品美女久久av网站| 欧美最黄视频在线播放免费 | 国产在线一区二区三区精| 人人妻人人澡人人看| 老熟妇仑乱视频hdxx| 精品国产一区二区久久| 韩国精品一区二区三区| 国产成人一区二区三区免费视频网站| 丝瓜视频免费看黄片| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品第一综合不卡| 国产亚洲欧美98| 国产真人三级小视频在线观看| 美女扒开内裤让男人捅视频| 日韩欧美一区视频在线观看| 黑人猛操日本美女一级片| 国产高清激情床上av| 丰满迷人的少妇在线观看| 美女高潮喷水抽搐中文字幕| 亚洲情色 制服丝袜| 大香蕉久久网| 一级毛片高清免费大全| 天天添夜夜摸| 欧美人与性动交α欧美软件| 99国产精品一区二区蜜桃av | 一夜夜www| 亚洲色图av天堂| 久久精品91无色码中文字幕| 一区二区三区激情视频| 久久久国产成人免费| 亚洲全国av大片| aaaaa片日本免费| 免费黄频网站在线观看国产| 久久久国产成人精品二区 | 亚洲国产精品sss在线观看 | 女性生殖器流出的白浆| 亚洲欧美一区二区三区久久| 国内毛片毛片毛片毛片毛片| a级毛片黄视频| 久久久久国内视频| 亚洲精品中文字幕在线视频| 日本一区二区免费在线视频| 亚洲精品在线观看二区| 色综合欧美亚洲国产小说| 日韩欧美一区视频在线观看| 国产日韩一区二区三区精品不卡| 天堂动漫精品| 中文字幕高清在线视频| 免费女性裸体啪啪无遮挡网站| a级毛片黄视频| 99riav亚洲国产免费| 午夜精品国产一区二区电影| 亚洲成a人片在线一区二区| 日韩 欧美 亚洲 中文字幕|