• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessment of early-age cracking of high-performance concrete in restrained ring specimens

    2010-11-02 13:35:10QuangphuNGUYENLinhuaJIANGQiaoZHU
    Water Science and Engineering 2010年1期

    Quang-phu NGUYEN* , Lin-hua JIANG Qiao ZHU

    1. College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China

    2. Faculty of Civil Engineering, Water Resources University, Hanoi, Vietnam

    1 Introduction

    The volume of concrete changes due to autogenous, drying, or thermal shrinkage, with moisture variation, temperature variation, and chemical reaction of cementitious materials. When these volume changes are prevented, residual tensile stresses can develop inside the concrete material. If these residual stresses exceed the tensile strength of the concrete, cracking may occur.Since it is essential that water-retaining structures be free from cracks, the assessment of early-age cracking of concrete in this study will help to alleviate the problem to a great extent.

    ASTM C 157/C 157M-03 (ASTM Committee C09 2003)is frequently used to measure the free shrinkage of a concrete mixture. However, the free shrinkage is not sufficient for predicting whether cracking will occur. Weiss et al. (2000)suggested that the potential for cracking is dependent on the interaction of several factors, including the magnitude of free shrinkage, rate of shrinkage, elastic modulus, degree of restraint, and fracture toughness.

    Krause et al. (1996), AASHTO (2005), and ASTM Committee C09 (2004)used the restrained ring test to assess a mixture’s susceptibility to restrained shrinkage cracking. The restrained ring test has been used by numerous researchers to assess the potential for shrinkage cracking in concrete mixtures (Grzybowski and Shah 1990; Kolver 1994; Carlson and Reading 1988). The ring test consists of a concrete annulus that is cast around a steel ring. As the concrete ring dries, it shrinks. The steel ring restrains this shrinkage by reducing the tensile stress developed in the concrete. If these stresses are large enough, cracking may occur.

    The purpose of this study was to determine whether the stress development in the concrete ring can be used to provide quantitative information to assess the potential for cracking and analyze early-age cracking in restrained ring specimens.

    2 Residual stress development in restrained ring specimens due to uniform drying condition

    Weiss and Shah (2002)and Hossain and Weiss (2004)suggested that the rings could be allowed to dry from the top and bottom so that the moisture loss would be uniform along the radius of the specimen. Then, the actual residual stresses that develop in restrained ring specimens would be in the radial direction, providing for uniform drying shrinkage.

    Moon (2006)studied the shrink-fit approach to simulate the restraint of the concrete by the steel ring. The drying and autogenous shrinkage of the concrete causes the concrete ring to shrink. It can be assumed that there is a pressure acting on the outer surface of the steel ring that is equal to the pressure acting on the internal surface. To compensate for shrinkage, this pressure can be modified to compress the steel ring and expand the concrete ring. The shrink-fit approach is described in Fig. 1.

    Fig. 1 Geometry of ring to determine elastic response(Δ USH is the shrinkage of the ring, ΔUS is the shrinkage of steel, and ΔUC is the shrinkage of concrete)

    Weiss et al. (2000)computed the circumferential strain in the ring by dividing the radial displacement by the radius. The actual residual interface pressure (pr)can be computed as the pressure required to cause a strain that is equivalent to the measured strain in the steel (εs). The actual residual interface pressure at time t is calculated by Eq. (1)(Weiss and Fergeson 2001):

    where εs(t)is the strain in the steel at time t and can be obtained experimentally using strain gages on the inner surface of the steel ring; ESis the elastic modulus of the steel; and ROSand RISare the outer and inner radiuses of the steel ring, respectively. This pressure acts on the steel ring, and a pressure with the same value but in the opposite direction acts on the concrete ring, so that the stress distribution in the concrete ring can be determined using the following equation (Timoshenko and Goodier 1987; Hossain and Weiss 2004):

    where ROCis the outer radius of the concrete ring, and r is the radius coordinate. Substituting Eq. (1)into Eq. (2), we obtain

    3 Materials, experimental program and test methods

    3.1 Materials

    All materials used in the experiments were supplied by the Jiangsu Bote Advanced Materials Co., Ltd., including fine aggregate, portland cement (C)with a 42.5 grade from the Nanjing Jiangnan Cement Plant, some mineral admixtures (silica fume (SF), Class C fly ash(FA), and Grade 100 slag), and a high-range water-reducing admixture (PCA-I). The chemical composition and physical properties of these materials can be obtained from Nguyen et al.(2008).

    3.2 Experimental program

    To understand the influence of the mW/mBon the residual stress development and cracking in the restrained ring specimens, different mortar mixtures, mW/mB= 0.22 and 0.40, were prepared.Three mineral admixtures were used in this study: SF, FA, and slag. The mineral admixture that contained 25% FA and 25% slag was used for the mW/mB= 0.40 mixture, and the one that contained 15% SF and 25% FA was used for the mW/mB= 0.22 mixture. The contents of ingredients in the high-performance mortar mixture are summarized in Table 1.

    Table 1 Content of ingredients in high-performance mortar mixtures with different mW/mB

    3.3 Test methods

    The mixtures were mixed in a forced mixer. After mixing, the mixture was cast and placed in the molds, vibrated, and then sealed with a plastic film for 24 hours. The specimens were removed from the molds and stored thereafter at 20 ℃ and 50% relative humidity. The specimens were always connected with the data acquisition system in order to measure strain in the steel rings.

    The dimensions of the ring setup and the boundary conditions are shown in Fig. 2. The ring test used in this study was similar the AASHTO ring (AASHTO 2005), and the ring used in the experiments of Hossain (Hossain and Weiss 2004), with a 37.5 mm, 75 mm, or 112.5 mm thick mortar annulus cast around a steel ring, which had a steel wall thickness of 6 mm, 19 mm, or 30 mm. Four strain gages were attached at the mid-height of the inner surface of the steel ring and connected to the data acquisition system. Steel strain was monitored over time.The average strain information monitored by the strain gages was used to determine the residual stress development in mortar rings.

    Fig. 2 Geometry of ring specimen (Unit: mm)

    Mortar rings were sealed along their circumference. The boundary conditions were such that, by permitting drying from only the top and bottom surface of the ring, moisture could only be lost along one parallel plane. As the mortar shrunk, the steel ring was pressurized at the outer surface.

    4 Residual stress development and cracking in restrained ring specimens

    This study examined the influences of the steel thickness and the wall thickness on the residual stress of restrained ring specimens. The behavior of the rings only had one boundary condition: drying from the top and bottom of the ring. The steel thickness and mortar thickness were varied in two series. The strain that developed in the steel ring was measured; the maximum residual tensile stresses were calculated from Eq. (2), and then the age of cracking was determined.

    Two series of restrained ring specimens were prepared to study the effects of the steel thickness and mortar thickness on early-age stress development and cracking in restrained ring specimens. The study cases are listed in Table 2.

    Table 2 Steel thickness and mortar thickness in some study cases

    In the two series the mortar rings had an inner diameter of 300 mm and a height of 75 mm.In the first series, the mortar thickness used for all experiments was constant, and in the second series the steel thickness was constant.

    Thirty minutes after the first contact between cement and water, the strain data began to be measured every ten minutes. This was done to capture the early-age strains that developed during the first 24 hours. However, to prevent moisture loss from specimens, we sealed all of them after casting.

    The stresses in mortar rings were calculated using Eq. (2)for the two series. The stress development and age of cracking in the restrained ring specimens are shown in Fig. 3 and Fig. 4.

    Fig. 3 Stress development in restrained ring specimens for various steel thicknesses of series 1

    Fig. 4 Stress development in restrained ring specimens for various mortar thicknesses of series 2

    Fig. 3 shows the actual maximum residual stresses of series 1 that were computed for the two mixtures tested in this study (mW/mB= 0.22 and 0.40). The results show that with thicker steel rings the degree of restraint and the stress level were higher as compared with the thinner rings. The figures show the abrupt change of stress corresponding to age of cracking in the restrained ring specimens. The time the crack occurred coincided with the age of a visible crack in experiments. A higher rate of stress development was observed in the lower mW/mBmixture.Observing the specimens with thicker steel rings, we found that the crack appeared earlier than in specimens cast around thinner steel rings, despite having similar average stress.

    Fig. 4 illustrates the influence of the mortar wall thickness on stress development in the test specimens that dried from the top and bottom. The degree of restraint is the same (the steel thickness was 19 mm). The thinner mortar wall showed an earlier age of cracking. With thicknesses of 37.5 mm, 75 mm, and 112.5 mm, respectively, the ages of cracking were 3.4 days,8.0 days, and 9.8 days with the mW/mB= 0.22 mixture; and 7.1 days, 12.6 days, and 16 days with the mW/mB= 0.40 mixture. The thicker rings had slightly higher maximum stresses. Despite of different mortar wall thicknesses, it can be noticed that there is no dramatic difference between the maximum stresses that develop in the mortar rings.

    The age of cracking of restrained ring specimens for the two series are shown in Table 3.It can be seen that the ring specimens with thicker steel rings provide a higher degree of restraint, resulting in higher interface pressure and earlier cracking. With steel thickness of 6 mm, 19 mm, and 30 mm, the ages of cracking were, respectively, 12 days, 8 days, and 5.4 days with the mW/mB= 0.22 mixture; and 22.5 days, 12.6 days, and 7.1 days with the mW/mB= 0.40 mixture. Table 3 shows that the rings with a thicker mortar wall, cracked later. With the mW/mB=0.22 mixture, mortar wall thicknesses of 37.5 mm, 75 mm, and 112.5 mm cracked at 3.4 days,8.0 days, and 9.8 days, respectively; similarly, with the mW/mB= 0.40 mixture, the ages of cracking were 7.1 days, 12.6 days, and 16.0 days, respectively. The reason may be that the ring specimens have the same degree of restraint and different mortar wall thicknesses, so with the thicker mortar wall there are lower stresses in the concrete and a higher stress level is required to cause a crack in mortar ring specimens.

    Table 3 Age of cracking of restrained ring specimens for two series

    5 Conclusions

    The figures of stress development in the restrained ring specimens show that there was an abrupt change in stress corresponding to the age of cracking in the specimens, which coincided with the age a visible crack was observed. A higher rate of stresses development was observed in the lower mW/mBmixture.

    The thicker mortar rings had slightly higher maximum stresses. From the results we can see that with the decrease in the mW/mBmixture, the cracking happens earlier and the area of cracking is nearer to the inner surface of the mortar ring.

    The average strain information from the strain gages attached to the interface of ring tests can be applied as an input for finite element modeling (FEM)analysis. Restrained ring tests using FEM can be used to provide quantitative information on early-age stress development and early-age cracking of the concrete.

    American Association of State Highway and Transport Officials (AASHTO)2005. Standard Practice for Estimating the Crack Tendency of Concrete. Washington, D. C.

    American Society for Testing and Materials (ASTM)Committee C09. 2003. Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete (ASTM C 157/C 157M-03). West Conshohocken: ASTM International.

    American Society for Testing and Materials (ASTM)Committee C09. 2004. Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage (ASTM C 1581/C 1581M-04). West Conshohocken: ASTM International.

    Carlson, R. W., and Reading, T. J. 1988. Model study of shrinkage cracking in concrete building walls. ACI Structural Journal, 85(4), 395-404.

    Grzybowski, M., and Shah, S. P. 1990. Shrinkage cracking of fiber reinforced concrete. ACI Materials Journal.87(2), 138-148.

    Hossain, A. B, and Weiss, J. 2004. Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement and Concrete Composites, 26(5), 531-540.

    Kovler, K. 1994. Testing system for determining the mechanical behavior of early age concrete under restrained and free unixial shrinkage. Materials and Structures, 27(6), 324-330.

    Krause, P. D., Rogalla, E. A., Sherman, M. R., McDonald, D. B., Osborn, A. E. N., and Pfeifer, D. W. 1996.Transverse Cracking in Newly Constructed Bridge Decks. Washington D. C.: National Academy Press.

    Moon, H. J. 2006. Shrinkage, Residual Stress, and Cracking in Heterogeneous Materials. Ph. D. Dissertation.West Lafayette: Purdue University.

    Nguyen, Q. P., Jiang, L. H., Liu, J. P., Tian, Q., and Do, T. Q. 2008. Influence of shrinkage-reducing admixture on drying shrinkage and mechanical properties of high performance concrete. Water Science and Engineering, 1(4), 67-74.

    Timoshenko, S. P., and Goodier, J. N. 1987. Theory of Elasticity. New York: McGraw-Hill.

    Weiss, W. J., Yang, W., and Shah, S. P. 2000. Influence of specimen size and geometry on shrinkage cracking of rings. Journal of Engineering Mechanics, 126(1), 93-101. [doi:10.1061/(ASCE)0733-9399(2000)126:1(93)]

    Weiss, W. J., and Fergeson, S. 2001. Restrained Shrinkage Testing: The Impact of Specimen Geometry on Quality Control Testing for Material Performance Assessment: Creep, Shrinkage, and Durability Mechanic of Concrete and other Quasi-Brittle Materials. Ulm, F. J., Bazant, Z. P., and Wittman, F. H.,eds., 645-651.Cambridge MA,

    Weiss, W. J., and Shah, S. P. 2002. Restrained shrinkage cracking: the role of shrinkage reducing admixtures and specimen geometry. Materials and Structures, 35(2), 85-91.

    精品久久久久久久人妻蜜臀av | 精品国内亚洲2022精品成人| 搞女人的毛片| 大型黄色视频在线免费观看| 男女床上黄色一级片免费看| a在线观看视频网站| 十分钟在线观看高清视频www| 脱女人内裤的视频| 国产欧美日韩一区二区三区在线| 久久精品影院6| 日韩高清综合在线| xxx96com| 老司机靠b影院| 亚洲av成人不卡在线观看播放网| www日本在线高清视频| 99国产精品免费福利视频| 久久国产精品男人的天堂亚洲| 久久精品国产清高在天天线| 日本精品一区二区三区蜜桃| 亚洲精品久久成人aⅴ小说| 精品久久久久久,| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 国内精品久久久久久久电影| 国产熟女午夜一区二区三区| 久久久国产成人免费| 久久久精品国产亚洲av高清涩受| 女人精品久久久久毛片| 人妻久久中文字幕网| 日日夜夜操网爽| 亚洲在线自拍视频| 精品一区二区三区视频在线观看免费| 国产一区在线观看成人免费| 夜夜爽天天搞| 日韩欧美国产在线观看| 国产精品免费视频内射| 日韩欧美一区视频在线观看| 日韩高清综合在线| 国产精品一区二区免费欧美| 国产1区2区3区精品| 色哟哟哟哟哟哟| 亚洲av片天天在线观看| 天堂影院成人在线观看| 久久久久国内视频| 欧美成狂野欧美在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲一区高清亚洲精品| 又大又爽又粗| 久久亚洲真实| 两性夫妻黄色片| 老司机午夜十八禁免费视频| 日韩欧美在线二视频| 大码成人一级视频| 国产区一区二久久| 国产熟女午夜一区二区三区| 国产精品秋霞免费鲁丝片| √禁漫天堂资源中文www| 免费在线观看日本一区| 亚洲国产日韩欧美精品在线观看 | 国产激情欧美一区二区| 18禁观看日本| 亚洲性夜色夜夜综合| 久久这里只有精品19| 99国产精品99久久久久| 久久国产乱子伦精品免费另类| 国内毛片毛片毛片毛片毛片| 欧美日韩亚洲国产一区二区在线观看| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| bbb黄色大片| 久久国产亚洲av麻豆专区| 老熟妇仑乱视频hdxx| 久久久水蜜桃国产精品网| tocl精华| 亚洲国产欧美网| 日韩欧美国产一区二区入口| 丝袜美腿诱惑在线| 精品久久久久久成人av| 国产亚洲精品久久久久久毛片| 他把我摸到了高潮在线观看| 制服诱惑二区| 国产成人精品久久二区二区免费| 91成人精品电影| 久久中文字幕一级| 中出人妻视频一区二区| 女同久久另类99精品国产91| 91精品三级在线观看| 精品熟女少妇八av免费久了| 女人爽到高潮嗷嗷叫在线视频| 女人高潮潮喷娇喘18禁视频| 大型av网站在线播放| 亚洲精品国产一区二区精华液| 手机成人av网站| 国产精品久久久久久精品电影 | 欧美另类亚洲清纯唯美| 亚洲一区中文字幕在线| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 久久精品国产综合久久久| 免费看a级黄色片| 久久人妻福利社区极品人妻图片| 欧美成人免费av一区二区三区| 日韩精品中文字幕看吧| 亚洲成人国产一区在线观看| 欧美人与性动交α欧美精品济南到| 亚洲色图综合在线观看| 欧美一级毛片孕妇| 中文字幕精品免费在线观看视频| 在线永久观看黄色视频| 亚洲人成电影免费在线| 搞女人的毛片| 免费在线观看完整版高清| 成年人黄色毛片网站| 欧美一级a爱片免费观看看 | 亚洲精品在线美女| 亚洲中文av在线| 老司机午夜十八禁免费视频| 国产精品免费视频内射| 黄色视频不卡| 亚洲免费av在线视频| 757午夜福利合集在线观看| 一区福利在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 午夜福利欧美成人| 如日韩欧美国产精品一区二区三区| 看片在线看免费视频| 午夜免费成人在线视频| 狠狠狠狠99中文字幕| 免费久久久久久久精品成人欧美视频| 欧美亚洲日本最大视频资源| 91av网站免费观看| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| a在线观看视频网站| 一级毛片精品| 午夜福利欧美成人| 国产色视频综合| 久久 成人 亚洲| 国产av在哪里看| 一进一出好大好爽视频| 免费在线观看亚洲国产| 一级黄色大片毛片| 淫秽高清视频在线观看| 多毛熟女@视频| 色哟哟哟哟哟哟| 久久久精品欧美日韩精品| 老司机午夜福利在线观看视频| 一边摸一边抽搐一进一出视频| 精品乱码久久久久久99久播| 可以在线观看的亚洲视频| 搞女人的毛片| 亚洲男人天堂网一区| 非洲黑人性xxxx精品又粗又长| 亚洲自偷自拍图片 自拍| 少妇被粗大的猛进出69影院| x7x7x7水蜜桃| 少妇 在线观看| www.999成人在线观看| 美女 人体艺术 gogo| 黑人操中国人逼视频| 成人av一区二区三区在线看| 午夜福利高清视频| 在线观看一区二区三区| 久久精品国产清高在天天线| 久久久精品欧美日韩精品| 高清黄色对白视频在线免费看| 国产欧美日韩综合在线一区二区| 成人欧美大片| 亚洲精品国产区一区二| 波多野结衣高清无吗| 国产高清激情床上av| 亚洲第一av免费看| 亚洲熟妇熟女久久| 国产亚洲av嫩草精品影院| 成人18禁在线播放| 99国产精品一区二区三区| 国产男靠女视频免费网站| 日韩三级视频一区二区三区| 高清黄色对白视频在线免费看| 国产精品 国内视频| 精品午夜福利视频在线观看一区| 精品欧美一区二区三区在线| 中文字幕高清在线视频| 日韩精品青青久久久久久| 岛国视频午夜一区免费看| 久久亚洲真实| 久久午夜综合久久蜜桃| 午夜两性在线视频| 黄色女人牲交| 欧美日韩一级在线毛片| 美国免费a级毛片| 91麻豆精品激情在线观看国产| 操出白浆在线播放| www日本在线高清视频| 男女床上黄色一级片免费看| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| 亚洲精华国产精华精| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 精品一区二区三区四区五区乱码| 亚洲成人免费电影在线观看| 亚洲精品中文字幕一二三四区| 成人18禁高潮啪啪吃奶动态图| 97碰自拍视频| 99riav亚洲国产免费| 精品久久久久久久人妻蜜臀av | 非洲黑人性xxxx精品又粗又长| av免费在线观看网站| 国产午夜精品久久久久久| 久久草成人影院| 欧美亚洲日本最大视频资源| 1024视频免费在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区三区四区久久 | 97超级碰碰碰精品色视频在线观看| av免费在线观看网站| 午夜福利免费观看在线| 亚洲情色 制服丝袜| 国产三级在线视频| 69精品国产乱码久久久| 亚洲一区中文字幕在线| 国内毛片毛片毛片毛片毛片| 50天的宝宝边吃奶边哭怎么回事| 精品一品国产午夜福利视频| 免费不卡黄色视频| 国产视频一区二区在线看| 一个人免费在线观看的高清视频| 亚洲情色 制服丝袜| 成人三级黄色视频| 三级毛片av免费| 国产乱人伦免费视频| 国产精品九九99| 亚洲精品国产一区二区精华液| 18禁观看日本| 亚洲色图 男人天堂 中文字幕| 无限看片的www在线观看| 日韩欧美三级三区| 美女扒开内裤让男人捅视频| 国产男靠女视频免费网站| 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av电影不卡..在线观看| 欧美日本亚洲视频在线播放| 在线观看日韩欧美| 一区二区三区激情视频| 麻豆av在线久日| 亚洲国产日韩欧美精品在线观看 | 国产熟女午夜一区二区三区| 亚洲中文字幕日韩| 久久久久久久久久久久大奶| 99国产精品一区二区三区| 国产一区二区在线av高清观看| 99久久综合精品五月天人人| 亚洲精品在线美女| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美日韩另类电影网站| 亚洲国产精品成人综合色| 波多野结衣巨乳人妻| av视频免费观看在线观看| 性少妇av在线| 日韩免费av在线播放| 丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 国产午夜精品久久久久久| 在线播放国产精品三级| 村上凉子中文字幕在线| 麻豆av在线久日| 免费观看精品视频网站| 激情在线观看视频在线高清| 精品久久久久久成人av| 久久青草综合色| 久久久久久人人人人人| 成人免费观看视频高清| 久99久视频精品免费| 九色国产91popny在线| 妹子高潮喷水视频| 99在线人妻在线中文字幕| 国产麻豆成人av免费视频| 一本大道久久a久久精品| 国产真人三级小视频在线观看| av网站免费在线观看视频| 在线播放国产精品三级| 老司机靠b影院| 国产免费av片在线观看野外av| 久久久国产精品麻豆| 国产精品秋霞免费鲁丝片| 窝窝影院91人妻| 成年女人毛片免费观看观看9| 热re99久久国产66热| www日本在线高清视频| 在线观看www视频免费| 午夜福利,免费看| 黄片大片在线免费观看| 久久青草综合色| 日韩精品免费视频一区二区三区| 又黄又爽又免费观看的视频| 午夜免费观看网址| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 久久精品国产清高在天天线| 女人精品久久久久毛片| 亚洲 欧美 日韩 在线 免费| 久久久水蜜桃国产精品网| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 亚洲欧美一区二区三区黑人| 亚洲天堂国产精品一区在线| 纯流量卡能插随身wifi吗| 国内毛片毛片毛片毛片毛片| 天堂影院成人在线观看| 嫩草影视91久久| 又大又爽又粗| 一级毛片女人18水好多| 大型黄色视频在线免费观看| 久久人妻熟女aⅴ| av网站免费在线观看视频| 亚洲中文av在线| 国产成人欧美在线观看| 欧美绝顶高潮抽搐喷水| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久人妻精品电影| 精品欧美一区二区三区在线| 亚洲中文字幕日韩| 一个人免费在线观看的高清视频| 可以免费在线观看a视频的电影网站| 可以在线观看毛片的网站| 此物有八面人人有两片| 黑丝袜美女国产一区| 亚洲成国产人片在线观看| 色婷婷久久久亚洲欧美| 88av欧美| 女人被狂操c到高潮| 中文亚洲av片在线观看爽| 女性生殖器流出的白浆| 狂野欧美激情性xxxx| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲| 午夜久久久在线观看| 免费在线观看影片大全网站| 日本a在线网址| 亚洲在线自拍视频| 国产在线观看jvid| 亚洲五月婷婷丁香| 中文字幕av电影在线播放| 欧美在线黄色| 亚洲国产欧美一区二区综合| 成人18禁高潮啪啪吃奶动态图| ponron亚洲| 狠狠狠狠99中文字幕| 亚洲 欧美一区二区三区| 人人妻,人人澡人人爽秒播| 在线观看午夜福利视频| 久久精品亚洲精品国产色婷小说| 国产一区在线观看成人免费| 母亲3免费完整高清在线观看| 两个人看的免费小视频| 国产一区在线观看成人免费| 18禁裸乳无遮挡免费网站照片 | 少妇裸体淫交视频免费看高清 | 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 国产精品1区2区在线观看.| 国产伦人伦偷精品视频| 亚洲最大成人中文| 一级片免费观看大全| 国产精品99久久99久久久不卡| 夜夜爽天天搞| 亚洲熟女毛片儿| 1024视频免费在线观看| 亚洲精品在线美女| 久99久视频精品免费| 亚洲专区中文字幕在线| 国产麻豆69| 亚洲专区中文字幕在线| 两人在一起打扑克的视频| 国产精品久久久久久亚洲av鲁大| 欧美黄色淫秽网站| 男女下面进入的视频免费午夜 | 精品国产乱子伦一区二区三区| 天堂动漫精品| 麻豆一二三区av精品| 91成年电影在线观看| 成人精品一区二区免费| 欧美激情高清一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区黑人| 九色亚洲精品在线播放| 91国产中文字幕| 亚洲一区二区三区色噜噜| 久9热在线精品视频| 午夜福利高清视频| 国产区一区二久久| 午夜a级毛片| 亚洲第一电影网av| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| 欧美黄色片欧美黄色片| 丁香六月欧美| 日韩视频一区二区在线观看| 亚洲一区二区三区不卡视频| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| 一本久久中文字幕| 亚洲人成网站在线播放欧美日韩| 一级作爱视频免费观看| 亚洲精品一区av在线观看| 狂野欧美激情性xxxx| 中文字幕人成人乱码亚洲影| 日本在线视频免费播放| 亚洲熟妇中文字幕五十中出| 亚洲av成人一区二区三| 黄频高清免费视频| 少妇 在线观看| 久久九九热精品免费| 一进一出抽搐gif免费好疼| 国产精品美女特级片免费视频播放器 | 亚洲五月天丁香| 国产精品免费视频内射| 桃红色精品国产亚洲av| 18禁观看日本| 久久草成人影院| 一区二区日韩欧美中文字幕| 国产成人av激情在线播放| av有码第一页| 91九色精品人成在线观看| 久久久久久久久中文| 女性生殖器流出的白浆| 欧美绝顶高潮抽搐喷水| 中国美女看黄片| 亚洲一区二区三区色噜噜| 亚洲精品一区av在线观看| 国产三级黄色录像| 亚洲成国产人片在线观看| 色哟哟哟哟哟哟| 国产成人影院久久av| 欧美激情久久久久久爽电影 | 欧美另类亚洲清纯唯美| 999精品在线视频| 亚洲国产欧美一区二区综合| 91在线观看av| 国产成年人精品一区二区| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 欧美日韩一级在线毛片| 激情视频va一区二区三区| 麻豆av在线久日| 欧美绝顶高潮抽搐喷水| 日韩视频一区二区在线观看| 一级毛片精品| 国产欧美日韩精品亚洲av| 91大片在线观看| 国产高清激情床上av| 精品日产1卡2卡| 波多野结衣av一区二区av| 日韩一卡2卡3卡4卡2021年| 国产精品综合久久久久久久免费 | 啦啦啦韩国在线观看视频| 国产成年人精品一区二区| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三| 人人澡人人妻人| 国产一区二区三区综合在线观看| 久久精品亚洲精品国产色婷小说| 视频在线观看一区二区三区| 18禁观看日本| 校园春色视频在线观看| 免费在线观看完整版高清| 亚洲色图综合在线观看| 精品免费久久久久久久清纯| 亚洲国产高清在线一区二区三 | 法律面前人人平等表现在哪些方面| 在线永久观看黄色视频| 麻豆一二三区av精品| 51午夜福利影视在线观看| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片午夜丰满| 一级a爱片免费观看的视频| 日本三级黄在线观看| 变态另类丝袜制服| 国产精品乱码一区二三区的特点 | 久久久久亚洲av毛片大全| 成年女人毛片免费观看观看9| 1024香蕉在线观看| 精品久久久久久久人妻蜜臀av | 国产熟女xx| 亚洲五月天丁香| 一进一出抽搐gif免费好疼| 少妇的丰满在线观看| 国产精品,欧美在线| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人| 国产一级毛片七仙女欲春2 | 久久精品亚洲熟妇少妇任你| 久久久久九九精品影院| 亚洲精品一区av在线观看| 国内久久婷婷六月综合欲色啪| 久久精品影院6| 欧美绝顶高潮抽搐喷水| 午夜精品在线福利| 国产在线观看jvid| 夜夜躁狠狠躁天天躁| 中文字幕另类日韩欧美亚洲嫩草| 黄网站色视频无遮挡免费观看| 精品无人区乱码1区二区| 一区二区日韩欧美中文字幕| 欧美最黄视频在线播放免费| 国产成人精品久久二区二区91| 亚洲欧美激情在线| 夜夜夜夜夜久久久久| 在线观看免费视频网站a站| 久久青草综合色| 欧美成人性av电影在线观看| 丝袜在线中文字幕| 老司机福利观看| 亚洲精品美女久久av网站| 少妇熟女aⅴ在线视频| 精品欧美国产一区二区三| 在线视频色国产色| 欧美一级a爱片免费观看看 | 久久中文字幕人妻熟女| 国产亚洲精品久久久久久毛片| aaaaa片日本免费| 免费av毛片视频| 麻豆一二三区av精品| 久久亚洲真实| 亚洲av成人不卡在线观看播放网| 亚洲欧美精品综合久久99| 人人妻人人爽人人添夜夜欢视频| 亚洲自偷自拍图片 自拍| 给我免费播放毛片高清在线观看| 亚洲国产精品999在线| 亚洲情色 制服丝袜| 国产亚洲精品久久久久5区| 国产午夜福利久久久久久| 少妇的丰满在线观看| 天堂动漫精品| 色老头精品视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 男人舔女人下体高潮全视频| 久久国产亚洲av麻豆专区| a级毛片在线看网站| 精品电影一区二区在线| 欧美国产日韩亚洲一区| 日韩视频一区二区在线观看| 黄网站色视频无遮挡免费观看| 亚洲一区高清亚洲精品| 亚洲熟妇中文字幕五十中出| 美女国产高潮福利片在线看| 国产成人av教育| 精品人妻在线不人妻| 亚洲av成人一区二区三| 午夜福利视频1000在线观看 | 黑人欧美特级aaaaaa片| 久久人妻熟女aⅴ| 亚洲国产欧美日韩在线播放| 免费久久久久久久精品成人欧美视频| 视频区欧美日本亚洲| 777久久人妻少妇嫩草av网站| 精品国产一区二区久久| 欧美老熟妇乱子伦牲交| av电影中文网址| 国产亚洲av嫩草精品影院| 美女免费视频网站| 一级毛片女人18水好多| 亚洲性夜色夜夜综合| 岛国在线观看网站| 国产成年人精品一区二区| 久久亚洲真实| 麻豆成人av在线观看| 亚洲五月婷婷丁香| 日韩免费av在线播放| 久9热在线精品视频| 嫩草影视91久久| 国产单亲对白刺激| 午夜福利一区二区在线看| 高潮久久久久久久久久久不卡| 久久久国产精品麻豆| 亚洲最大成人中文| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播放欧美日韩| 99精品久久久久人妻精品| 最好的美女福利视频网| 精品久久久久久成人av| 午夜免费观看网址| 真人做人爱边吃奶动态| 国产精品av久久久久免费| 亚洲色图av天堂| 亚洲色图 男人天堂 中文字幕| 国产精品影院久久| 美女扒开内裤让男人捅视频| 人人妻人人爽人人添夜夜欢视频| 热re99久久国产66热| 亚洲av熟女| 欧美日韩黄片免| 国内精品久久久久久久电影| 久久狼人影院| 最新美女视频免费是黄的| 久久久久久久午夜电影| 搞女人的毛片| 国产成人影院久久av| 韩国精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 欧美黄色片欧美黄色片| 在线国产一区二区在线| 久久久久久久久久久久大奶| 一区二区三区高清视频在线| 两人在一起打扑克的视频| 一区二区日韩欧美中文字幕| 国内精品久久久久精免费| 国产成年人精品一区二区| 久9热在线精品视频|