• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elastoplastic cup model for cement-based materials

    2010-11-02 13:34:22YanZHANGJianfuSHAO
    Water Science and Engineering 2010年1期

    Yan ZHANG*, Jian-fu SHAO

    1. College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China

    2. Laboratory of Mechanics of Lille, UMR 8107 CNRS, Villeneuve d’Ascq 59655, France

    1 Introduction

    Scientific research of cement-based materials is important for the design of civil engineering and hydroelectric projects. Stress states can be complicated for applications such as underground structures, oil well tubing, and facilities for underground nuclear waste storage.The mechanical behavior of cement-based materials has been widely investigated. However,most previous studies have focused on brittle behavior under tensile and uniaxial compression,and have not dealt with complex stress states. Recent research shows that plastic behavior is also a main property of cement-based materials in complex stress states: there is a transition from brittle to ductile behavior with increasing confining pressure. Fig. 1 shows the stress-strain curves of cement paste in triaxial compression tests under different confining pressures (Yurtdas et al. 2006). We can see, that under high confining pressures, plastic deformation becomes a dominant inelastic mechanism. The mechanical behavior of cement paste under compression is considered to strongly depend on confining pressure.

    In general, with plastic pore collapse, the volumetric consolidation of granular materials may be generated when the rearrangement of grains reduces pore space. In porous cohesive materials like cement paste, the volumetric compaction generally results from inelastic pore collapse due to the breaking contact forces between grains. Some research has shown that rock material has high pressure sensitivity and leads to plastic pore collapse in spite of the basic deviatoric shearing behavior. Some elastoplastic cup models have been developed for rocks(Gennaro et al. 2003; Xie and Shao 2006). There has been less research on the constitutive law of cement-based materials over a large range of confining pressure, as opposed to confining pressure on rock materials, even though they are both quasi-brittle materials. Due to the limitations of experimental devices, research on cement-based materials has been conducted only in recent years (Yurtdas et al. 2006). Therefore, two plastic mechanism processes,deviatoric shearing plastic deformation and pore collapse plastic deformation, should be taken into account in the modeling of cement paste over a large range of stress. In this paper, we first propose a cup model for plastic behavior of cement paste under various loading conditions.Then, comparisons between numerical predictions and laboratory tests are presented in order to show the performance of the cup model under compression-dominated stresses. However, the present research is limited to the study of plastic behavior of cement paste, without taking into account effects of strain softening.

    Fig. 1 Stress-strain curves of cement paste in triaxial compression test under different confining pressures(ε1 is the axial strain, ε3 is the lateral strain, Pc is the confining pressure, and q is the deviatoric stress)

    2 Formulation of constitutive model

    In this section, we present the formulation of the constitutive model for the description of mechanical behavior of cement paste by taking into account two plastic mechanisms according to previous review of cement paste.

    We assume isothermal conditions for this model. The principal phenomena to be taken into account are elastic deformation, defined by the elastic strain tensor εe, and plastic deformation, defined by the plastic strain tensor εp. Based on the assumption of small strains,the total strain increment dε is composed of an elastic part dεeand a plastic part dεp.Small strains and displacement are assumed. The strain increment partition rule is applied:

    As mentioned above, we assume isotropic behavior of cement-based materials. The thermodynamic potential of cement-based materials can be expressed as follows:

    where the fourth order tensor C is the elastic stiffness tensor, the function Ψprepresents the locked plastic energy in plastic hardening, and γpdenotes the internal variable of plastic hardening. The standard derivation of the thermodynamic potential yields the state equation:

    In the case of isotropic materials, using Hill’s notation (Nemat-Nasser and Hori 1993), the elastic stiffness tensor is defined in the general form:

    where k is the bulk modulus of the damaged material, and μ represents the shear modulus.The two isotropic symmetric fourth-order tensors J and K are defined as follows:

    The intrinsic mechanical dissipation must meet the following fundamental condition:

    The rate form of the constitutive Eq. (3)can be easily written as

    The dot denotes the time derivative of variables (or incremental variation of variables in numerical computing procedure).

    Under compression-dominated stresses, the mechanical behavior of cement paste is essentially characterized by plastic deformation. Therefore, the mechanical damage due to microcracks is neglected. Thus, the thermodynamic potential for isotropic materials is reduced to the following form:

    2.1 Characterization of deviatoric plastic deformation

    As mentioned above, the plastic deformation of cement paste, like that in most porous materials, can be characterized by two complementary plastic mechanisms: the deviatoric mechanism and the pore collapse mechanism. The deviatoric mechanism is common for frictional materials and is driven by a shearing phenomenon under deviatoric stress. Classical yield functions are generally based on linear Mohr-Coulomb and Drucker-Prager criteria.Material failure is represented as an ultimate state of plastic yielding. However, we have mentioned that in cement paste material the plastic yielding condition is highly sensitive to confining pressure. Linear yielding criteria are not suitable. In this study, inspired by the previous work of Pietruszczak et al. (1988)and Mohamad-Hussein and Shao (2007), we used the following nonlinear form as the yield function of the deviatoric plastic mechanism:

    where q denotes the deviatoric stress; C′ represents the cohesion of material; p corresponds to the mean stress; Pris taken as a reference stress, which is generally fixed at 1 MPa; the parameters n and A define the failure surface; and Sijrepresents the components of the deviatoric stress tensor S. The function g(θ)was introduced to take into account the influence of Lode angle on plastic flow. However, due to the lack of relevant experimental data, the influence of Lode angle was neglected in the present study by assuming that g(θ)=1.

    The function α in the yield function defines the plastic hardening law for the deviatoric plastic process. The generalized plastic distortion is generally used as the hardening variable function. For the studied material, the softening behavior is observed only at very low confining pressures. The material hardening is described by an increasing function of plastic distortion as follows:

    where α0is the initial yield threshold, and B is a model’s parameter controlling the plastic hardening rate. The variable γsdenotes the generalized plastic distortion, which is defined as follows:

    where β is a model’s parameter, taking into account the influence of confining pressure on plastic hardening. Note that the plastic hardening function α increases progressively during plastic flow and closes to the ultimate value defined by α→1, when macroscopic failure is reached.

    In most frictional materials, plastic deformation under deviatoric stress exhibits a transition from volumetric compressibility to dilatancy. Non-associated plastic flow rules are generally necessary for present modeling. This is also the case for the cement paste studied here. Inspired by the plastic model proposed by Pietruszczak et al. (1988)for concrete, the following plastic potential is used:

    The variable I0is determined by the condition gs=0. The parameter η defines the transition boundary between compressibility and dilatancy on the q-p plane. While the stress points meet the condition ?gs?p= 0, the transition from plastic compressibility to dilatancy occurs. Based on experimental data, it is assumed that the transition boundary can be described as

    For the loading path, where only the deviatoric plastic mechanism is activated, the plastic flow rule is written as

    where λsis the plastic multiplier of the deviatoric plastic mechanism. The plastic consistency condition can be expressed as

    The generalized plastic shear strain ratecan be rewritten as

    Therefore, the rate form of constitutive relations is determined to be

    Using the plastic flow rule, one obtains the plastic multiplier as follows:

    2.2 Plastic pore collapse deformation

    According to simplified schematization, the cement paste is idealized as a homogeneous porous material composed of a solid matrix and a connected pore. It is firstly advisable to determine the criterion of plasticity of this material under compressive stresses. With this intention, one took the criterion of plasticity proposed by Gurson (1977)as a starting point,and this criterion was used in this study for metal porous materials subjected to tensile stresses.The deformation and the rupture of material are then determined by the evolution of the pores.This criterion has been widely used and various versions have been proposed for better describing the ductile rupture of porous materials. Recently, some research (Leblond and Perrin 1996; Perrin and Leblond 2000)showed the micromechanical background for the Gurson criterion. Indeed, the Gurson criterion represents the exact solution of the macroscopic criterion of a porous media composed of a solid matrix obeying Von-Mises perfect plasticity and of the spherical pores. According to this result, the macroscopic plasticity criterion depends on the plastic threshold of the solid matrix and macroscopic porosity. Various modifications of the yield surface have been proposed for better correspondence to the experimental data and description of plastic hardening. Inspired by these works, we adopted the general form of the Gurson criterion for the determination of the yield function of the pore collapse mechanism in cement paste. The following function was used:

    The parameter q2is introduced to determine the geometrical form of the yield surface. In the initial Gurson criterion, q2=1. The introduction of this parameter is required so that the yield surface correctly reproduces the experimental data. The symbol σ′ denotes the plastic yield stress of the solid matrix. The value of σ′ may vary with plastic deformation. The variation of σ′ can be determined by means of the plastic hardening law. The variable φ is the total connected porosity used as a parameter of the model. In the present study, the cement paste was subjected to mechanical loading. In a general case, when the porosity changes due to mechanical loading, the variation of total porosity can be written as

    In order to understand the pore collapse process, the result of the hydrostatic compression test is analyzed. In Fig. 2, a typical stress-strain curve for porous cement paste is shown, where σhis the hydrostatic stress and εvis the volumetric strain. We can find a quasi-linear and reversible phase, corresponding to the elastic compaction of the porous skeleton. The slope of this linear phase provides the elastic compressibility modulus of the material. When the hydrostatic stress exceeds a certain limit, defined as the threshold of pore collapse, progressive irreversible compaction of pores is produced by the progressive destruction of the initial porous structure.

    Fig. 2 Experimental data and numerical simulation in hydrostatic compression test of cement paste

    Based on the considerations described above and the experimental data from hydrostatic compression tests, the following hardening function is proposed:

    Based on the experimental cement paste data, an associated plastic flow rule, rather than the deviatoric plastic mechanism, is used here, giving us the following plastic potential:

    For the loading path, where only the pore collapse mechanism is activated, the plastic flow rule is written as

    where λcis the plastic multiplier of the pore collapse mechanism. The plastic consistency condition can be expressed as

    The rate form of constitutive equations provides the following:

    Taking into consideration the flow rule and consistency conditions, λcis written as

    2.3 Coupling of two plastic mechanisms

    During general loading, the two plastic deformation mechanisms can be activated either separately or simultaneously. Four distinct constitutive domains can be identified:

    (1)If fc< 0 andfs< 0, the applied stress state is fully within the elastic domain or leads to elastic unloading. No plastic flow occurs and we have the following conditions:

    3 Calibration of model and numerical simulations

    All tests were performed on a pure cement paste with a water-cement ratio of 0.44, using a G-class Portland cement. The parameters of the model were determined from conventional laboratory tests (Yurtdaz et al. 2006), which were composed of triaxial compression tests at different confining pressures and a hydrostatic compression test. Fifteen material and model parameters were considered in this study. Elastic parameters E and v were obtained from the linear part of stress-strain curves in one triaxial test, which were 5 000 MPa and 0.35, respectively.The parameter C′ represents the cohesion of material; in this study, we considered its value one tenth of the failure stress of a uniaxial test, i.e., 3.0 MPa. The parameters n and A were determined by failure stresses obtained in various triaxial compression tests, the values of which were 1.51 and 14, respectively. α0and B are parameters of the plastic hardening law; we drew the β-γpcurve using one triaxial compression test, then plotted a hyperbolic line that fit the experimental points and obtained the representative values of α0and B, which were 0.0 and 8×10-5, respectively. Once B and α0were determined for each test under different confining pressures, the hardening plastic law was obtained through the determination of β,which was 0.23 in this study. The parameter η of -1.8 was obtained from the slope of the transition points from volumetric strain curves in triaxial tests. The parameter σ0′ defines the initial pore collapse yield stress, which was determined to be 70 MPa in this study. The three parameters a, m, and b, equal to 0.9, 0.4, and 180, respectively, determine the rate of pore collapse plastic strain. The influence of q2was analyzed when the value increased and the corresponding plastic threshold in hydrostatic compression decreased, and the value of q2was determined to be 0.9. These values were determined from the hydrostatic compression test. The porosity φ of 0.37 was calculated through a simple comparison between dried samples and samples fully saturated with water. More details about the parameter value determination can be found in Zhang (2008).

    (2)The elastic and plastic properties are updated with the current value of chemical damage.

    (4)Otherwise, increments of plastic strain are calculated according to loading path using Eqs. (21), (30), or (32).

    (5)Stress, strain and internal variables are updated.

    Fig. 2 shows the simulations of hydrostatic compression tests. We can see that the present model can well describe the plastic deformation caused by the pore collapse mechanism.

    Fig. 3 presents the simulations of triaxial compression tests under different confining pressures. Fig. 3 (a)shows the simulation of a triaxial compression test at a low confining pressure. In this test, the plastic deformation was dominated by the plastic shearing mechanism. At a slightly higher confining pressure, shown in Fig. 3 (b), we obtained a typical ductile mechanism characterized by two plastic phases: the first phase caused by a shearing plastic mechanism, and the second phase caused by the interaction between two plastic mechanisms, which occurred when deviatoric stress reached 40 MPa. In Fig. 3 (c), with the increase of the confining pressure to 17.5 MPa, the deviatoric stress enhancement due to pore collapse was correctly predicted by the proposed model. Overall, there is a good agreement between the simulations and test data. The proposed model correctly predicts the main features of mechanical behaviour of cement paste.

    Fig. 3 Experimental data and numerical simulation in triaxial compression test of cement paste under different confining pressures

    Obtaining good agreement between the model’s predictions and experimental data in the triaxial compression tests and hydrostatic test for cement paste, the simulations using the proposed model have also been performed for concrete, as reported by Yan and Lin (2007).In Fig. 4, we can see again the performance of this model in predicting concrete behavior under loading conditions, neglecting the pore collapse mechanism because of a lack of the relevant experimental result at a high confining pressure. Under confining pressures ranging from 0 MPa to 12 MPa, the performance of concrete was dominated by the plastic shearing mechanism. Different plastic phases did not occur during the loading process. Therefore, the plastic pore collapse mechanism was not activated in the present modeling.

    Fig. 4 Experimental data and numerical simulation in triaxial compression test of concrete under different confining pressures

    4 Conclusions

    Based on our study, we can draw some conclusions: plastic deformation is one of the main behaviors of cement-based materials when complex stresses are applied, so they cannot simply be considered quasi-brittle materials; and, due to its high porosity, cement-based material such as cement paste and concrete has a pore collapse mechanism, and this mechanism, as opposed to the deviatoric mechanism, is dominant at a high pressure.

    We have presented the formulation of a cup model for cement paste under compressiondominated stresses. Based on relevant experimental data, two plastic mechanisms are identified: the deviatoric mechanism and the pore collapse mechanism. The proposed model is implemented in a computer code using the finite element method. We have used the proposed model to simulate typical laboratory tests. The model is able to describe the main features of mechanical behavior of cement paste in different stress states. Also, this cup model can be widely used for other quasi-brittle and high-porosity materials, such as rock and concrete.

    Gennaro, V., Delage, P., Cui, Y. J., Schroeder, C., and Collin, F. 2003. Time dependent behaviour of oil reservoir chalk: A multiphase approach. Journal of Japanese Geotechnical Society of Soils and Foundations, 43 (4), 131-147.

    Gurson, A. L. 1977. Continnum theory of ductile rupture by void nucleation and growth, Part 1: Yield criterion and flow rules for porous ductile media. Journal of Engineering Materials and Technology-Transactions of the ASME, 99(1), 2-15.

    Leblond, J. B., and Perrin, G. 1996. Introduction à la mécanique de la rupture ductile des métaux. Paris: Ecole Polytechnique. (in French)

    Mohamad-Hussein, A., and Shao, J.-F. 2007. Modelling of elastoplastic behaviour with non-local damage in concrete under compression. Computers and Structures, 85(23-24), 1757-1768. [doi:10.1016/j.compstruc.2007.04. 004]

    Nemat-Nasser, S., and Hori, M. 1993. Micromechanics: Overall Properties of Heterogeneous Materials.Amsterdam: North-Holland.

    Perrin, G., and Leblond, J. B. 2000. Accelerated void growth in porous ductile solids containing two populations of cavities. International Journal of Plasticity, 16(1), 91-120. [doi:10.1016/S0749-6419(99)00049-2]

    Pietruszczak, S., Jiang, J., and Mirza, F. A. 1988. An elastoplastic constitutive model for concrete.International Journal of Solid and Structures, 24(7), 705-722. [doi:10.1016/0020-7683(88)90018-2]

    Xie, S. Y., and Shao, J.-F. 2006. Elastoplastic deformation of a porous rock and water interaction.International Journal of Plasticity, 22(12), 2195-2225. [doi:10.1016/j.ijplas.2006.03.002]

    Yan, D. M., and Lin, G. 2007. Behavior of concrete under the triaxial compression. Engineering Sciences, 9(6),64-70. (in Chinese)

    Yurtdas, I., Xie, S., Secq, J., Burlion, N., Shao, J.-F., and Sibai, M. 2006. Etude Expérimentale du Couplage entre le Comportement Thermo-Hydro-Mécanique et la Dégradation Chimique d’une Pate de Ciment Pétrolière. Report (LML-MGC-03-03/A)for TOTAL Company. (in French)

    Zhang, Y. 2008. Modélisation du Comportement éastoplastique d’une Pate de Ciment Soumise à la Dégradation Chimique. Ph. D. Dissertation. Lille: University of Science and Technology of Lille.

    天天躁狠狠躁夜夜躁狠狠躁| 国产视频一区二区在线看| 多毛熟女@视频| 午夜福利在线观看吧| 欧美黄色片欧美黄色片| 悠悠久久av| 欧美乱码精品一区二区三区| 久久草成人影院| 久久亚洲真实| 亚洲中文av在线| 在线观看免费视频网站a站| 亚洲成人久久性| 看黄色毛片网站| 成年女人毛片免费观看观看9| 十八禁人妻一区二区| 亚洲九九香蕉| 国产不卡一卡二| 亚洲 国产 在线| 熟妇人妻久久中文字幕3abv| 国产成人av激情在线播放| 免费不卡黄色视频| 黄片大片在线免费观看| www.999成人在线观看| 精品一区二区三区视频在线观看免费| 99国产精品99久久久久| 亚洲国产精品久久男人天堂| 99在线视频只有这里精品首页| 叶爱在线成人免费视频播放| 国产蜜桃级精品一区二区三区| ponron亚洲| 九色亚洲精品在线播放| 日日爽夜夜爽网站| 免费久久久久久久精品成人欧美视频| 国产麻豆69| 日韩大码丰满熟妇| 中文字幕另类日韩欧美亚洲嫩草| 国产蜜桃级精品一区二区三区| 此物有八面人人有两片| 欧美激情久久久久久爽电影 | 在线十欧美十亚洲十日本专区| 亚洲精品国产色婷婷电影| 操美女的视频在线观看| 在线播放国产精品三级| 男女下面插进去视频免费观看| 91精品三级在线观看| 97人妻精品一区二区三区麻豆 | 久久九九热精品免费| 一级,二级,三级黄色视频| 国产三级黄色录像| 国产男靠女视频免费网站| 国产亚洲av高清不卡| 在线国产一区二区在线| 日本三级黄在线观看| 久久久久九九精品影院| 亚洲欧美一区二区三区黑人| 免费在线观看完整版高清| 波多野结衣av一区二区av| 丝袜在线中文字幕| 精品福利观看| 中文字幕av电影在线播放| 久久伊人香网站| 热99re8久久精品国产| 免费看十八禁软件| 亚洲九九香蕉| 女生性感内裤真人,穿戴方法视频| 久久人人精品亚洲av| 国产亚洲av高清不卡| 国产熟女xx| 久久人人爽av亚洲精品天堂| 亚洲人成电影免费在线| 99riav亚洲国产免费| 欧美成人性av电影在线观看| 国产精品,欧美在线| ponron亚洲| 亚洲最大成人中文| 丰满人妻熟妇乱又伦精品不卡| 久久久久精品国产欧美久久久| 亚洲免费av在线视频| 啪啪无遮挡十八禁网站| 精品乱码久久久久久99久播| www.自偷自拍.com| 午夜激情av网站| 久久国产亚洲av麻豆专区| 亚洲在线自拍视频| 丰满人妻熟妇乱又伦精品不卡| 欧美中文日本在线观看视频| 久久久国产成人精品二区| 久久久国产成人精品二区| 欧美成狂野欧美在线观看| 免费搜索国产男女视频| 美女高潮喷水抽搐中文字幕| 一a级毛片在线观看| 18禁观看日本| 国产精品亚洲一级av第二区| 欧美日韩瑟瑟在线播放| netflix在线观看网站| 久久久久久亚洲精品国产蜜桃av| 十八禁人妻一区二区| 大陆偷拍与自拍| 亚洲av成人av| 国产精品亚洲一级av第二区| 最新美女视频免费是黄的| 国产成人精品无人区| 亚洲狠狠婷婷综合久久图片| 久久天堂一区二区三区四区| 一级a爱片免费观看的视频| 日本黄色视频三级网站网址| 免费在线观看日本一区| 正在播放国产对白刺激| 可以免费在线观看a视频的电影网站| 久9热在线精品视频| 亚洲精品久久国产高清桃花| 女性生殖器流出的白浆| 日本 av在线| 亚洲精品在线观看二区| 免费久久久久久久精品成人欧美视频| 国产亚洲av嫩草精品影院| 亚洲av电影在线进入| 国产一区二区激情短视频| 国产在线观看jvid| 亚洲精品中文字幕在线视频| 9热在线视频观看99| 亚洲自偷自拍图片 自拍| 国产成+人综合+亚洲专区| 精品久久久久久久人妻蜜臀av | 精品国产国语对白av| 中文字幕最新亚洲高清| 一区二区日韩欧美中文字幕| 动漫黄色视频在线观看| 欧美激情久久久久久爽电影 | 一夜夜www| 欧美成人一区二区免费高清观看 | 亚洲精品粉嫩美女一区| 亚洲精品久久成人aⅴ小说| 日韩欧美一区视频在线观看| 他把我摸到了高潮在线观看| 国产免费av片在线观看野外av| 在线观看免费视频网站a站| av欧美777| 婷婷六月久久综合丁香| 天天躁狠狠躁夜夜躁狠狠躁| 乱人伦中国视频| av天堂在线播放| 久久欧美精品欧美久久欧美| 999久久久国产精品视频| 天天躁夜夜躁狠狠躁躁| 纯流量卡能插随身wifi吗| 此物有八面人人有两片| 午夜福利高清视频| 一二三四在线观看免费中文在| 曰老女人黄片| 国产精品免费视频内射| 国产精品国产高清国产av| 成年版毛片免费区| 午夜福利影视在线免费观看| 此物有八面人人有两片| 亚洲成av片中文字幕在线观看| 国产av一区二区精品久久| 免费av毛片视频| 99re在线观看精品视频| 亚洲精品久久成人aⅴ小说| 18禁国产床啪视频网站| 岛国视频午夜一区免费看| 日韩三级视频一区二区三区| 国产成人精品久久二区二区91| 免费搜索国产男女视频| 狠狠狠狠99中文字幕| 性色av乱码一区二区三区2| 性色av乱码一区二区三区2| 欧美成人性av电影在线观看| 国产精品 国内视频| 久久久久九九精品影院| 久久午夜亚洲精品久久| 91国产中文字幕| 一区在线观看完整版| 三级毛片av免费| 国产成人欧美在线观看| 性欧美人与动物交配| 国产精品久久电影中文字幕| www国产在线视频色| www.精华液| 国产在线精品亚洲第一网站| www.熟女人妻精品国产| 伦理电影免费视频| 国产精品电影一区二区三区| 国产精品一区二区免费欧美| 亚洲在线自拍视频| 国产1区2区3区精品| 99国产精品99久久久久| 不卡av一区二区三区| 不卡一级毛片| 一进一出抽搐gif免费好疼| 此物有八面人人有两片| 搡老岳熟女国产| 国产欧美日韩一区二区三| 美女高潮喷水抽搐中文字幕| 久久久久久久午夜电影| videosex国产| 日韩欧美免费精品| av视频在线观看入口| 久久性视频一级片| 午夜老司机福利片| 亚洲精品国产一区二区精华液| 久久午夜综合久久蜜桃| 看黄色毛片网站| 欧美精品啪啪一区二区三区| 午夜两性在线视频| 日本五十路高清| 精品国产美女av久久久久小说| АⅤ资源中文在线天堂| 欧美激情高清一区二区三区| 一级片免费观看大全| 欧美成狂野欧美在线观看| 女人被狂操c到高潮| 黄片播放在线免费| 欧美绝顶高潮抽搐喷水| 亚洲熟女毛片儿| av天堂在线播放| 国产精品久久久人人做人人爽| 欧美激情极品国产一区二区三区| 精品国产乱码久久久久久男人| 这个男人来自地球电影免费观看| 国产av又大| 精品一区二区三区四区五区乱码| 国产亚洲欧美精品永久| 精品国产乱子伦一区二区三区| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一出视频| 亚洲 国产 在线| 久久精品国产亚洲av高清一级| 亚洲aⅴ乱码一区二区在线播放 | 亚洲人成网站在线播放欧美日韩| 欧美一区二区精品小视频在线| 国产高清激情床上av| 亚洲无线在线观看| 男人的好看免费观看在线视频 | 欧美+亚洲+日韩+国产| 99re在线观看精品视频| 色综合站精品国产| 欧美成人一区二区免费高清观看 | 亚洲人成电影免费在线| 亚洲男人的天堂狠狠| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 美女免费视频网站| 国产午夜精品久久久久久| 久久精品91无色码中文字幕| 免费不卡黄色视频| 亚洲欧美日韩高清在线视频| 老熟妇乱子伦视频在线观看| 99国产极品粉嫩在线观看| 在线免费观看的www视频| av视频在线观看入口| 日本一区二区免费在线视频| 国产高清videossex| 熟妇人妻久久中文字幕3abv| 99久久久亚洲精品蜜臀av| 国产高清激情床上av| 免费看美女性在线毛片视频| 99香蕉大伊视频| 国产精品久久电影中文字幕| 亚洲中文日韩欧美视频| 麻豆成人av在线观看| 久久久久亚洲av毛片大全| 人人妻人人爽人人添夜夜欢视频| 色播亚洲综合网| 性少妇av在线| 国产99久久九九免费精品| 老熟妇乱子伦视频在线观看| www.自偷自拍.com| 美女高潮喷水抽搐中文字幕| 免费高清在线观看日韩| 色精品久久人妻99蜜桃| 久久久国产成人免费| 人妻久久中文字幕网| 亚洲色图综合在线观看| 搞女人的毛片| 一进一出抽搐gif免费好疼| 国产又色又爽无遮挡免费看| 女性生殖器流出的白浆| 1024视频免费在线观看| 热99re8久久精品国产| 日韩欧美在线二视频| 国产成人精品久久二区二区免费| 少妇 在线观看| 日韩成人在线观看一区二区三区| 欧美日本中文国产一区发布| 亚洲精华国产精华精| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 国产免费男女视频| 12—13女人毛片做爰片一| 久热这里只有精品99| 精品久久久久久久毛片微露脸| 精品欧美国产一区二区三| 欧美另类亚洲清纯唯美| 99久久99久久久精品蜜桃| 侵犯人妻中文字幕一二三四区| 亚洲国产精品999在线| 国产三级黄色录像| 成人手机av| 国产成人啪精品午夜网站| 大码成人一级视频| 亚洲国产精品久久男人天堂| 色av中文字幕| 国产成人av激情在线播放| 亚洲av五月六月丁香网| 久久久国产欧美日韩av| 欧美黑人欧美精品刺激| 一级片免费观看大全| 亚洲国产精品久久男人天堂| 国产熟女xx| 亚洲av成人不卡在线观看播放网| 免费在线观看完整版高清| 国产成人影院久久av| 大码成人一级视频| 91在线观看av| 亚洲伊人色综图| videosex国产| 午夜老司机福利片| 精品久久久久久久人妻蜜臀av | 最好的美女福利视频网| 天堂动漫精品| 久久九九热精品免费| 精品一区二区三区av网在线观看| 黄色成人免费大全| 久久狼人影院| 亚洲aⅴ乱码一区二区在线播放 | 久久久久亚洲av毛片大全| АⅤ资源中文在线天堂| 午夜精品在线福利| 人妻丰满熟妇av一区二区三区| 日本黄色视频三级网站网址| 日韩欧美三级三区| 日韩大码丰满熟妇| 久久影院123| 亚洲精品国产区一区二| 人人妻人人爽人人添夜夜欢视频| 久久久久九九精品影院| 欧洲精品卡2卡3卡4卡5卡区| 国产精品乱码一区二三区的特点 | 黄片播放在线免费| 丰满的人妻完整版| 91大片在线观看| 在线永久观看黄色视频| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 午夜a级毛片| 国产亚洲欧美精品永久| 在线观看一区二区三区| 法律面前人人平等表现在哪些方面| 啦啦啦免费观看视频1| 久久精品国产99精品国产亚洲性色 | 一a级毛片在线观看| 可以免费在线观看a视频的电影网站| 悠悠久久av| tocl精华| 午夜精品国产一区二区电影| 国产麻豆69| 亚洲av成人不卡在线观看播放网| 亚洲成a人片在线一区二区| 黑人巨大精品欧美一区二区蜜桃| 亚洲成a人片在线一区二区| 亚洲精品一区av在线观看| 老司机午夜十八禁免费视频| 久久久国产欧美日韩av| 91麻豆av在线| 日韩欧美一区视频在线观看| av天堂久久9| 国产91精品成人一区二区三区| 国产人伦9x9x在线观看| 99精品欧美一区二区三区四区| 国产精品一区二区免费欧美| 人人妻人人爽人人添夜夜欢视频| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 国产伦一二天堂av在线观看| 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 国产精品一区二区精品视频观看| 最近最新免费中文字幕在线| 亚洲欧美激情在线| 国产熟女午夜一区二区三区| 午夜精品国产一区二区电影| 97超级碰碰碰精品色视频在线观看| av中文乱码字幕在线| 亚洲免费av在线视频| 日韩成人在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 在线永久观看黄色视频| 黑人欧美特级aaaaaa片| 久久精品影院6| 日日摸夜夜添夜夜添小说| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| 久久久久久久精品吃奶| 精品少妇一区二区三区视频日本电影| 午夜精品在线福利| 国产欧美日韩一区二区三区在线| 97超级碰碰碰精品色视频在线观看| 久久人人精品亚洲av| 久久久久国产一级毛片高清牌| 国产又爽黄色视频| 国内久久婷婷六月综合欲色啪| 91麻豆精品激情在线观看国产| 亚洲情色 制服丝袜| 长腿黑丝高跟| 在线观看舔阴道视频| 日本免费a在线| 757午夜福利合集在线观看| 国产精品久久久久久人妻精品电影| 美女国产高潮福利片在线看| 亚洲人成电影观看| 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| 亚洲第一av免费看| 在线播放国产精品三级| 亚洲熟妇中文字幕五十中出| 国产在线精品亚洲第一网站| 亚洲男人天堂网一区| 啦啦啦韩国在线观看视频| 亚洲无线在线观看| 欧美国产精品va在线观看不卡| av视频在线观看入口| 黄色成人免费大全| 久9热在线精品视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一欧美日韩一区二区三区| 色综合亚洲欧美另类图片| 欧美久久黑人一区二区| 视频区欧美日本亚洲| 亚洲一区二区三区不卡视频| 久久久久久久久久久久大奶| 国产一级毛片七仙女欲春2 | 禁无遮挡网站| 在线观看免费视频日本深夜| 亚洲一卡2卡3卡4卡5卡精品中文| 免费看a级黄色片| 精品久久蜜臀av无| 久久精品国产清高在天天线| 脱女人内裤的视频| 精品国产乱码久久久久久男人| 国产精品国产高清国产av| 这个男人来自地球电影免费观看| 纯流量卡能插随身wifi吗| 操美女的视频在线观看| 久久亚洲精品不卡| 50天的宝宝边吃奶边哭怎么回事| 久久久精品欧美日韩精品| 不卡av一区二区三区| 午夜福利在线观看吧| 身体一侧抽搐| 久久久精品国产亚洲av高清涩受| 中文字幕人成人乱码亚洲影| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 亚洲色图av天堂| 青草久久国产| 精品人妻1区二区| 色av中文字幕| 亚洲成av片中文字幕在线观看| 成人精品一区二区免费| 国产成人精品久久二区二区91| 国产亚洲精品久久久久久毛片| 精品熟女少妇八av免费久了| 搡老岳熟女国产| 国产人伦9x9x在线观看| 久久久久久国产a免费观看| 欧美乱色亚洲激情| 丝袜人妻中文字幕| 亚洲成人久久性| 欧美丝袜亚洲另类 | 黄色a级毛片大全视频| 午夜福利免费观看在线| 曰老女人黄片| 好男人在线观看高清免费视频 | 久久人妻福利社区极品人妻图片| 国产精品一区二区精品视频观看| 中文字幕人妻熟女乱码| 亚洲第一av免费看| 91老司机精品| 91av网站免费观看| 国产亚洲av高清不卡| 可以在线观看的亚洲视频| 欧美av亚洲av综合av国产av| 久久人妻av系列| av有码第一页| 欧美不卡视频在线免费观看 | 一级片免费观看大全| 麻豆久久精品国产亚洲av| 国产97色在线日韩免费| 国产私拍福利视频在线观看| 国产亚洲精品综合一区在线观看 | 精品久久久久久久毛片微露脸| 国产精品国产高清国产av| 成年人黄色毛片网站| 免费看a级黄色片| 丰满人妻熟妇乱又伦精品不卡| 黄色视频不卡| 亚洲国产精品合色在线| 99在线视频只有这里精品首页| 村上凉子中文字幕在线| 黄色丝袜av网址大全| 成人免费观看视频高清| 精品福利观看| 国产麻豆成人av免费视频| 国产不卡一卡二| 一级毛片女人18水好多| 51午夜福利影视在线观看| 亚洲国产高清在线一区二区三 | 午夜成年电影在线免费观看| 长腿黑丝高跟| 757午夜福利合集在线观看| 午夜精品在线福利| 国产精品久久久av美女十八| 国产成人av激情在线播放| 香蕉丝袜av| 亚洲三区欧美一区| 最新在线观看一区二区三区| 黄片小视频在线播放| 日日夜夜操网爽| 满18在线观看网站| 国产成人欧美| 成熟少妇高潮喷水视频| 啦啦啦 在线观看视频| 亚洲国产精品合色在线| 99精品久久久久人妻精品| 午夜福利欧美成人| 国产99久久九九免费精品| 久久精品国产亚洲av高清一级| 亚洲精品中文字幕在线视频| 99久久综合精品五月天人人| 天堂√8在线中文| 757午夜福利合集在线观看| 99在线视频只有这里精品首页| 国产精品 欧美亚洲| 女性生殖器流出的白浆| 国产精品98久久久久久宅男小说| 国产国语露脸激情在线看| 国产又色又爽无遮挡免费看| 一级毛片精品| 日韩av在线大香蕉| 天天躁夜夜躁狠狠躁躁| 国产精品永久免费网站| 久久久精品欧美日韩精品| 亚洲色图av天堂| bbb黄色大片| av视频免费观看在线观看| 色综合婷婷激情| 亚洲精品久久国产高清桃花| 男女午夜视频在线观看| 亚洲情色 制服丝袜| 国产伦人伦偷精品视频| 国产成人欧美| www.精华液| 视频区欧美日本亚洲| 在线观看66精品国产| 日本撒尿小便嘘嘘汇集6| 国产精品,欧美在线| 欧美乱色亚洲激情| 99在线视频只有这里精品首页| 午夜福利欧美成人| 波多野结衣巨乳人妻| 免费看十八禁软件| 久久人人精品亚洲av| 国产av一区在线观看免费| 亚洲性夜色夜夜综合| 动漫黄色视频在线观看| 亚洲欧美精品综合久久99| 欧美激情极品国产一区二区三区| 国产精品98久久久久久宅男小说| 亚洲欧美激情综合另类| 欧美黄色片欧美黄色片| 不卡av一区二区三区| 在线观看日韩欧美| 国产蜜桃级精品一区二区三区| 国产亚洲精品av在线| 久久九九热精品免费| 日韩 欧美 亚洲 中文字幕| 国产1区2区3区精品| 久久精品成人免费网站| 色在线成人网| 啦啦啦韩国在线观看视频| 电影成人av| 人人妻人人澡欧美一区二区 | 久久中文字幕人妻熟女| 不卡一级毛片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲性夜色夜夜综合| 亚洲一区二区三区色噜噜| 欧美另类亚洲清纯唯美| 精品久久久久久久毛片微露脸| 一区二区三区激情视频| 欧美成人免费av一区二区三区| 亚洲av日韩精品久久久久久密| 国产精品亚洲一级av第二区| 中文字幕色久视频| 国产亚洲欧美在线一区二区| 久久香蕉精品热| 欧美中文日本在线观看视频| 亚洲精品粉嫩美女一区| 在线观看免费视频日本深夜| 精品久久蜜臀av无| videosex国产| 久久久久久免费高清国产稀缺| 国产精品久久电影中文字幕| 俄罗斯特黄特色一大片| 女人被躁到高潮嗷嗷叫费观| 伦理电影免费视频| 精品免费久久久久久久清纯| 亚洲全国av大片| xxx96com| av网站免费在线观看视频|