• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of flow around impermeable groynes on one side of symmetrical compound channel: An experimental study

    2010-08-12 08:51:00HassanSafiAHMEDMohammadMahdiHASANNorioTANAKA
    Water Science and Engineering 2010年1期

    Hassan Safi AHMED, Mohammad Mahdi HASAN, Norio TANAKA*

    1. Civil Engineering Department, Faculty of Engineering, South Valley University, Qena 83521, Egypt

    2. Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

    3. Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

    Analysis of flow around impermeable groynes on one side of symmetrical compound channel: An experimental study

    Hassan Safi AHMED1, Mohammad Mahdi HASAN2, Norio TANAKA*3

    1. Civil Engineering Department, Faculty of Engineering, South Valley University, Qena 83521, Egypt

    2. Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

    3. Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

    This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water depth by about 75%, 125%, and 175% of its original value in cases of one-side floodplain groyne(s) with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width.

    impermeable groyne; symmetrical compound channel; floodplain; flow structure

    1 Introduction

    Groynes are hydraulic structures that protect against bank erosion, maintain water level by deflecting flow direction, and ensure navigation safety. They can be defined as shore protection structures (usually perpendicular to the shoreline) built to trap littoral drift or retard erosion of the shore, as structures installed on the front side of the bank, or as revetment to protect the bank or the levee against erosion (Uijttewaal 2005; Yeo et al. 2005; Yeo and Kang 2008; Kadota et al. 2008; Gu and Ikeda 2008; Teraguchi et al. 2008). They can be used for flood control, land reclamation, and provision of navigable depth (Osman et al. 2001; Rajaratnam and Nwachukwu 1983; USACE 1992). In addition, their functions can be changed along with the goals of river works and the nature of the stream. Therefore, some of thegroynes’ other main functions are increasing the hydraulic conveyance of rivers, reducing risks during flooding, securing the regular depth of water and stabilizing river flow, and improving the ecological environment and scenery. Permeable stone gabion groynes have recently been proposed as countermeasures for scouring problems and also to help develop suitable ecosystems because they maintain stable flow and bed conditions near the groyne tip (Muraoka et al. 2008).

    Groynes can be classified according to their functions, objects, forms, and materials. There are many types of groynes, such as the T-groyne, permeable groyne, and impermeable groyne. The impermeable groynes are generally constructed using local rocks, gravel, or gabions, whereas the permeable ones consist of rows of piles, bamboo, or timber (Teraguchi et al. 2008; Ettema and Muste 2004).

    River floodplain groynes play an important role in high flood attenuation and protection, especially for rivers with large floodplains. Submerged and non-submerged impermeable groynes, transverse levees, and bridge embankments restrict flow within the channel width. Many variables are involved in studying the flow in compound channels flanked by one or two floodplains with groynes. These variables include flow approach velocityU0, water depth in the main channelHand in the floodplainh, groyne type (permeable or impermeable), shape, angle of inclinationθ, the groyne length relative to the floodplain widthLr(Lr=Lg/b, whereLgis the groyne length andbis the floodplain width), and the arrangement and the distance between groynes in series arrangement. These affect the flow structure and the features of the eddy zone upstream and/or downstream of the floodplain groyne (Ettema and Muste 2004; Francis et al. 1968). In addition, the main channel and floodplain widths become effective variables for flow in compound channels with a narrow main channel and relatively wide floodplains. The most important variables of the floodplain impermeable groyne are the groyne(s) relative lengthLr, the distance between groynes in series arrangement, and the arrangement type.

    The large-scalegroyne system has been introduced in some rivers with large floodplains, suchas the Arakawa River, Japan, in order to attenuate the flood peak for higher safety of downstream areas, but extensive and quantitative analyses have not yet been performed. Therefore, the main purposes of the present research are (1) to study and verify experimentally the effects of the large-scale floodplain impermeable groynes on the flow structure, velocity, and water depth; and (2) to evaluate the advantages and disadvantages of using floodplain groynes in flood attenuation and protection works.

    2 Experimental apparatus and case studies

    The experiments were conducted in a water re-circulating flume at Saitama University in Japan. The flume is 0.50 m in depth, 0.50 m in width, and 15.0 m in length. The workingsection of the flume is the middle one with a length of 13.0 m, starting from a point 1.0 m downstream of the inlet to a point 1.0 m upstream of the outlet, as shown in Fig. 1(a). At the downstream end of the flume, the tail-water depth was controlled by a vertical sluice tailgate.

    As shown in Fig. 1(b), the rectangular flume section was converted into a wooden symmetrical compound channel section with a main channel widthBof 0.1 m and a total water depthHof 0.24 m, and two symmetrical floodplains with a widthbof 0.2 m (the floodplain relative widthb/B= 2.0). The roughness coefficients were kept constant and equal in both the main channel and floodplains. The flow was steady flow with a dischargeQof 0.015 m3/s, a floodplain water depthhof 0.08 m, and a Froude number of 0.26, while the Reynolds number was always sufficiently high to guarantee fully turbulent flow. The discharge was measured with an electromagnetic flow meter (model: FD-UH100H, Keyence Corporation; maximum measurable discharge: 0.033 m3/s; accuracy: –0.02% to 0.25%). As shown in Fig. 1(b), the longitudinal and transverse flow velocitiesU(m/s) andV(m/s) were measured at nine points on the horizontal plane HP with an interval of 0.05 m and at five points on the vertical plane VP (points marked with black circles), respectively. The velocities were measured with an electromagnetic velocity meter (type of main amplifier: VM-2000; type of sensor: VMT2-200-04P, Kenek Company, Ltd.). The sensor was 15.0 mm in length and 4.0 mm in diameter, and the measurement point was located at the middle height of the sensor, with 20.0 s measuring time and 50 Hz as sampling frequencies. At each point, the mean velocity value in the longitudinal and transverse directions,UandV, respectively, were obtained by averaging the measured velocity values, then the mean resultant velocity value ( (U2+V2)0.5) and directions were obtained. The longitudinal velocityUprofiles on both the horizontal and vertical planes, HP and VP, respectively, were measured at several locations upstream and downstream of the main groyne Gr1. The water surface elevation was measured at both the main channel and floodplains centerlines with and without the groyne models at the same locations as the velocity profiles by means of three point gauges (with an accuracy up to 0.1 mm), fixed and mounted on a movable sliding carriage.

    The experiments were conducted using models of straight impermeable groynes fixed perpendicularly to the main channel centerline and to the longitudinal flow direction. The groynes were made of wood plates with a thickness of 0.01 m with three different relative lengthsLr, 0.5, 0.75, and 1.0. The arrangements of groynes in case studies are shown in Table 1. In the case of a series of groynes in one floodplain, the downstream groynes were fixed at a distance of 8.5 m upstream of the flume outlet to decrease the backwater effects.

    Fig. 1 Experimental setup

    Table 1 Arrangement of groynes and experimental conditions

    3 Results and discussion

    In this section, the results and analysis of the experimental program conducted to better understand the effects of river floodplain groynes on compound channel water flow structure, velocity, and water depth are presented. Symbols in figures of velocity profiles are defined as follows: Gr1 is the downstream groyne (the main groyne) and Gr2 is the upstream groyne in series arrangement; D25 means that the profile is located 25 cm downstream of the main groyne Gr1; U20 means that the profile location is 20 cm upstream the groyne (or the groyne group); while in the series arrangement, ND means 5 cm upstream of Gr1; NM is located at the mid-distance between Gr1 and Gr2 (atx=ds/2 upstream Gr1); and NU means 5 cm downstream of Gr2. The downstream groyne (Gr1) was considered the zero distance (x= 0), and the distance downstream of Gr1 was considered positive while the distance upstream of Gr1 was negative as shown in Fig. 1.

    3.1 Single groyne

    In this part of the study, a single groyne on one floodplain was used. As shown in Figs. 2 and 3, the value ofLraffected the flow, especially downstream of the groyne, while a small distance was affected upstream. Downstream of the groyne, a re-circulating flow region was generated. AsLrincreased, the center of the eddy zone moved toward the groyne. As shown in Figs. 2 and 4 (a), the main channel maximum longitudinal velocityUmaxwas in the lower zone of the vertical plane VP, while the minimum velocity shifted upward to the surface. The values of the maximum relative velocity (U/U0)maxwere 1.40, 1.60, and 1.85 with changes to theLrof 0.5, 0.75, and 1.0, respectively. As shown in Figs. 4(b) and (c), the flow moved toward the main channel and the opposite floodplain, and the flow longitudinal velocityUon the opposite floodplain increased by 75%, 125%, and 175% whenLrvalues were 0.5, 0.75, and 1.0, respectively. The value of the negative velocity at the downstream side of the groyne was more than –55% of the approach velocity at the same streamline whenLr= 1.0.

    Fig. 2Uprofiles on VP for single groyne on one floodplain

    Fig. 3 Velocity contour maps ofUon HP for single groyne on one floodplain

    Fig. 4 Values of (U/U0)maxand (U/U0)minon HP and VP for single groyne on one floodplain

    Fig. 5 shows the changes of flowing water depth on both floodplains upstream and downstream of the groyne (change = (depth without groyne – depth with groyne)/depth without groyne) × 100%). The water depth on the left floodplain, where the groyne is located, was more affected than that on the right side. On the groyne side, the percentages of increasing upstream depth were 0.8%, 3.6%, and 6.3%, and the decreasing percentages downstream were 2.5%, 5.5%, and 6.7%, whenLrvalues were 0.5, 0.75, and 1.0, respectively. Fig. 6 shows the relationship between the lengthLsand widthWsof the flow separation zone normalized by the groyne length for the same three cases. AsLrincreased, the relative lengthLsr(whereLsr=Ls/Lg) of the separation zone clearly decreased, while its relative widthWsr(whereWsr=Ws/Lg) slightly decreased. The average value of the relative widthWsrfor the three cases can be taken to be 1.65. Also, the eddy size increased withLr.

    Fig. 5 Changes of water depth on left (LFP) and right (RFP) floodplain in case of single groyne on one floodplain

    Fig. 6 Relationship betweenWsrandLsrof flow separation zone in case of single groyne on one floodplain

    3.2 Two symmetrical groynes on one side

    In this part of the study, two identical groynes with relative lengthsLrof 0.75 and 1.0 were located on one floodplain and arranged in two lines with various relative distancesdbetween them (as illustrated in Table 1). As shown in Figs. 7 through 14, bothLranddaffected the flow structure and the cross-sectional active area, where the flow patterns moved toward the main channel and the opposite floodplain. As shown in Figs. 8(a), 9, 11(b), and 12(c), the values of (U/U0)maxon the VP decreased asdincreased untild= 4, while (U/U0)maxincreased withdwhendwas larger than 4. Figs. 8(b), 8(c), 12(a) and 12(b) show the values of (U/U0)maxand (U/U0)minoccurring on the HP along the flume, respectively. The longitudinal flow velocityUin the main channel and floodplains, upstream and downstream of the groynes, depends on bothLrandd. For groynes withLr= 0.75, the effective distancedsis equal to 3 to 4 times the groyne length. In addition, as shown in Figs. 10 and 13, bothWsrandLsrincreased withLr, andWsrvalues in the area between groynes decreased asdincreased. The separation zone of the upstream groynes group is not affected byd. Each of the two groynes in the group may stand alone as a single groyne ifdincreases significantly. Moreover, ifdis less than or equal to 2, the groyne group works as one groyne (one block) where no single separation occurs between the two groynes (Fig. 7). From the results shown in Fig. 14, the water surface level of the upstream groyne group depends more onLrand less ond. The location of the lowest point of the water surface in the distance between the two groynes moves toward the upstream one asdincreases. Downstream of the groyne group, the water surface increases again and resumes its normal value at a distance 10 to 12 timesLg. This increase starts right away from upstream of the main groyne Gr1.

    Fig. 7 Velocity contour maps ofUon HP for two groynes on one floodplain whenLr= 0.75

    Fig. 8 Values of (U/U0)maxand (U/U0)minon HP and VP for two groynes on one floodplain whenLr= 0.75

    Fig. 9Uprofiles on VP in case of two groynes on one floodplain whenLr= 0.75

    Fig. 10 Relationship betweenWsrandLsrof flow separation zone in case of two groynes on one floodplain whenLr= 0.75

    Fig .11Uprofiles in case of two groynes on one floodplain whenLr= 1.0

    Fig. 12 Values of (U/U0)maxand (U/U0)minon HP and VP whenLr= 1.0

    Fig. 13 Relationship betweenWsrandLsrof flow separation zone in case of two groynes on one floodplain whenLr=1.0

    Fig. 14 Changes of water depth on LFP and RFP in case of two groynes on one side of floodplain

    4 Conclusions

    The findings from the analysis of the experimental results of this study may have apractical value, especially regarding the safety of the floodplain bed and bank stability. The following main conclusions can be drawn:

    (1) Flow structure, velocity, and water depth mainly depend on the groyne type, relative lengthLr, and relative distance between two groynes in series arrangements.

    (2) Using an impermeable groyne with a large relative length on a river floodplain generates flow eddies and separation zones downstream of the groyne and in the upper region of the main channel. This may lead to floodplain erosion.

    (3) The velocity in the main channel upper region decreases, while, in the middle and lower regions of the main channel, it increases. The velocity on the other floodplain also increases.

    (4) In cases of a single groyne whenLr= 0.5, 0.75, and 1.0, the negative velocities reached –20%, –30%, and –55% of the original velocity, respectively. Those negative velocities were substituted by increasing the flow velocity in the main channel and on the opposite floodplain. The increase could reach 1.4, 1.6, and 1.85 times the original velocity in the main channel, and 1.75, 2.25, 2.75 times the original ones on the other floodplain.

    (5) The effective distance between two symmetrical groynes on one side of the floodplain is from 3 to 4 times the groyne length.

    (6) Finally, using impermeable groynes with a large relative length in a river floodplain increases the risks during large flood events. River levee and embankment failures can occur if the protection works against the scouring process are weak, and the river can easily change its course and centerline. To mitigate those effects, the groyne length should be less than half the floodplain width.

    Acknowledgements

    The authors acknowledge Dr. Junji Yagisawa for his kindly help during the preparation of the experiments. The first author acknowledges his appreciation of the Egyptian Government for its financial support.

    Ettema, R. and Muste, M. 2004. Scale effects in flume experiments on flow around a spur dike in flatbed channel.Journal of Hydraulic Engineering, 130(7), 635-646. [doi:10.1061/(ASCE)0733-9429(2004) 130:7(635)]

    Francis, J. R. D., Pattanick, A. B., and Wearne, S. H. 1968. Observations of flow patterns around some simplified groyne structures in channels.Proceedings of the Institution of Civil Engineers, 829-846. London. [doi:10.1680/iicep.1968.7821]

    Gu, Z. and Ikeda, S. 2008. Experimental study of open channel flow with groins.Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, 1951-1956. Beijing: Tsinghua University Press.

    Kadota, A., Kojima, E., Shinya, K., and Suzuki, K. 2008. Instantaneous-advective structures of large scale coherent vortices around a single groyne.Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, 1137-1142. Beijing: Tsinghua University Press.

    Muraoka, H., Fushimi, T., Kadota, A., and Suzuki, K. 2008. Experimental study on changes of bed configuration caused by a permeable groyne of stone gabion.Proceedings of 16th IAHR-APD Congressand 3rd Symposium of IAHR-ISHS, 1072-1077. Beijing: Tsinghua University Press.

    Osman, M. A, Salih, A. M., and Ebrahim, A. A. 2001. Flow pattern around groynes.Sudan Engineering Society Journal, 47(39), 29-36.

    Rajaratnam, N., and Nwachukwu, B. A. 1983. Flow near groin-like structures.Journal of Hydraulic Engineering, 109(3), 463-480. [doi:10.1061/(ASCE)0733-9429(1983)109:3(463)]

    Teraguchi, H., Nakagawa, H., Muto, Y., Baba, Y., and Zhang, H. 2008. Effects of groins on the flow and bed deformation in non-submerged conditions.Annuals of Disaster Prevention Research Instituteof Kyoto University, 51B, 625-631.

    Uijttewaal, W. S. J. 2005. Effects of groyne layout on the flow in groyne fields: Laboratory experiments.Journal of Hydraulic Engineering, 131(9), 782-791. [doi:10.1061/(ASCE)0733-9429(2005)131:9(782)]

    U. S. Army Corps of Engineers (USACE). 1992.Coastal Groins and Nearshore Breakwaters. Washington, D. C.: U. S. Army Corps of Engineers.

    Yeo, H. K., Kang, J. G., and Kim, S. J. 2005. An Experimental study on tip velocity and downstream recirculation zone of single groynes of permeability change.KSCE Journal of Civil Engineering, 9(1), 29-38. [doi:10.1007/BF02829094]

    Yeo, H. K., and Kang, J. G. 2008. Flow analysis around a submerged groyne.Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS,1762-1766. Beijing: Tsinghua University Press.

    *Corresponding author (e-mail:tanaka01@mail.saitama-u.ac.jp)

    Received Jul. 15, 2009; accepted Dec. 10, 2009

    久久青草综合色| 国产xxxxx性猛交| 女性生殖器流出的白浆| 91国产中文字幕| 国产男人的电影天堂91| 天天躁日日躁夜夜躁夜夜| 午夜精品国产一区二区电影| 国产一卡二卡三卡精品| 永久免费av网站大全| 国产97色在线日韩免费| av电影中文网址| 黄色 视频免费看| 午夜福利一区二区在线看| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| 啦啦啦视频在线资源免费观看| 在线观看www视频免费| 国产av一区二区精品久久| 狠狠狠狠99中文字幕| 精品国产一区二区久久| 日日摸夜夜添夜夜添小说| 超碰97精品在线观看| 热99久久久久精品小说推荐| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美精品永久| 一边摸一边抽搐一进一出视频| 亚洲国产毛片av蜜桃av| 黄色视频不卡| 欧美日韩视频精品一区| 免费在线观看日本一区| 亚洲精品国产av蜜桃| 美女高潮喷水抽搐中文字幕| 亚洲美女黄色视频免费看| 国产高清国产精品国产三级| 亚洲熟女毛片儿| 考比视频在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 搡老岳熟女国产| 中文字幕人妻丝袜制服| 亚洲综合色网址| 亚洲专区字幕在线| 日韩视频在线欧美| 啪啪无遮挡十八禁网站| 国产高清videossex| 欧美日韩av久久| 欧美97在线视频| 男女之事视频高清在线观看| 欧美另类亚洲清纯唯美| 黑人巨大精品欧美一区二区mp4| 80岁老熟妇乱子伦牲交| 最新的欧美精品一区二区| 人妻久久中文字幕网| 亚洲欧美一区二区三区久久| tube8黄色片| 国产有黄有色有爽视频| 成人三级做爰电影| 97人妻天天添夜夜摸| 在线观看免费视频网站a站| 永久免费av网站大全| 高清av免费在线| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 美女脱内裤让男人舔精品视频| 国产区一区二久久| 成年人午夜在线观看视频| 欧美97在线视频| 人成视频在线观看免费观看| 黑人猛操日本美女一级片| 午夜激情av网站| 久久久精品免费免费高清| 交换朋友夫妻互换小说| 欧美国产精品一级二级三级| 亚洲欧美日韩另类电影网站| 亚洲av美国av| 国产成人影院久久av| 国产精品一区二区在线不卡| 妹子高潮喷水视频| 成人免费观看视频高清| 一本色道久久久久久精品综合| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| 国产福利在线免费观看视频| av网站在线播放免费| 老熟妇乱子伦视频在线观看 | 久久女婷五月综合色啪小说| 在线av久久热| 午夜激情av网站| 国产不卡av网站在线观看| 嫁个100分男人电影在线观看| 两个人看的免费小视频| 日韩制服丝袜自拍偷拍| 精品免费久久久久久久清纯 | 99热国产这里只有精品6| 窝窝影院91人妻| 男人舔女人的私密视频| 亚洲九九香蕉| 国产精品免费大片| 亚洲精品成人av观看孕妇| 亚洲,欧美精品.| 两性夫妻黄色片| 日本av手机在线免费观看| 久久久久久久国产电影| 国产伦人伦偷精品视频| 国产片内射在线| 亚洲成人免费电影在线观看| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 97精品久久久久久久久久精品| a级片在线免费高清观看视频| 国产一区二区三区av在线| 一级毛片精品| 亚洲欧美色中文字幕在线| 永久免费av网站大全| 欧美精品av麻豆av| 飞空精品影院首页| 男女之事视频高清在线观看| 搡老乐熟女国产| 秋霞在线观看毛片| 午夜影院在线不卡| 午夜福利免费观看在线| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲| 色94色欧美一区二区| 国产一区二区三区av在线| 夫妻午夜视频| 国产精品久久久久久精品电影小说| 成年av动漫网址| 亚洲中文av在线| 国产熟女午夜一区二区三区| 亚洲国产精品一区三区| 国产精品一二三区在线看| 亚洲视频免费观看视频| 久久精品国产亚洲av高清一级| 视频区图区小说| 黄色a级毛片大全视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲久久久国产精品| 亚洲精品日韩在线中文字幕| 桃花免费在线播放| 精品第一国产精品| 国产老妇伦熟女老妇高清| 久久人人97超碰香蕉20202| 热99久久久久精品小说推荐| 日韩欧美免费精品| 美女主播在线视频| 欧美少妇被猛烈插入视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品成人av观看孕妇| 97在线人人人人妻| 亚洲精品美女久久久久99蜜臀| 男女之事视频高清在线观看| 免费不卡黄色视频| 我的亚洲天堂| 精品福利观看| 国产在线免费精品| 精品久久蜜臀av无| 婷婷成人精品国产| 精品免费久久久久久久清纯 | 久久久久视频综合| 国产亚洲一区二区精品| 国产av精品麻豆| 国产精品 欧美亚洲| 不卡一级毛片| 国产免费福利视频在线观看| 青青草视频在线视频观看| 97在线人人人人妻| 国产精品成人在线| 老司机深夜福利视频在线观看 | 国产1区2区3区精品| 精品亚洲成a人片在线观看| 久久久久久久久久久久大奶| 国产成人a∨麻豆精品| 欧美在线黄色| 免费在线观看黄色视频的| 不卡av一区二区三区| 国产91精品成人一区二区三区 | 亚洲av成人一区二区三| kizo精华| 十分钟在线观看高清视频www| 水蜜桃什么品种好| 成人亚洲精品一区在线观看| 一区二区日韩欧美中文字幕| 美女主播在线视频| 男人爽女人下面视频在线观看| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 纯流量卡能插随身wifi吗| 51午夜福利影视在线观看| 久久久国产一区二区| 热re99久久精品国产66热6| 黑丝袜美女国产一区| 欧美日韩亚洲国产一区二区在线观看 | 18禁国产床啪视频网站| 桃花免费在线播放| 免费在线观看影片大全网站| 男女免费视频国产| 国产成人免费无遮挡视频| 巨乳人妻的诱惑在线观看| 成年人黄色毛片网站| 精品卡一卡二卡四卡免费| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 亚洲精品一卡2卡三卡4卡5卡 | 黄片播放在线免费| 成年动漫av网址| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 国产有黄有色有爽视频| 窝窝影院91人妻| 精品一品国产午夜福利视频| 老司机午夜十八禁免费视频| 动漫黄色视频在线观看| 一级片免费观看大全| 亚洲精品av麻豆狂野| 欧美在线黄色| 99久久精品国产亚洲精品| 亚洲熟女毛片儿| 精品国产乱码久久久久久男人| 国产日韩一区二区三区精品不卡| 国产xxxxx性猛交| 午夜精品久久久久久毛片777| www日本在线高清视频| 99国产精品免费福利视频| 爱豆传媒免费全集在线观看| 中文字幕制服av| 一级片免费观看大全| 大片免费播放器 马上看| 91麻豆精品激情在线观看国产 | 久久精品国产亚洲av香蕉五月 | 成人手机av| 天天躁日日躁夜夜躁夜夜| 欧美黄色片欧美黄色片| 午夜激情久久久久久久| 亚洲少妇的诱惑av| 中文字幕人妻熟女乱码| 狂野欧美激情性bbbbbb| 最近最新中文字幕大全免费视频| 国产1区2区3区精品| 在线永久观看黄色视频| av又黄又爽大尺度在线免费看| 国产一级毛片在线| 亚洲av欧美aⅴ国产| 美女福利国产在线| 在线精品无人区一区二区三| 高清在线国产一区| 精品国产一区二区三区四区第35| av片东京热男人的天堂| 18禁观看日本| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机午夜福利在线观看视频 | 国产又爽黄色视频| 精品久久久久久电影网| 国产高清视频在线播放一区 | 老汉色∧v一级毛片| 国产精品久久久久久人妻精品电影 | 亚洲欧美一区二区三区久久| 亚洲中文av在线| av天堂久久9| 在线观看人妻少妇| 香蕉国产在线看| 亚洲一区中文字幕在线| 久久人妻熟女aⅴ| 一级毛片精品| 他把我摸到了高潮在线观看 | 欧美性长视频在线观看| 久久中文字幕一级| 中国国产av一级| 亚洲欧美色中文字幕在线| 日本一区二区免费在线视频| 亚洲精品中文字幕在线视频| 国产精品成人在线| 亚洲欧美激情在线| 色精品久久人妻99蜜桃| 热99国产精品久久久久久7| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 免费人妻精品一区二区三区视频| 国产精品一区二区精品视频观看| 国产伦人伦偷精品视频| 亚洲专区字幕在线| 国内毛片毛片毛片毛片毛片| 亚洲成人手机| 黄色视频不卡| 精品国内亚洲2022精品成人 | 亚洲成人免费电影在线观看| 免费看十八禁软件| 日韩 亚洲 欧美在线| 国产有黄有色有爽视频| av电影中文网址| 国产亚洲欧美在线一区二区| 淫妇啪啪啪对白视频 | 操美女的视频在线观看| 丝瓜视频免费看黄片| 欧美日韩视频精品一区| 国产精品久久久久久精品古装| 美女大奶头黄色视频| 又黄又粗又硬又大视频| 十八禁网站网址无遮挡| 狂野欧美激情性xxxx| 久久久精品区二区三区| 亚洲精品久久久久久婷婷小说| 久久人人爽av亚洲精品天堂| 啦啦啦免费观看视频1| e午夜精品久久久久久久| 久久久久久人人人人人| 精品国产乱码久久久久久小说| 久久久精品区二区三区| 国产精品偷伦视频观看了| 国产精品免费视频内射| 亚洲欧美精品自产自拍| 久久精品亚洲熟妇少妇任你| 性色av乱码一区二区三区2| 国产成人精品久久二区二区免费| 国产成人精品在线电影| 国产免费一区二区三区四区乱码| 亚洲av电影在线进入| 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 国产97色在线日韩免费| 无遮挡黄片免费观看| 日本vs欧美在线观看视频| 飞空精品影院首页| 欧美日韩福利视频一区二区| 在线亚洲精品国产二区图片欧美| 最黄视频免费看| 国产无遮挡羞羞视频在线观看| 亚洲一区中文字幕在线| 亚洲av日韩在线播放| 亚洲欧美清纯卡通| 肉色欧美久久久久久久蜜桃| 久久精品亚洲熟妇少妇任你| 国产成人精品无人区| 夜夜骑夜夜射夜夜干| 国产一区二区三区在线臀色熟女 | 中文字幕另类日韩欧美亚洲嫩草| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看| av国产精品久久久久影院| 久久av网站| 正在播放国产对白刺激| 午夜福利,免费看| 男女国产视频网站| 亚洲视频免费观看视频| 国产高清国产精品国产三级| 精品乱码久久久久久99久播| 亚洲欧美日韩高清在线视频 | 亚洲美女黄色视频免费看| 午夜两性在线视频| 如日韩欧美国产精品一区二区三区| 国产日韩欧美视频二区| 一区二区三区精品91| 亚洲三区欧美一区| 波多野结衣一区麻豆| 在线观看www视频免费| 桃红色精品国产亚洲av| 妹子高潮喷水视频| 别揉我奶头~嗯~啊~动态视频 | 最新在线观看一区二区三区| 在线观看人妻少妇| 老司机福利观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人欧美在线观看 | 国产高清视频在线播放一区 | 国产精品久久久av美女十八| 老司机福利观看| 啦啦啦免费观看视频1| 亚洲国产欧美在线一区| 日韩精品免费视频一区二区三区| 法律面前人人平等表现在哪些方面 | 后天国语完整版免费观看| 精品国产超薄肉色丝袜足j| a在线观看视频网站| 国产亚洲av高清不卡| 丝袜人妻中文字幕| 国产一级毛片在线| 国产成人一区二区三区免费视频网站| 新久久久久国产一级毛片| 女人精品久久久久毛片| 国产又爽黄色视频| 欧美少妇被猛烈插入视频| 蜜桃在线观看..| 丰满迷人的少妇在线观看| 国产伦理片在线播放av一区| 一级毛片女人18水好多| 久久精品人人爽人人爽视色| 亚洲精品国产av成人精品| 精品免费久久久久久久清纯 | 丁香六月欧美| 精品久久久久久久毛片微露脸 | 精品人妻在线不人妻| 久久久久精品国产欧美久久久 | 最近最新免费中文字幕在线| 欧美成人午夜精品| 又大又爽又粗| 老汉色∧v一级毛片| 在线观看免费午夜福利视频| 涩涩av久久男人的天堂| 大片电影免费在线观看免费| 人妻 亚洲 视频| 免费久久久久久久精品成人欧美视频| 久久久欧美国产精品| 国产人伦9x9x在线观看| 成年人免费黄色播放视频| 国产av国产精品国产| 欧美日韩中文字幕国产精品一区二区三区 | 99热网站在线观看| 精品国产一区二区三区四区第35| 久久久久精品国产欧美久久久 | √禁漫天堂资源中文www| 久久久精品免费免费高清| 制服人妻中文乱码| 精品人妻熟女毛片av久久网站| 久久 成人 亚洲| 亚洲av电影在线进入| 高清欧美精品videossex| 久久99一区二区三区| 国产精品免费视频内射| 男人操女人黄网站| av线在线观看网站| 老司机午夜福利在线观看视频 | www.av在线官网国产| 热re99久久国产66热| 免费观看人在逋| 亚洲午夜精品一区,二区,三区| 久久免费观看电影| 黄色 视频免费看| 国产国语露脸激情在线看| 女人高潮潮喷娇喘18禁视频| 亚洲avbb在线观看| 深夜精品福利| 午夜日韩欧美国产| 纵有疾风起免费观看全集完整版| 久热爱精品视频在线9| 国产精品偷伦视频观看了| 亚洲国产成人一精品久久久| 18禁裸乳无遮挡动漫免费视频| avwww免费| 亚洲国产精品一区三区| 日韩熟女老妇一区二区性免费视频| 一本久久精品| 亚洲激情五月婷婷啪啪| 久久久久久久大尺度免费视频| 操美女的视频在线观看| 在线亚洲精品国产二区图片欧美| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美在线精品| 国产日韩一区二区三区精品不卡| 性高湖久久久久久久久免费观看| 老司机深夜福利视频在线观看 | 好男人电影高清在线观看| 十分钟在线观看高清视频www| 成年动漫av网址| 国产一区二区 视频在线| 五月开心婷婷网| 亚洲精品国产av成人精品| av超薄肉色丝袜交足视频| 动漫黄色视频在线观看| 日本vs欧美在线观看视频| 国产精品香港三级国产av潘金莲| 亚洲av电影在线观看一区二区三区| 国产在线视频一区二区| 中文字幕精品免费在线观看视频| 这个男人来自地球电影免费观看| 午夜精品国产一区二区电影| 91麻豆av在线| 人人妻人人爽人人添夜夜欢视频| 久久精品国产综合久久久| 天天操日日干夜夜撸| 国产精品1区2区在线观看. | 亚洲av日韩精品久久久久久密| 国产在视频线精品| 午夜福利在线观看吧| 少妇粗大呻吟视频| 一本—道久久a久久精品蜜桃钙片| 久热这里只有精品99| 看免费av毛片| 精品免费久久久久久久清纯 | 岛国在线观看网站| 亚洲美女黄色视频免费看| 精品人妻1区二区| 国产成人啪精品午夜网站| 亚洲精品美女久久久久99蜜臀| 搡老熟女国产l中国老女人| 日韩人妻精品一区2区三区| 蜜桃国产av成人99| 亚洲免费av在线视频| 久久精品aⅴ一区二区三区四区| 黑人欧美特级aaaaaa片| 美女脱内裤让男人舔精品视频| 亚洲精品一卡2卡三卡4卡5卡 | 日韩中文字幕欧美一区二区| 亚洲国产av影院在线观看| h视频一区二区三区| 一级毛片女人18水好多| 久久人妻熟女aⅴ| 一级a爱视频在线免费观看| 99香蕉大伊视频| 欧美av亚洲av综合av国产av| 久久久久久久久免费视频了| 亚洲九九香蕉| 亚洲欧美激情在线| 夜夜夜夜夜久久久久| 久久天堂一区二区三区四区| 国产成人a∨麻豆精品| 亚洲av欧美aⅴ国产| 少妇粗大呻吟视频| 国产亚洲欧美精品永久| 久久久水蜜桃国产精品网| 夜夜骑夜夜射夜夜干| 超色免费av| 女人高潮潮喷娇喘18禁视频| 欧美大码av| 免费高清在线观看日韩| 亚洲欧美日韩另类电影网站| 性少妇av在线| 少妇被粗大的猛进出69影院| 国产免费视频播放在线视频| 一级片免费观看大全| 另类精品久久| 欧美黄色淫秽网站| 亚洲,欧美精品.| 搡老熟女国产l中国老女人| 最新的欧美精品一区二区| 乱人伦中国视频| 国产亚洲欧美精品永久| 国产主播在线观看一区二区| 国产高清videossex| 国产av一区二区精品久久| 久久精品成人免费网站| 黄色怎么调成土黄色| 丝袜喷水一区| 老司机福利观看| 午夜福利乱码中文字幕| svipshipincom国产片| 精品亚洲成国产av| 国产成人av教育| 日本五十路高清| 色综合欧美亚洲国产小说| 欧美激情 高清一区二区三区| 看免费av毛片| 俄罗斯特黄特色一大片| 老司机影院成人| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美激情在线| 成人手机av| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久小说| 老熟妇仑乱视频hdxx| 精品一区二区三区四区五区乱码| 99久久人妻综合| 夜夜夜夜夜久久久久| 国产又爽黄色视频| www.精华液| 亚洲,欧美精品.| 看免费av毛片| 日韩视频一区二区在线观看| 高清欧美精品videossex| 电影成人av| 亚洲精品在线美女| 18禁黄网站禁片午夜丰满| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| 日韩欧美一区二区三区在线观看 | www.自偷自拍.com| 成人国产av品久久久| 99国产极品粉嫩在线观看| 大码成人一级视频| 在线观看免费视频网站a站| 9色porny在线观看| 国产有黄有色有爽视频| 美女视频免费永久观看网站| 国产精品免费大片| 日韩视频一区二区在线观看| 热re99久久精品国产66热6| av网站在线播放免费| 成人亚洲精品一区在线观看| 新久久久久国产一级毛片| 人人澡人人妻人| 久久99一区二区三区| 成人国产一区最新在线观看| 中国国产av一级| 亚洲七黄色美女视频| 自线自在国产av| 国产高清国产精品国产三级| 欧美xxⅹ黑人| 亚洲 国产 在线| 国产精品一区二区在线不卡| 黄频高清免费视频| 天天躁夜夜躁狠狠躁躁| 国产高清国产精品国产三级| 亚洲精品中文字幕一二三四区 | 人人妻人人澡人人爽人人夜夜| 亚洲五月色婷婷综合| 最新在线观看一区二区三区| 黄色视频不卡| 99热全是精品| 色综合欧美亚洲国产小说| 91成年电影在线观看| 亚洲三区欧美一区| 高清av免费在线| 精品国产一区二区三区久久久樱花| 免费在线观看影片大全网站| 精品一区在线观看国产| 精品免费久久久久久久清纯 | 热re99久久精品国产66热6| 国产激情久久老熟女| 人人妻人人澡人人爽人人夜夜| 另类精品久久| 欧美国产精品一级二级三级|