• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New acoustic system for continuous measurement of river discharge and water temperature

    2010-08-12 08:51:00KiyosiKAWANISIArataKANEKOShinyaNIGOMohammadSOLTANIASLMahmoudMAGHREBI
    Water Science and Engineering 2010年1期

    Kiyosi KAWANISI*, Arata KANEKO, Shinya NIGO, Mohammad SOLTANIASL, Mahmoud F. MAGHREBI

    1. Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan

    2. Ministry of Land, Infrastructure, Transport and Tourism, 2-4-36 Kitaku Sikadachou, Okayama 700-0914, Japan

    3. Civil Engineering Department, Ferdowsi University of Mashhad, P. O. Box 91775-1111, Mashhad, Iran

    New acoustic system for continuous measurement of river discharge and water temperature

    Kiyosi KAWANISI*1, Arata KANEKO1, Shinya NIGO2, Mohammad SOLTANIASL3, Mahmoud F. MAGHREBI3

    1. Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan

    2. Ministry of Land, Infrastructure, Transport and Tourism, 2-4-36 Kitaku Sikadachou, Okayama 700-0914, Japan

    3. Civil Engineering Department, Ferdowsi University of Mashhad, P. O. Box 91775-1111, Mashhad, Iran

    In many cases, river discharge is indirectly estimated from water level or streamflow velocity near the water surface. However, these methods have limited applicability. In this study, an innovative system, the fluvial acoustic tomography system (FATS), was used for continuous discharge measurement. Transducers with a central frequency of 30 kHz were installed diagonally across the river. The system’s significant functions include accurate measurement of the travel time of the transmission signal using a GPS clock and the attainment of a high signal-to-noise ratio as a result of modulation of the signal by the 10th order M-sequence. In addition, FATS is small and lightweight, and its power consumption is low. Operating in unsteady streamflow, FATS successfully measured the cross-sectional average velocity. The agreement between FATS and acoustic Doppler current profilers (ADCPs) on water discharge was satisfactory. Moreover, the temporal variation of the cross-sectional average temperature deduced from the sound speed of FATS was similar to that measured by a temperature sensor near the bank.

    streamflow; fluvial acoustic tomography; cross-sectional average velocity; unsteady flow; water temperature

    1 Introduction

    River discharge is an important hydrological factor in river and coastal planning/management, control of water resources, and environmental conservation. Therefore, establishing the method and technology for streamflow measurement is a crucial issue. However, it is very difficult to measure cross-sectional average velocity in unsteady flows or during extreme hydrologic events, such as flooding.

    For continuous measurement of water discharge, a few different pieces of equipment are available, e.g., acoustic velocity meters (AVMs) and horizontal acoustic Doppler currentprofilers (H-ADCPs) (Ruhl and DeRose 2004; Wang and Huang 2005). The main drawback of previously presented methods is that the number of velocity sample points in the cross-section of a stream is often insufficient for estimating cross-sectional average velocity. H-ADCPs can measure a horizontal profile of velocity over a range with sufficiently strong acoustical backscatter. However, H-ADCPs do not provide any information for vertical velocity profiles. Moreover, the horizontal profile range of H-ADCPs decreases with increasing suspended sediment concentration (SSC). In addition, H-ADCPs do not work well in estuaries because of the sound inflection.

    Although several methods have been introduced to estimate velocity distribution (Chiu and Hsu 2006; Maghrebi and Ball 2006), the results are disputable in complex flow fields such as stratified tidal flows or unsteady flows. Thus, innovative methods and/or equipment for continuous measurement of river discharge are needed.

    In this study, the fluvial acoustic tomography system (FATS) was developed and utilized to measure outflow rates from an estuary weir. FATS has advantages over competing techniques: namely, the accurate measurement of the travel time of the transmission signal using a GPS clock, and the attainment of a high signal-to-noise ratio (SNR) of signals due to modulation by the 10th order M-sequence. As a result, FATS works well even during flood events in which SSC and acoustic noise are very high (Kawanisi et al. 2010b). FATS also works well in estuaries with saltwater intrusion (Kawanisi et al. 2009; Kawanisi et al. 2010a).

    2 Measurement principles and error analysis

    The basic principle of FATS is similar to what is used in an AVM. In other words, the cross-sectional average velocity is calculated using the travel time method (Sloat and Gain 1995). The authors have tentatively called FATS a next-generation AVM in a previous paper (Kawanisi et al. 2008). An old-fashioned type of AVM measures average velocity along a transverse line. Therefore, the AVM requires different strategies, the index velocity method and the velocity profile method, for computing discharge. FATS is able to estimate cross-sectional average velocity using ray paths that cover the section, unlike an old-fashioned type of AVM.

    The travel time along theith reciprocal ray pathbetween a pair of transducers in the flowing medium is formulated as

    where +/? represents the positive/negative direction from one transducer to another,cis the sound speed,dsis the increment of arc length along the ray path,uis the flow velocity,nis the unit vector along the ray path, andNis the number of ray paths. The path integrals are taken along rays. We assume that the two-way path geometry is reciprocal andThe two-way travel time difference may be expressed as

    whereLiis the length of theith ray path, andandare the range average water velocity and the sound speed along theith ray path, respectively:

    is calculated from

    The cross-sectional average water velocity in the flow direction,, is defined as

    whereis the component of the mean water velocity along the ray paths, andθis the angle between the ray path and streamline.

    In order to estimate the cross-sectional average velocity, it is preferable that the ray paths cover the cross-section as much as possible. The ray paths of FATS probably cover the cross-section in a freshwater environment. However, a salt wedge under the transducer causes ray paths to be reflected, so those ray paths are not able to penetrate bottom layers (Kawanisi et al. 2009; Kawanisi et al. 2010a).

    In order to accurately identify the arrival time of a traveling sound mixed with noises, the transmission signal is phase-modulated by applying the pseudo-random sequence (Simon et al. 1985; Zheng et al. 1998). Fig. 1 shows the transmission signal modulated with the 3rd order M-sequence as a typical example. The carrier signal is phase-modulated by taking a product with the M-sequence. By transmitting this modulated signal, the SNR is increased significantly. In this study, the higher order (10th order) M-sequence is applied to get higher SNRs, increasing by2n?1, wherendenotes the order of the M-sequence.

    Fig. 1 Phase-modulation of carrier signal by 3rd order M-sequence

    The transmission signal with a phase-modulation is expressed as

    whereM(t) is the 10th order M-sequence, andA(t) andψ(t) are the amplitude and phase functions, respectively. The angular frequencyωwas set to 30 kHz in this study. The received signalS(t) was processed using the cross-correlation between the received signal and the 10th order M-sequence. This process serves to identify the precise arrival time.

    Based on the total differential of Eqs. (5) and (6), the relative errors ofandare estimated with Eqs. (8) and (9), respectively:

    The average travel time errorand the error of travel time differenceδ(Δti) are negligible when the pair of transducers is synchronized precisely with the GPS clock. As a result, the relative error of the average sound speedand the relative error of the average flow velocityare equated with the relative error of the ray’s length. The termon the right-hand side of Eq. (9) can be neglected ifδ(Δti) is insignificant.

    3 Experimental site and methodology

    An experiment with FATS was carried out from June 8 to 25, 2009 on the Hyakken River. Fig. 2 shows an aerial photograph of the experimental site. The array of sluice gates at the mouth intermittently opens to discharge fresh water at low tides, so that saline water does not enter the river. The direct distance between S1 and S2 was 418.5 m. The cross-section along the ray path is shown in Fig. 3.

    A couple of broadband transducers were installed diagonally across the channel, as shown in Fig. 2. The central frequency of the transducers was 30 kHz. The transducers were mounted at a height of 0.45 m above the bottom, as shown in Fig. 3, whereZis the elevation relative to the mean sea level. The acoustic pulses of FATS were simultaneously transmitted from the two omni-directional transducers triggered every minute by a GPS clock. The angle between the ray path and the stream direction,θ, was assumed to be 35° when water was discharged through the gates.

    An upward-facing ADCP was located on the bottom in front of the sluice gates (Fig. 2). The ADCP was operated at 2 MHz and the bin length was set to 0.1 m. The profile interval, which describes how often the instrument collected the current profile data, and the average interval, which specifies how long the instrument would be actively collecting data within each profile interval, were both 600 s.

    Water level and temperature were measured every 600 s with a pressure-temperaturesensor attached to the frame of a downstream transducer. The pressure-temperature sensor was located at a height of 0.4 m above the bottom.

    Fig. 2 Aerial view of study area and experimental setup

    Fig. 3 Bathymetry along sound transmission line and locations of two transducers

    4 Results and discussion

    4.1 Cross-correlation between modulated signal and M-sequence

    The typical wave forms of cross-correlation and the amplitude functionA(t) of the signal received by the upstream transducer are shown in Fig. 4. The cross-correlation between the modulated signal and the 10th order M-sequence has a sharp peak. Thus, we can determine the accurate arrival time of sound from the sharp peak of the cross-correlation wave. As a result, the cross-sectional average velocity was deduced from the arrival time of the transmitted signal.

    Fig. 4 Typical time plots of amplitude function and cross-correlation wave form

    4.2 Temporal variation of outflow rate

    The river discharge is calculated by FATS as follows:

    whereAis the cross-sectional area in which sound paths travel,His the water level, andθis the angle between the ray path and stream direction. The outflow rate from the gatesQ0is deduced from the following equation:

    whereVis the water volume between the gates and the river cross-section along the sound transmission line (ray path) of FATS.

    The temporal variation of the water level and outflow rate are illustrated in Fig. 5, whereHis the water level relative to the mean sea level. The water level varies due to intermittent discharge, and the variation of the water level reflects the duration of gate opening each day (Fig. 5(a)). Unfortunately, the measurement fell into abeyance from June 12 to 16 owing to some troubles with the downstream system (Fig. 5(b)). Specifically, we attached a new Bluetooth device in order to improve the system on June 12, and its operation damaged a DC-DC converter. The DC-DC converter was fixed on June 16. As a result, the system recovered and the improvement enabled us to access the system without wires.

    Fig. 5 Time plots of water level and outflow rate for June, 2009

    The water discharge estimated by FATS indicates a considerable magnitude even when the gate is closed. This is probably caused by the change in flow direction. In order to estimate the flow direction, a four-station system with two crossing transmission lines is required.

    4.3 Relationship between ADCP and FATS data

    In this subsection, the outflow rates deduced from the ADCP and FATS are compared in order to evaluate the performance of FATS. The relationship between the FATS velocity () and depth-averaged velocity of the ADCP (vADCP) is shown in Fig. 6. With low velocity (vADCP<0.1 m/s ), the correlation betweenandvADCPis low, as shown in Fig. 6(a).

    Conversely, there is high correlation in the higher velocity range, though there is large scatter whenvADCP>0.8 m/s . Fig. 6(b) presents the data whenvADCP≥0.1 m/s; the solid line denotes a regression line,=0.083 4+0.237vADCP. The standard deviations of the residuals from the regression line forvADCPandare 0.096 m/s and 0.026 m/s, respectively. The two instruments were installed in different places. Moreover, the definitions of average are different:vADCPis depth-averaged andis the cross-sectional average velocity. Thus, the low correlation betweenvADCPanddoes not indicate poor performance of FATS.

    Fig. 6 Relationship between cross-sectional average velocity of FATS and depth-averaged velocity of ADCP

    From the regression line, we can see that the decay of the FATS velocity is more moderate than that of the ADCP. The decay of the FATS velocity after the closing of the gates is delayed because the cross-section of FATS is somewhere other than the gates.

    The relationship between outflow rates of the ADCP and FATS is shown in Fig. 7. The ADCP discharge (QADCP) is estimated as a product of the depth-averaged velocity and the stream cross-sectional area of the gates. At a low flow rate, the FATS discharge (Q0) has a poor correlation withQADCP, like the poor correlation between the average velocities shown in Fig. 6(a). As shown in Fig. 7(b), however, correlation between both outflow rates is high with larger flow rates, both outflow rates are comparable, and the regression equation for the outflow rates isQ0=41.4+0.5QADCP. The standard deviations of residuals from the regression lines forQADCPandQ0are 19.3 m3/s and 11.8 m3/s, respectively.

    Fig. 7 Relationship between outflow rates of FATS discharge and ADCP discharge

    4.4 Temporal variation of water temperature

    The sound speedcis estimated by Medwin’s formula (Eq. (12)) as a function oftemperatureT(°C), salinityS, and depthD(m) (Medwin 1975) in the ranges of 0≤T≤35° C, 0≤S≤45, and0≤D≤1 000m:

    Since there is no saltwater intrusion at the experimental site, the water temperature can be estimated from the sound speed.

    Fig. 8 shows temporal variation of water temperatures obtained from the temperature sensor at S2 and FATS. Both temperatures indicate diurnal variation, except on June 10, when the diurnal variation was not determined because of the rain. The temperature at S2 measured by the temperature sensor is higher than the cross-sectional average temperature estimated by FATS because the location of the temperature sensor is shallow.

    Fig. 8 Temporal variation of water temperature for June, 2009

    5 Conclusions

    In order to conduct continuous measurement of river discharge, an FATS that utilizes a GPS clock and M-sequence modulation was developed and applied to shallow unsteady flow. Using a pair of transducers installed diagonally across the river, FATS was able to measure the cross-sectional average velocity. The cross-sectional average velocity of the river stream was estimated from the travel time of the transmission signal obtained along the ray paths, which cover the channel cross-section. The sufficiently high signal-to-noise ratio was obtained owing to the 10th order M-sequence modulation of the transmission signal.

    In addition to measurement of flow rate, the cross-sectional average water temperature was deduced from the mean acoustic speed measured by FATS. This means that all of these environmental factors are observational targets of FATS.

    Acknowledgements

    We would like to thank Dr. Noriaki Gohda of Hiroshima University/Aqua Environmental Monitoring Limited Liability Partnership (AEM-LLP) for strong support in field work and data processing.

    Chiu, C. L., and Hsu, S. M. 2006. Probabilistic approach to modeling of velocity distributions in fluid flows.Journal of Hydrology, 316(1-4), 28-42. [doi:10.1016/j.jhydrol.2005.04. 011]

    Kawanisi, K., Kaneko, A., Razaz, M., and Abe, T. 2008. Measurement of cross-sectional average velocity in a shallow tidal river with a next-generation acoustic velocity meter.Proceedings of 16thIAHR-APD Congress and 3rd Symposium of IAHR-ISHS, Vol. V: Hydraulic Structures for Water Projects, 1973-1977.. Beijing: Tsinghua University.

    Kawanisi, K., Watanabe, S., Kaneko, A., and Abe, T. 2009. River acoustic tomography for continuous measurement of water discharge.Proceedings of 3rd International Conference and Exhibition on Underwater Acoustic Measurements: Technologies and Results, 2, 613-620. Nafplion: Hellas Foundation for Research and Technology.

    Kawanisi, K., Razaz, M., Kaneko, A., and Watanabe, S. 2010a. Long-term measurement of stream flow and salinity in a tidal river by the use of the fluvial acoustic tomography system.Journal of Hydrology, 380(1-2), 74-81. [doi:10.1016/j.jhydrol.2009.10.024]

    Kawanisi, K., Watanabe, S., Kaneko, A., and Abe, T. 2010b. Continuous measurement of flood flow and cross-sectional average salinity in the Ota diversion channel with fluvial acoustic tomography.Annual Journal of Hydraulic Engineering-JSCE, 54, 1081-1086. (in Japanese)

    Maghrebi, M. F., and Ball, J. F. 2006. New method for estimation of discharge.Journal of Hydraulic Engineering, 132(10), 1044-1015. [doi:10.1061/(ASCE)0733-9429(2006)132: 10(1044)]

    Medwin, H. 1975. Speed of sound in water: A simple equation for realistic parameters.TheJournal of the Acoustical Society of America, 58, 1318-1319. [doi:10.1121/1.380790]

    Ruhl, C. A., and DeRose, J. B. 2004.Investigation of Hydroacoustic Flow-Monitoring Alternatives at the Sacramento River at Freeport, California: Results of the 2002-2004 Pilot Study,Scientific Investigation Report (2004-5172). Reston: U. S. Department of the Interior, U. S. Geological Survey.

    Simon, M. K., Omura, J. K., and Levitt, B. K. 1985.Spread Spectrum Communications Handbook.New York: McGraw-Hill.

    Sloat, J. V., and Gain, W. S. 1995.Application of Acoustic Velocity Meters for Gaging Discharge of Three Low-Velocity Tidal Streams in the St. John River Basin, Northeast Florida, Water-Resources Investigations Report(95-4230). Tallahassee: U. S. Department of the Interior, U. S. Geological Survey.

    Wang, F., and Huang, H. 2005. Horizontal acoustic Doppler current profiler (H-ADCP) for real-time open channel flow measurement: Flow calculation model and field validation.Proceedings of 31st IAHR Congress, 319-328. Seoul: International Association for Hydro-Environment Engineering and Research.

    Zheng, H., Yamaoka, H., Gohda, N., Noguchi, H., and Kaneko, A. 1998. Design of the acoustic tomography system for velocity measurement with an application to the coastal sea.Journal of Acoustic Society of Japan (E), 19, 199-210.

    This work was supported by the Construction Technology Research and Development Program of the Ministry of Land, Infrastructure, Transport and Tourism of Japan (No. 31), and the River Fund (N0.19-1212-005, 21-1212-009).

    *Corresponding author (e-mail:kiyosi@hiroshima-u.ac.jp)

    Received Sep. 17, 2009; Accepted Dec. 2, 2009

    亚洲欧洲日产国产| 国产成人精品福利久久| 免费大片18禁| 亚洲自偷自拍三级| 天堂中文最新版在线下载| 人妻 亚洲 视频| 亚洲精品国产av蜜桃| 亚洲精品第二区| 我要看黄色一级片免费的| 高清不卡的av网站| 成人无遮挡网站| 26uuu在线亚洲综合色| 欧美日韩一区二区视频在线观看视频在线| 午夜福利,免费看| 新久久久久国产一级毛片| 国产精品蜜桃在线观看| 国产乱来视频区| 国产爽快片一区二区三区| 九九爱精品视频在线观看| tube8黄色片| 久久久国产欧美日韩av| 亚洲精品中文字幕在线视频 | 夜夜骑夜夜射夜夜干| 久久久亚洲精品成人影院| 日本欧美国产在线视频| 日日爽夜夜爽网站| 丝瓜视频免费看黄片| 激情五月婷婷亚洲| 99热国产这里只有精品6| 国产真实伦视频高清在线观看| 亚洲精品自拍成人| 欧美精品一区二区大全| 男的添女的下面高潮视频| 寂寞人妻少妇视频99o| 国产av码专区亚洲av| 久久女婷五月综合色啪小说| 精品酒店卫生间| av有码第一页| 国产精品一区二区三区四区免费观看| 精品人妻熟女毛片av久久网站| 蜜桃在线观看..| h视频一区二区三区| 免费人成在线观看视频色| 国产日韩欧美在线精品| 99热这里只有是精品50| 亚洲av成人精品一区久久| 少妇精品久久久久久久| 又爽又黄a免费视频| 一级a做视频免费观看| 高清av免费在线| 国产亚洲91精品色在线| 亚洲美女视频黄频| 国产一区二区三区av在线| 少妇人妻一区二区三区视频| 亚洲熟女精品中文字幕| 亚洲精品视频女| 亚洲精品,欧美精品| 精品熟女少妇av免费看| 亚洲欧美一区二区三区黑人 | 男女无遮挡免费网站观看| 在线观看一区二区三区激情| 黄色欧美视频在线观看| 精品久久久噜噜| a级一级毛片免费在线观看| 亚洲第一av免费看| 日韩视频在线欧美| av黄色大香蕉| 伊人久久国产一区二区| 特大巨黑吊av在线直播| 亚洲精品中文字幕在线视频 | 久久久久久伊人网av| 99热国产这里只有精品6| 26uuu在线亚洲综合色| 国产一区二区在线观看av| 国产成人免费观看mmmm| 日韩中字成人| 天堂8中文在线网| 免费大片黄手机在线观看| 日本黄色日本黄色录像| 尾随美女入室| 国产成人精品福利久久| 波野结衣二区三区在线| 最近中文字幕2019免费版| av.在线天堂| 国产精品久久久久久久电影| 在线看a的网站| 欧美区成人在线视频| 夜夜看夜夜爽夜夜摸| 日韩欧美 国产精品| 少妇丰满av| 嫩草影院新地址| 国产精品一区二区在线不卡| 成人影院久久| 亚洲国产欧美在线一区| 日本wwww免费看| 日韩大片免费观看网站| 97在线视频观看| 亚洲国产精品一区三区| 国产视频首页在线观看| 日韩成人av中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 一区二区三区免费毛片| 老司机亚洲免费影院| 欧美3d第一页| 嘟嘟电影网在线观看| 国产深夜福利视频在线观看| 国产成人精品一,二区| 欧美变态另类bdsm刘玥| kizo精华| 人人妻人人澡人人爽人人夜夜| 伊人久久精品亚洲午夜| 欧美区成人在线视频| 久久免费观看电影| 69精品国产乱码久久久| 最近最新中文字幕免费大全7| av免费在线看不卡| 亚洲精品日韩av片在线观看| 精品久久久久久电影网| 观看美女的网站| 精品国产一区二区三区久久久樱花| 亚洲久久久国产精品| 国产精品.久久久| 成年美女黄网站色视频大全免费 | 精品人妻熟女毛片av久久网站| 久久国产精品大桥未久av | 最后的刺客免费高清国语| 简卡轻食公司| 免费看av在线观看网站| 国产色爽女视频免费观看| 亚洲精华国产精华液的使用体验| 精品少妇黑人巨大在线播放| 中文资源天堂在线| 久久久久久久久久久免费av| 欧美精品人与动牲交sv欧美| 免费播放大片免费观看视频在线观看| 国产男人的电影天堂91| 一二三四中文在线观看免费高清| 99九九线精品视频在线观看视频| 免费观看的影片在线观看| 婷婷色av中文字幕| 中文字幕久久专区| 80岁老熟妇乱子伦牲交| 91精品一卡2卡3卡4卡| 亚洲经典国产精华液单| 欧美xxⅹ黑人| 日本午夜av视频| 啦啦啦在线观看免费高清www| 日韩强制内射视频| 在线观看免费高清a一片| 精品久久久精品久久久| 亚洲欧美日韩另类电影网站| 老熟女久久久| 午夜福利,免费看| 国产精品久久久久久久电影| 国产精品国产三级专区第一集| 十分钟在线观看高清视频www | 色婷婷久久久亚洲欧美| 韩国av在线不卡| 乱码一卡2卡4卡精品| 中文资源天堂在线| 黑丝袜美女国产一区| 亚洲精品视频女| 日韩精品有码人妻一区| 多毛熟女@视频| 91精品伊人久久大香线蕉| 日韩 亚洲 欧美在线| 欧美丝袜亚洲另类| 国产亚洲av片在线观看秒播厂| 午夜福利,免费看| 亚洲电影在线观看av| freevideosex欧美| 亚洲精品日韩av片在线观看| 我的女老师完整版在线观看| 9色porny在线观看| 大香蕉97超碰在线| 少妇熟女欧美另类| 国产日韩欧美在线精品| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 99久久精品热视频| 亚洲欧洲精品一区二区精品久久久 | 国产一区二区在线观看日韩| 亚洲精品色激情综合| 在线观看美女被高潮喷水网站| 亚洲高清免费不卡视频| 最近手机中文字幕大全| 最近的中文字幕免费完整| 精品99又大又爽又粗少妇毛片| 国产淫语在线视频| 黄色日韩在线| 国产精品偷伦视频观看了| 亚洲一级一片aⅴ在线观看| 最近中文字幕高清免费大全6| 一本久久精品| 热99国产精品久久久久久7| 国产69精品久久久久777片| 成人美女网站在线观看视频| 不卡视频在线观看欧美| freevideosex欧美| 一本色道久久久久久精品综合| 97在线视频观看| 午夜91福利影院| 色视频www国产| 男人添女人高潮全过程视频| 插逼视频在线观看| 欧美日韩在线观看h| 成人国产av品久久久| 国产一区二区在线观看av| 国产国拍精品亚洲av在线观看| 色视频在线一区二区三区| 在线 av 中文字幕| 亚洲av在线观看美女高潮| 高清视频免费观看一区二区| 中文字幕人妻丝袜制服| 婷婷色综合大香蕉| 国产亚洲91精品色在线| 最近中文字幕高清免费大全6| 黄色视频在线播放观看不卡| 免费黄网站久久成人精品| 久久久精品免费免费高清| 国产精品一区二区在线观看99| 国产精品成人在线| 免费av中文字幕在线| 91精品国产国语对白视频| 性色avwww在线观看| 如何舔出高潮| 最新中文字幕久久久久| 18禁裸乳无遮挡动漫免费视频| 啦啦啦视频在线资源免费观看| 国产视频内射| 国产成人午夜福利电影在线观看| 人妻夜夜爽99麻豆av| 桃花免费在线播放| 免费观看无遮挡的男女| 国产乱来视频区| av视频免费观看在线观看| 视频区图区小说| 国产一区二区在线观看日韩| 成人漫画全彩无遮挡| 丝袜脚勾引网站| 亚洲美女搞黄在线观看| 亚洲国产日韩一区二区| 国产精品福利在线免费观看| 有码 亚洲区| 免费观看的影片在线观看| 国产乱人偷精品视频| 精品人妻熟女毛片av久久网站| 国产亚洲5aaaaa淫片| 日韩中文字幕视频在线看片| 观看美女的网站| 久久99热6这里只有精品| 赤兔流量卡办理| a级毛片在线看网站| 亚洲精品色激情综合| 男男h啪啪无遮挡| 丝袜在线中文字幕| 免费人成在线观看视频色| 三级国产精品欧美在线观看| 日日撸夜夜添| 一区二区三区免费毛片| 久久精品国产亚洲av天美| 国产在线视频一区二区| 只有这里有精品99| 激情五月婷婷亚洲| a 毛片基地| 久久久a久久爽久久v久久| 少妇高潮的动态图| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 色视频www国产| 免费少妇av软件| 人妻夜夜爽99麻豆av| 国产男人的电影天堂91| 高清欧美精品videossex| 国产日韩欧美亚洲二区| 三级经典国产精品| 色婷婷av一区二区三区视频| 99九九在线精品视频 | 亚洲真实伦在线观看| 视频中文字幕在线观看| 最近的中文字幕免费完整| 国产淫语在线视频| 午夜福利网站1000一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美日韩卡通动漫| 婷婷色av中文字幕| 熟女av电影| 亚洲精品自拍成人| 日韩强制内射视频| a级毛色黄片| h视频一区二区三区| 国产精品一区二区性色av| 亚洲国产欧美在线一区| 亚洲婷婷狠狠爱综合网| 欧美成人午夜免费资源| 国产高清不卡午夜福利| 少妇人妻一区二区三区视频| 91在线精品国自产拍蜜月| 亚洲av综合色区一区| 亚洲欧美成人精品一区二区| 中文欧美无线码| 最近中文字幕高清免费大全6| 欧美丝袜亚洲另类| 国产毛片在线视频| 国产一区二区在线观看日韩| 啦啦啦中文免费视频观看日本| 成年av动漫网址| 免费观看av网站的网址| 在线观看免费日韩欧美大片 | 国产精品秋霞免费鲁丝片| 日本爱情动作片www.在线观看| 亚洲av综合色区一区| 国产欧美亚洲国产| 国产一区二区三区av在线| 人人澡人人妻人| 性色av一级| 在线精品无人区一区二区三| 如日韩欧美国产精品一区二区三区 | 三级国产精品片| 亚洲精华国产精华液的使用体验| 日韩av在线免费看完整版不卡| 亚洲欧洲精品一区二区精品久久久 | 婷婷色av中文字幕| 九九爱精品视频在线观看| 欧美 亚洲 国产 日韩一| videos熟女内射| 久久久久久久久久人人人人人人| 亚洲av男天堂| 插阴视频在线观看视频| 久久久久久久亚洲中文字幕| 午夜福利网站1000一区二区三区| 国产精品免费大片| 亚洲精品成人av观看孕妇| 久久久久久久久久成人| 日本av免费视频播放| 黄色毛片三级朝国网站 | 日韩一本色道免费dvd| 色视频在线一区二区三区| 国产爽快片一区二区三区| 九九在线视频观看精品| 十分钟在线观看高清视频www | 一级爰片在线观看| 国产精品一区二区性色av| 国产精品欧美亚洲77777| 国产精品一二三区在线看| 日韩,欧美,国产一区二区三区| 搡女人真爽免费视频火全软件| 一区二区三区乱码不卡18| 久久狼人影院| 亚洲精品亚洲一区二区| 能在线免费看毛片的网站| 成年av动漫网址| 欧美xxⅹ黑人| 国产视频首页在线观看| 性色av一级| 伦理电影大哥的女人| 国产精品国产三级国产av玫瑰| 男人和女人高潮做爰伦理| 久久毛片免费看一区二区三区| 日本av免费视频播放| 国产成人a∨麻豆精品| 一个人免费看片子| 高清黄色对白视频在线免费看 | 在线观看人妻少妇| 大话2 男鬼变身卡| 成人特级av手机在线观看| 亚洲成人一二三区av| 看十八女毛片水多多多| 日韩大片免费观看网站| 欧美精品亚洲一区二区| kizo精华| 亚洲av成人精品一二三区| 插阴视频在线观看视频| 国产又色又爽无遮挡免| 大陆偷拍与自拍| 亚洲经典国产精华液单| 亚洲欧美清纯卡通| 久久久久久伊人网av| 日韩av在线免费看完整版不卡| 青春草国产在线视频| 久久久久国产精品人妻一区二区| 成人美女网站在线观看视频| 黑丝袜美女国产一区| 国产成人免费观看mmmm| 欧美日韩av久久| 在线播放无遮挡| 免费播放大片免费观看视频在线观看| 午夜福利视频精品| 欧美精品高潮呻吟av久久| 天天躁夜夜躁狠狠久久av| √禁漫天堂资源中文www| 国产69精品久久久久777片| 久久精品国产亚洲av涩爱| 精品国产一区二区久久| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 精品久久久久久久久亚洲| 国模一区二区三区四区视频| 精品一区二区三卡| 国产一区二区三区av在线| 亚洲欧美清纯卡通| 国产成人午夜福利电影在线观看| 最黄视频免费看| 国语对白做爰xxxⅹ性视频网站| av视频免费观看在线观看| 69精品国产乱码久久久| 亚洲精品国产av成人精品| 久久毛片免费看一区二区三区| 日本av免费视频播放| 99久久精品国产国产毛片| 麻豆成人av视频| 亚洲伊人久久精品综合| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 国产亚洲欧美精品永久| 韩国高清视频一区二区三区| av有码第一页| 午夜激情久久久久久久| 国产成人aa在线观看| 国产伦在线观看视频一区| 爱豆传媒免费全集在线观看| 麻豆成人午夜福利视频| 人人妻人人爽人人添夜夜欢视频 | 美女xxoo啪啪120秒动态图| 中文字幕制服av| 国产一区二区三区综合在线观看 | 亚洲欧美清纯卡通| 免费看不卡的av| 亚洲怡红院男人天堂| 五月天丁香电影| 在线精品无人区一区二区三| 一级毛片 在线播放| 51国产日韩欧美| 亚洲精品一二三| 七月丁香在线播放| 久久久久国产精品人妻一区二区| 欧美激情极品国产一区二区三区 | 国产乱人偷精品视频| 成人毛片60女人毛片免费| 国产高清国产精品国产三级| 涩涩av久久男人的天堂| 永久网站在线| 校园人妻丝袜中文字幕| 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 日韩一区二区三区影片| 黄色日韩在线| 久久久久人妻精品一区果冻| 欧美成人午夜免费资源| 男女边摸边吃奶| 亚洲va在线va天堂va国产| 国产av一区二区精品久久| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 美女大奶头黄色视频| 亚洲高清免费不卡视频| 色5月婷婷丁香| 亚洲精品乱久久久久久| 亚洲av不卡在线观看| 午夜福利网站1000一区二区三区| 午夜福利视频精品| 尾随美女入室| av又黄又爽大尺度在线免费看| 久久精品国产亚洲av涩爱| 亚洲电影在线观看av| 日本av手机在线免费观看| 日韩精品免费视频一区二区三区 | 午夜老司机福利剧场| 日本欧美视频一区| 日本色播在线视频| av不卡在线播放| a级片在线免费高清观看视频| 久久久久久久久大av| 热re99久久精品国产66热6| 国产av码专区亚洲av| 精品少妇久久久久久888优播| tube8黄色片| 国产 一区精品| 下体分泌物呈黄色| 伦理电影大哥的女人| 国产综合精华液| 国产av一区二区精品久久| 女人精品久久久久毛片| 久久久久久久国产电影| 蜜臀久久99精品久久宅男| 国产精品嫩草影院av在线观看| 黄色日韩在线| 综合色丁香网| 国产av一区二区精品久久| 亚州av有码| 特大巨黑吊av在线直播| 亚洲av国产av综合av卡| 我要看黄色一级片免费的| 女性生殖器流出的白浆| 91久久精品国产一区二区三区| 国产淫语在线视频| 丰满人妻一区二区三区视频av| 三上悠亚av全集在线观看 | 亚洲欧美一区二区三区国产| 高清午夜精品一区二区三区| 久久6这里有精品| 伦精品一区二区三区| 丰满乱子伦码专区| 亚洲三级黄色毛片| 各种免费的搞黄视频| 蜜桃久久精品国产亚洲av| 中文欧美无线码| 狂野欧美激情性bbbbbb| 大陆偷拍与自拍| 大片免费播放器 马上看| av有码第一页| 天美传媒精品一区二区| 97超碰精品成人国产| 国产亚洲91精品色在线| 国产在线一区二区三区精| 欧美日韩在线观看h| 三级国产精品片| 男女边摸边吃奶| 狂野欧美激情性bbbbbb| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 性高湖久久久久久久久免费观看| 亚洲,一卡二卡三卡| 高清视频免费观看一区二区| 欧美另类一区| 在线观看免费视频网站a站| 18禁裸乳无遮挡动漫免费视频| 中文字幕亚洲精品专区| 国产精品偷伦视频观看了| 乱系列少妇在线播放| 精品熟女少妇av免费看| 国产免费一区二区三区四区乱码| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 另类亚洲欧美激情| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 久久精品国产自在天天线| 国产69精品久久久久777片| 国产极品天堂在线| 51国产日韩欧美| 在线看a的网站| 亚洲四区av| 你懂的网址亚洲精品在线观看| 国产精品久久久久久av不卡| 国产精品.久久久| 亚洲,一卡二卡三卡| 黄色配什么色好看| 国产黄片视频在线免费观看| 内射极品少妇av片p| 成人漫画全彩无遮挡| 午夜免费男女啪啪视频观看| 伦理电影免费视频| 另类亚洲欧美激情| 夫妻午夜视频| 国产在线男女| 伦理电影免费视频| 80岁老熟妇乱子伦牲交| 91久久精品国产一区二区三区| kizo精华| 一级毛片久久久久久久久女| 久热这里只有精品99| a级毛片免费高清观看在线播放| 国产在线男女| 日韩强制内射视频| 中文资源天堂在线| 视频中文字幕在线观看| 一个人看视频在线观看www免费| 一区二区三区四区激情视频| 大香蕉久久网| 国产精品久久久久久av不卡| 大陆偷拍与自拍| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线| 99九九在线精品视频 | 嫩草影院新地址| 精品酒店卫生间| 最后的刺客免费高清国语| 国产熟女欧美一区二区| 一区二区三区乱码不卡18| 美女脱内裤让男人舔精品视频| 中文字幕精品免费在线观看视频 | 国产精品久久久久久精品电影小说| 中文天堂在线官网| 最近2019中文字幕mv第一页| av在线观看视频网站免费| 免费看日本二区| 搡女人真爽免费视频火全软件| 又爽又黄a免费视频| 一级毛片 在线播放| 成人综合一区亚洲| 伦理电影免费视频| 久久久久久久久久成人| 国产免费视频播放在线视频| 欧美区成人在线视频| 国内精品宾馆在线| 一级,二级,三级黄色视频| 国产亚洲一区二区精品| 国产极品粉嫩免费观看在线 | 精品久久久精品久久久| 最近中文字幕2019免费版| 午夜福利影视在线免费观看| 成人毛片60女人毛片免费| 狂野欧美激情性bbbbbb| 欧美日韩在线观看h| 黑人巨大精品欧美一区二区蜜桃 | 国产色爽女视频免费观看| 国产国拍精品亚洲av在线观看| 两个人免费观看高清视频 | 国产又色又爽无遮挡免| 噜噜噜噜噜久久久久久91| 国产探花极品一区二区| 六月丁香七月| 高清黄色对白视频在线免费看 | 日韩av在线免费看完整版不卡|