• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China

    2010-08-12 08:51:00JamesOlocheOLEYIBLOZhijiaLI
    Water Science and Engineering 2010年1期

    James Oloche OLEYIBLO*, Zhi-jia LI

    College of Hydrology and Water Resources, Hohai University, Nanjing 210098, P. R. China

    Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China

    James Oloche OLEYIBLO*, Zhi-jia LI

    College of Hydrology and Water Resources, Hohai University, Nanjing 210098, P. R. China

    The hydrologic model HEC-HMS (Hydrologic Engineering Center, Hydrologic Modeling System), used in combination with the Geospatial Hydrologic Modeling Extension, HEC-GeoHMS, is not a site-specific hydrologic model. Although China has seen the applications of many hydrologic and hydraulic models, HEC-HMS is seldom applied in China, and where it is applied, it is not applied holistically. This paper presents a holistic application of HEC-HMS. Its applicability, capability and suitability for flood forecasting in catchments were examined. The DEMs (digital elevation models) of the study areas were processed using HEC-GeoHMS, an ArcView GIS extension for catchment delineation, terrain pre-processing, and basin processing. The model was calibrated and verified using historical observed data. The determination coefficients and coefficients of agreement for all the flood events were above 0.9, and the relative errors in peak discharges were all within the acceptable range.

    hydrologic model; HEC-HMS; catchment delineation; DEM; terrain pre-processing; Misai Catchment; Wan’an Catchment

    1 Introduction

    HEC-1 is a mathematical watershed model that contains several methods with which to simulate surface runoff and river/reservoir flow in river basins. The hydrologic model, together with flood damage computations (also included in the model), provides a basis for evaluation of flood control projects. The HEC-1 hydrologic model was originally developed in 1967 by Leo R. Beard and other staff members of the Hydrologic Engineering Center, with the U. S. Army Corps of Engineers, to simulate flood hydrographs in complex river basins (Singh 1982). Since then, the program has undergone a revision: different versions of the model with greatly expanded capabilities have been released. This study used the HEC-HMS Version 2.2.1. The HEC model is designed to simulate the surface runoff response of a catchment to precipitation by representing the catchment with interconnected hydrologic and hydraulic components. It is primarily applicable to flood simulations. In HEC-HMS, the basin model comprises three vital processes; the loss, the transform and the base flow. Each element in the model performs different functions of the precipitation-runoff process within a portion of the catchment or basin known as a sub-basin. An element may depict a surface runoff, a streamchannel, or a reservoir. Each of the elements is assigned a variable which defines the particular attribute of the element and mathematical relations that describe its physical processes. The result of the modeling process is the computation of stream flow hydrographs at the catchment outlet.

    2 What necessitates hydrologic modeling

    The design, construction and operation of many hydraulic projects require an adequate knowledge of the variation of the catchment’s runoff, and for most of these problems it would be ideal to know the exact magnitude and the actual time of occurrence of all stream flow events during the construction period and economic life of the project. If this information was available at the project planning and design stages, it would be possible to select from amongst all alternatives a design, construction program, and operational procedure that would produce a project output with an optimized objective function. Unfortunately, such ideal and precise information is never available because it is impossible to have advance knowledge of the project hydrology for water resources development projects; it is necessary to develop plans, designs, and management techniques using a hypothetical set of future hydrologic conditions. It is the determination of these future hydrologic conditions that has long occupied the attention of engineering hydrologists who have attempted to identify acceptable simplifications of complex hydrologic phenomena and to develop adequate models for the prediction of the responses of catchments to various natural and anthropogenic hydrologic and hydraulic phenomena. In view of these, a number of hydrologic models have been developed for flood forecasting and the study of rainfall-runoff processes (Crawford and Linsley 1966; Burnash et al. 1973; Sugawara 1979; Beven and Kirkby 1979; Sivapalan et al. 1987; Zhao 1992; Todini 1996). In recent times, GIS (geographic information systems) has become an integral part of hydrologic studies because of the spatial character of the parameters and precipitation controlling hydrologic processes. GIS plays a major role in distributed hydrologic model parameterization. This is to overcome gross simplifications made through representation by lumping of parameters at the river basin scale. The extraction of hydrologic information, such as flow direction, flow accumulation, watershed boundaries, and stream networks, from a DEM (digital elevation model) is accomplished through GIS applications. This study combined GIS with HEC-HMS, and analyzed the model’s suitability for the studied catchments.

    3 Methodology

    The methodology can be divided into four major tasks: (1) obtaining the geographic locations of the studied basins; (2) DEM processing, delineating streams and watershed characteristics, terrain processing, and basin processing; (3) importing the processed data to HMS; and (4) merging the observed historical data with the processed DEM for model simulations.

    4 Study areas and data processing

    4.1 Study areas

    The model was applied to two catchments: the Misai and Wan’an Catchments. The Misai Catchment is in Zhejiang Province, in southern China. It has a total of six rain gauge measurement stations: Qixi, Majin, Yanxi, Daxibian, Huanglinkang, and Misai. The catchment has a total area of 797 km2. The Wan’an Catchment is in Anhui Province, in southern China. It has a total of four rain gauge measurement stations: Xiuning, Yixian, Yanqian, and Rucun. The catchment has a total area of 869 km2. The region is very similar to the Misai Catchment; in fact, they are neighboring catchments, both mountainous with thick vegetation cover, very fertile with a highly permeable upper layer soil profile, and humid.

    4.2 Data processing

    30" × 30" resolution DEMs were generated from data provided by the U. S. Geological Survey (USGS) (NGDC 2009), from the website. The hydrologic models were generated with the help of HEC-GeoHMS (USACE 2000a, 2000b) using DEMs of the study areas (Fig. 1 and Fig. 2). Using DEM terrain data, HEC-GeoHMS produces HMS input files, a stream network, sub-basin boundaries, and connectivity of various hydrologic elements in an ArcView GIS environment via a series of steps called terrain pre-processing and basin processing. The physical representation of catchments and rivers was configured in the basin models, and hydrologic elements were linked.

    Fig. 1 Misai Catchment raw DEM

    Fig. 2 Wan’an Catchment raw DEM

    4.3 Terrain pre-processing

    Determination of a hydrologically correct DEM and its derivatives, mainly the flow direction and flow accumulation grids, often demands some iteration of drainage path calculations in order to precisely depict the flow of water through the catchment, the hydrologically correct DEM must have a resolution sufficient to capture the details of surface flow. Problems often arise when the drainage area has a coarse resolution. These problems can be overcome if proper care is taken in the terrain pre-processing stage to produce a fineresolution of the drainage area. To obtain the DEM used to delineate various components of the catchments used for this study, the following steps were taken.

    4.3.1 Filling sinks

    A sink is a cell with no clear or defined drainage direction; all surrounding cells have higher elevation, resulting in stagnation of water. To overcome this problem, the sink has to be filled by modifying the elevation value. Once the sinks in a DEM are removed by breaching and filling, the resulting flat surface must still be interpreted to define the surface drainage pattern, because there is no flow on flat areas by definition, so the next step in the procedure requires that flow direction be assigned. The elevation of pit cells is simply increased until a down-slope path to a cell becomes available, under the constraint that flow may not return to a pit cell.

    4.3.2 Flow direction

    The flow direction was derived from the filled grid based on the premise that water flows downhill, and will follow the steepest descent direction. It provides the flat filled surface with a slope to enable water flow freely downward without having to be impounded or trapped. This was done by the assigned gentle slope to the filled grid DEM until the steepest descent direction was achieved. Water can flow from one cell to one of its eight adjacent cells in the steepest descent direction.

    4.3.3 Flow accumulation

    Based on the derived flow direction grid, the flow accumulation was calculated. A flow accumulation grid was calculated from the flow direction grid. The flow accumulation records the number of cells that drain into an individual cell in the grid. The flow accumulation grid is essentially the area of drainage to a specific cell measured in grid units. The flow accumulation grid is the core grid in stream delineation.

    4.3.4 Stream definition

    The threshold area was assigned to the flow accumulation grid in order to obtain the stream flow path. The stream flow path is defined by a number of cells that accumulate in an area before they are recognized.

    5 Model application and calibration

    In this study, 16 flood events that occurred during the seven-year period of 1982-1988 in the Misai Catchment and 15 flood events from 1987 and 2002 (there were no data from the period of 1998-2001) in the Wan’an Catchment were used for model testing. These data were obtained from theChinese Hydrological Year Book. HMS uses a project name as an identifier for a hydrologic model. An HMS project must have the following components before it can be run: a basin model, a meteorological model, and control specifications. The basin model and basin features were created in the form of a background map file imported to HMS from the data derived through HEC-GeoHMS for model simulation (Fig. 3 and Fig. 4). The observedprecipitation and discharge data were used to create the meteorological model using the user gauge weighting method and, subsequently, the control specification model was created. The control specifications determine the time pattern for the simulation; its features are: a starting date and time, an ending date and time, and a computation time step. To run the system, the basin model, the meteorological model, and the control specifications were combined. The observed historical data of six precipitation stations representing each sub-catchment and one stream gauge station in the Misai Catchment, and four precipitation stations representing each sub-catchment and one stream gauge station in the Wan’an Catchment, were used for model calibration and verification. An hourly time step was used for the simulation based on the time interval of the available observed data.

    Fig. 3 Processed results for Misai Catchment imported to HMS for simulation

    Fig. 4 Processed results for Wan’an Catchment imported to HMS for simulation

    The initial and constant method was employed to model infiltration loss. The SCS (Soil Conservation Service) unit hydrograph method was used to model the transformation of precipitation excess into direct surface runoff. The exponential recession model was employed to model baseflow. The Muskingum routing model was used to model the reaches.

    The trial and error method, in which the hydrologist makes a subjective adjustment of parameter values in between simulations in order to arrive at the minimum values of parameters that give the best fit between the observed and simulated hydrograph, was employed to calibrate the model. The criterion used to evaluate the fit was the determination coefficient (DC). Although the model was calibrated manually, the HEC-HMS built-in automatic optimization procedure was used to authenticate the acceptability and suitability of the parameter values and their ranges as applicable to their uses in HEC-HMS. The choice of the objective function depends upon the need. Here, percentage error in peak flow and volume were employed during the optimization and implementation of the univariate gradient search method. The recession constant was 0.70.

    As stated earlier, ten flood events that occurred over four years in the Misai Catchment were used for model calibration, and six flood events that occurred over three years in theMisai Catchment were used for model verification. In the Wan’an Catchment, nine flood events that occurred over eight years were used to calibrate the model and six flood events that occurred over four years were used for model verification.

    6 Results and discussion

    As described in the introduction, each component of HEC-HMS models an aspect of the precipitation-runoff process within a portion of the basin, commonly referred to as a sub-basin. Representation of a component requires a set of parameters that specify the particular characteristics of the component and mathematical relations that describe the physical processes (Singh 1982). Tables 1 and 2 below show the calibrated parameter values of each of the components represented in this model. Apart from the sub-areas, which are fixed, parameters were calibrated simultaneously through adjustment of their values until a good agreement between the observed and simulated hydrographs was achieved.

    Table 1 Calibrated parameter values of Misai Catchment

    Table 2 Calibrated parameter values of Wan’an Catchment

    The calibration and validation graphs of the two catchments are shown below. Figs. 5 through 8 show good agreement between observed and simulated graphs. Also, Tables 3 and 4 show observed and simulated values, as well asDCvalues, for both calibration and validation of the two catchments.

    Qsis the simulated discharge,Qois the observed discharge, andDCis defined as follows:

    whereyo(i) is the observed discharge for each time stepi,yc(i) is the simulated value at time stepi,is the mean observed discharge, andnis the total number of values within the time period.

    Fig. 5 Observed vs. simulated discharge in 1982 for calibration

    Fig. 6 Observed vs. simulated discharge in 1986 for validation

    Fig. 7 Observed vs. simulated discharge in 1990 for calibration

    Fig. 8 Observed vs. simulated discharge in 2002 for validation

    Table 3 Calibration and validation results for Misai Catchment

    Table 4 Calibration and validation results for Wan’an Catchment

    It can be seen in the above graphs that the simulated and observed peak discharges occurred on the same day, and their maximum time difference was one hour, which is acceptable for flood forecasting. The entireDCfor the Misai Catchment was above 0.9, while in the Wan’an Catchment there were twoDCvalues below the acceptable value: 0.74 and 0.76. Li et al. (2008) applied the Xin’anjiang model to the Misai Catchment with the same data set and obtained almost the same results.

    7 Conclusions

    As shown in the results above, the model predicted peak discharge accurately based on the available historical flood data. Both the flood volume and timing were fairly accurate. This shows that HEC-HMS is suitable for the studied catchments. From the results, we can conclude that the complexity of the model structure does not determine its suitability and efficiency. Though the structure of HEC-HMS is simple, it is a powerful tool for flood forecasting. A further application of HEC-HMS should be encouraged to confirm its suitability for the Chinese catchments.

    Acknowledgements

    The author would like to acknowledge the use of observation data from theChinese Hydrological Year Book, and to thank Hohai University in Nanjing, P. R. China, for supporting this study.

    Beven, K. J., and Kirkby, M. J. 1979. A physically based variable contributing area model of basin hydrology.Hydrological Sciences Bulletin, 24(1), 43-69.

    Burnash, R. J., Ferra, R. L., and McGuire, R. A. 1973.A General Stream Flow Simulation System Conceptual Modeling for Digital Computer. Sacramento: Joint Federal State River Forecasts Center.

    Chow, V. T., Maidment, D. R., and Mays, L. W. 1988.Applied Hydrology. New York: McGraw-Hill.Clarke, R. T. 1975. Prediction in catchment hydrology. Chapman, T. G., and Dunin, F. X., eds.,Proceedings of a National Symposium on Hydrology, 482. Canberra: Australian Academy of Science.

    Crawford, N. H., and Linsley, R. K. 1966.Digital Simulation in Hydrology:The Stanford Watershed Model IV Technical Report.Palo Alto, CA: Stanford University.

    Li, S. Y., Qi, R. Z., and Jia, W. W. 2008. Calibration of the conceptual rainfall-runoff model’s parameters.Proceeding of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, 55-59. Beijing: Tsinghua University Press.

    National Geophysical Data Center (NGDC). http://www.ngdc.noaa.gov/cgi-bin/mgg/ff/nph-newform.pl/ mgg/topo/customdatacd/ [Retrieved Oct. 6, 2009]

    Singh, V. P. 1982.Applied Modeling in Catchment Hydrology. Littleton, CO: Water Resources Publications.

    Sivapalan, M., Beven, K. J., and Wood, E. F. 1987. On hydrologic similarity 2: A scale model of storm runoff production.Water Resources Research, 23(12), 2266-2278.

    Sugawara, M. 1979. Automatic calibration of the tank model.Hydrological SciencesBulletin, 24(3), 375-388.

    Todini, E. 1996. The ARNO rainfall-runoff model.Journal of Hydrology, 175(1-4), 339-382. [doi: 10.1016/S0022-1694(96)80016-3]

    U. S. Army Corps of Engineers (USACE). 2000a. Geospatial modeling extension.HEC-GeoHMS,User’s Manual. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering Center.

    U. S. Army Corps of Engineers (USACE). 2000b.Hydrologic Modeling System: Technical Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering Center.

    Zhao, R. J. 1992. The Xin’anjiang model applied in China.Journal of Hydrology, 135(1-4), 371-381. [doi: 10.1016/0022-1694(92)90096-E]

    *Corresponding author (e-mail:evangjamesa1@yahoo.com;evangjamesa1@gmail.com)

    Received Nov. 3, 2009; accepted Dec. 23, 2009

    欧美一区二区精品小视频在线| 搡老岳熟女国产| 男女做爰动态图高潮gif福利片 | 淫秽高清视频在线观看| 国产免费现黄频在线看| 老司机在亚洲福利影院| 欧美成人免费av一区二区三区| 久久久久九九精品影院| 在线观看免费日韩欧美大片| 香蕉国产在线看| 久久午夜亚洲精品久久| 日韩人妻精品一区2区三区| 久久久久久久久久久久大奶| а√天堂www在线а√下载| 69av精品久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 国产欧美日韩综合在线一区二区| 日本wwww免费看| 久久热在线av| 亚洲精品在线美女| 午夜福利欧美成人| 一二三四社区在线视频社区8| 琪琪午夜伦伦电影理论片6080| 18禁美女被吸乳视频| 日本a在线网址| 日本免费a在线| 亚洲自偷自拍图片 自拍| 级片在线观看| 99香蕉大伊视频| 国产精品成人在线| 国产熟女午夜一区二区三区| 亚洲国产精品一区二区三区在线| 国产av精品麻豆| 亚洲av第一区精品v没综合| 黄频高清免费视频| 一夜夜www| 久久天躁狠狠躁夜夜2o2o| 日韩高清综合在线| 国产精品偷伦视频观看了| 日韩有码中文字幕| 久久这里只有精品19| 首页视频小说图片口味搜索| 国产激情久久老熟女| 淫妇啪啪啪对白视频| 久久热在线av| 日本欧美视频一区| 亚洲熟女毛片儿| 一区二区三区激情视频| 日日爽夜夜爽网站| 丁香六月欧美| 在线国产一区二区在线| 色播在线永久视频| 美国免费a级毛片| 女性被躁到高潮视频| av免费在线观看网站| 热re99久久精品国产66热6| 国产精品综合久久久久久久免费 | 80岁老熟妇乱子伦牲交| 岛国视频午夜一区免费看| av超薄肉色丝袜交足视频| 精品日产1卡2卡| 不卡av一区二区三区| 亚洲自拍偷在线| 国产av精品麻豆| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 天堂俺去俺来也www色官网| 他把我摸到了高潮在线观看| 真人一进一出gif抽搐免费| 国产在线精品亚洲第一网站| 成人av一区二区三区在线看| 免费高清在线观看日韩| 极品人妻少妇av视频| 热re99久久国产66热| 亚洲全国av大片| 亚洲精品美女久久久久99蜜臀| 桃红色精品国产亚洲av| 国产日韩一区二区三区精品不卡| 好男人电影高清在线观看| 女生性感内裤真人,穿戴方法视频| 男人操女人黄网站| 看免费av毛片| 欧美日本亚洲视频在线播放| 欧美成人性av电影在线观看| 日本三级黄在线观看| 精品福利观看| 国产精品国产av在线观看| 国产精品久久视频播放| 精品第一国产精品| 丝袜在线中文字幕| 亚洲精品美女久久久久99蜜臀| 麻豆国产av国片精品| 国产激情欧美一区二区| 999久久久国产精品视频| 国产一区二区激情短视频| 亚洲人成电影免费在线| 亚洲av成人一区二区三| 久久人人精品亚洲av| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 国产亚洲精品一区二区www| 欧美日本亚洲视频在线播放| 久久99一区二区三区| av网站在线播放免费| 欧美精品亚洲一区二区| 一区二区日韩欧美中文字幕| 如日韩欧美国产精品一区二区三区| 人人妻人人添人人爽欧美一区卜| 韩国精品一区二区三区| 成在线人永久免费视频| 成人国语在线视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一av免费看| 中亚洲国语对白在线视频| 国内久久婷婷六月综合欲色啪| 日韩免费高清中文字幕av| 一区二区三区激情视频| 亚洲成人精品中文字幕电影 | 91麻豆精品激情在线观看国产 | 欧美大码av| 美国免费a级毛片| 老汉色∧v一级毛片| 黑人巨大精品欧美一区二区蜜桃| 日韩 欧美 亚洲 中文字幕| 十八禁网站免费在线| 精品福利永久在线观看| 中文字幕人妻熟女乱码| av网站在线播放免费| 成人精品一区二区免费| 亚洲五月色婷婷综合| 人人妻,人人澡人人爽秒播| 男女床上黄色一级片免费看| 十八禁人妻一区二区| 婷婷丁香在线五月| 麻豆成人av在线观看| 国产精品一区二区三区四区久久 | 久久精品国产清高在天天线| 视频区图区小说| 色播在线永久视频| 99re在线观看精品视频| 午夜福利在线观看吧| 欧美大码av| 欧美亚洲日本最大视频资源| 大陆偷拍与自拍| 中文字幕色久视频| 国产精品免费视频内射| 91精品三级在线观看| 亚洲人成伊人成综合网2020| 一级a爱视频在线免费观看| 亚洲男人天堂网一区| 中文字幕人妻熟女乱码| 日韩免费高清中文字幕av| 国产主播在线观看一区二区| 女警被强在线播放| 热re99久久国产66热| 国产精品久久久久成人av| 久久九九热精品免费| 99久久精品国产亚洲精品| 精品久久蜜臀av无| 国产精品一区二区在线不卡| 色综合婷婷激情| 老司机亚洲免费影院| 午夜两性在线视频| 亚洲国产精品999在线| 色综合站精品国产| 亚洲国产欧美一区二区综合| 日本vs欧美在线观看视频| 两个人看的免费小视频| 色婷婷久久久亚洲欧美| 天天躁夜夜躁狠狠躁躁| 亚洲,欧美精品.| 亚洲九九香蕉| 很黄的视频免费| 热re99久久国产66热| 老司机靠b影院| 日本精品一区二区三区蜜桃| 欧美一级毛片孕妇| 中文亚洲av片在线观看爽| 国产黄a三级三级三级人| 国产亚洲欧美98| 水蜜桃什么品种好| 欧美激情极品国产一区二区三区| 免费久久久久久久精品成人欧美视频| 欧美+亚洲+日韩+国产| 精品免费久久久久久久清纯| 中文字幕最新亚洲高清| 色在线成人网| 欧美人与性动交α欧美精品济南到| 亚洲一区二区三区不卡视频| 99精品欧美一区二区三区四区| 日本wwww免费看| 国产精品99久久99久久久不卡| 99国产精品免费福利视频| 国产亚洲欧美98| 一二三四在线观看免费中文在| 一二三四社区在线视频社区8| 最新在线观看一区二区三区| 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲| 国产精品一区二区免费欧美| 免费少妇av软件| 国产精品偷伦视频观看了| 咕卡用的链子| 亚洲成av片中文字幕在线观看| 久久这里只有精品19| 97人妻天天添夜夜摸| 在线天堂中文资源库| 很黄的视频免费| 亚洲五月色婷婷综合| 精品久久久久久久毛片微露脸| 欧洲精品卡2卡3卡4卡5卡区| 国产精品综合久久久久久久免费 | 黑丝袜美女国产一区| 日韩欧美在线二视频| 每晚都被弄得嗷嗷叫到高潮| av超薄肉色丝袜交足视频| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| 久9热在线精品视频| 国产伦一二天堂av在线观看| 欧美日本中文国产一区发布| 色尼玛亚洲综合影院| 999久久久国产精品视频| 免费搜索国产男女视频| 91精品国产国语对白视频| 国产高清激情床上av| 视频区图区小说| 一级a爱视频在线免费观看| 国产成人精品在线电影| 国产精品一区二区在线不卡| avwww免费| 三级毛片av免费| 97人妻天天添夜夜摸| 视频区欧美日本亚洲| 久久伊人香网站| 天天躁夜夜躁狠狠躁躁| 色精品久久人妻99蜜桃| 搡老熟女国产l中国老女人| 欧美午夜高清在线| 极品人妻少妇av视频| 国产亚洲精品久久久久久毛片| 久久久精品欧美日韩精品| 正在播放国产对白刺激| 精品人妻1区二区| 在线观看免费日韩欧美大片| 麻豆一二三区av精品| 在线观看免费视频日本深夜| 丰满迷人的少妇在线观看| 亚洲av成人一区二区三| 伊人久久大香线蕉亚洲五| 免费高清视频大片| 国产有黄有色有爽视频| 香蕉国产在线看| 久久人妻av系列| 天堂俺去俺来也www色官网| 欧美日本亚洲视频在线播放| 国产黄a三级三级三级人| 在线观看日韩欧美| 国产精品电影一区二区三区| 亚洲伊人色综图| 国产一区二区三区综合在线观看| 国产精品影院久久| 少妇裸体淫交视频免费看高清 | 神马国产精品三级电影在线观看 | 国产精品免费一区二区三区在线| 99riav亚洲国产免费| 黄色丝袜av网址大全| 国产精品一区二区在线不卡| 国产亚洲精品第一综合不卡| 国产黄色免费在线视频| 男女高潮啪啪啪动态图| 一区二区三区激情视频| 一二三四社区在线视频社区8| 免费看十八禁软件| 一级片'在线观看视频| 9热在线视频观看99| 午夜a级毛片| 高清黄色对白视频在线免费看| 成人国语在线视频| 无限看片的www在线观看| 欧美av亚洲av综合av国产av| av在线天堂中文字幕 | 欧美人与性动交α欧美软件| 天天影视国产精品| 亚洲国产欧美一区二区综合| 久久午夜综合久久蜜桃| 成人特级黄色片久久久久久久| 亚洲熟妇中文字幕五十中出 | 成人av一区二区三区在线看| 大陆偷拍与自拍| 99久久精品国产亚洲精品| 看黄色毛片网站| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| svipshipincom国产片| 老熟妇乱子伦视频在线观看| 搡老岳熟女国产| 高清黄色对白视频在线免费看| 久久久久精品国产欧美久久久| 国产精品1区2区在线观看.| 国产主播在线观看一区二区| 一级,二级,三级黄色视频| 久久影院123| 不卡一级毛片| 90打野战视频偷拍视频| 首页视频小说图片口味搜索| www日本在线高清视频| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美精品济南到| 国产1区2区3区精品| 在线视频色国产色| 在线看a的网站| 脱女人内裤的视频| 88av欧美| 国产成人av激情在线播放| 他把我摸到了高潮在线观看| 亚洲精品国产一区二区精华液| 亚洲成人免费av在线播放| 亚洲人成电影免费在线| 亚洲精品国产区一区二| 国产黄色免费在线视频| 丝袜美足系列| www.熟女人妻精品国产| 国产成人欧美在线观看| 91九色精品人成在线观看| 国产亚洲精品第一综合不卡| 丝袜美腿诱惑在线| 亚洲欧洲精品一区二区精品久久久| 大型黄色视频在线免费观看| 嫩草影院精品99| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷久久久亚洲欧美| 精品国产美女av久久久久小说| 欧美乱妇无乱码| 男男h啪啪无遮挡| 国产xxxxx性猛交| 国产成人精品久久二区二区91| 亚洲欧美精品综合久久99| 亚洲欧美精品综合一区二区三区| 男女床上黄色一级片免费看| 精品无人区乱码1区二区| 美国免费a级毛片| 1024香蕉在线观看| av福利片在线| 精品高清国产在线一区| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 亚洲伊人色综图| 午夜老司机福利片| 三上悠亚av全集在线观看| 99在线视频只有这里精品首页| 精品一区二区三区视频在线观看免费 | 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区国产精品乱码| 国产三级黄色录像| 日日爽夜夜爽网站| 五月开心婷婷网| 怎么达到女性高潮| 天堂√8在线中文| 久久国产精品人妻蜜桃| 午夜免费观看网址| 精品第一国产精品| 深夜精品福利| 亚洲在线自拍视频| 亚洲男人天堂网一区| 久久国产精品人妻蜜桃| 在线免费观看的www视频| 国产精品永久免费网站| 精品国产美女av久久久久小说| 黑人猛操日本美女一级片| 日韩欧美一区视频在线观看| 免费av中文字幕在线| 国产av一区二区精品久久| 校园春色视频在线观看| 国产不卡一卡二| 成熟少妇高潮喷水视频| 国产一区在线观看成人免费| 一级片'在线观看视频| 亚洲国产看品久久| 校园春色视频在线观看| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 18禁国产床啪视频网站| av天堂久久9| 在线免费观看的www视频| 欧美久久黑人一区二区| 88av欧美| 看片在线看免费视频| 久久精品人人爽人人爽视色| 午夜91福利影院| 国产一区二区三区在线臀色熟女 | 精品福利永久在线观看| 少妇 在线观看| 日本免费a在线| 亚洲精品av麻豆狂野| 欧美精品啪啪一区二区三区| 国产精品亚洲一级av第二区| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 日韩视频一区二区在线观看| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩无卡精品| 大香蕉久久成人网| 午夜福利影视在线免费观看| www.999成人在线观看| 校园春色视频在线观看| 久久久久亚洲av毛片大全| 欧美乱妇无乱码| 国产精品99久久99久久久不卡| 俄罗斯特黄特色一大片| 看免费av毛片| 免费av毛片视频| 精品久久蜜臀av无| 久久久久亚洲av毛片大全| 99在线视频只有这里精品首页| 亚洲专区国产一区二区| 一夜夜www| 国产亚洲精品一区二区www| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 亚洲一码二码三码区别大吗| 亚洲五月色婷婷综合| 成年人黄色毛片网站| 久久婷婷成人综合色麻豆| bbb黄色大片| 波多野结衣高清无吗| 亚洲欧美激情综合另类| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 亚洲第一青青草原| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利影视在线免费观看| 亚洲激情在线av| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 一级a爱视频在线免费观看| 久久中文字幕人妻熟女| 国产精品电影一区二区三区| 久久精品aⅴ一区二区三区四区| 国产极品粉嫩免费观看在线| 精品国产国语对白av| 一区福利在线观看| 日本vs欧美在线观看视频| 亚洲成人久久性| 桃红色精品国产亚洲av| 老司机在亚洲福利影院| 欧美激情高清一区二区三区| 午夜日韩欧美国产| 国产有黄有色有爽视频| 亚洲欧美精品综合一区二区三区| tocl精华| 亚洲美女黄片视频| 黑人猛操日本美女一级片| 国产精品二区激情视频| 黑人操中国人逼视频| 亚洲av熟女| 亚洲成人免费电影在线观看| 人人妻人人澡人人看| 欧美av亚洲av综合av国产av| 级片在线观看| 色综合站精品国产| 亚洲国产精品合色在线| 超色免费av| 久久人人97超碰香蕉20202| 国产成人欧美在线观看| 亚洲精品一二三| xxxhd国产人妻xxx| 香蕉丝袜av| 国产精品免费视频内射| 欧美日韩福利视频一区二区| 一级a爱片免费观看的视频| 级片在线观看| 成人亚洲精品一区在线观看| a级毛片黄视频| 久久性视频一级片| 日本五十路高清| 欧美黄色淫秽网站| 久久精品国产清高在天天线| 成人精品一区二区免费| 国产成人精品无人区| 丰满饥渴人妻一区二区三| 国产成人一区二区三区免费视频网站| 精品一区二区三卡| 午夜免费鲁丝| 少妇裸体淫交视频免费看高清 | 1024香蕉在线观看| 国产成人精品久久二区二区免费| 交换朋友夫妻互换小说| 精品久久蜜臀av无| 91麻豆精品激情在线观看国产 | 男女下面插进去视频免费观看| 麻豆成人av在线观看| 欧美日韩福利视频一区二区| 在线观看一区二区三区激情| 91大片在线观看| 国产亚洲欧美在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 可以免费在线观看a视频的电影网站| 在线观看一区二区三区| 免费观看精品视频网站| 日本a在线网址| 日本黄色视频三级网站网址| av片东京热男人的天堂| 精品国产美女av久久久久小说| 国产成人免费无遮挡视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人免费电影在线观看| 操美女的视频在线观看| 国产欧美日韩一区二区三| 亚洲精品av麻豆狂野| 日日干狠狠操夜夜爽| 国产无遮挡羞羞视频在线观看| 国产亚洲欧美98| 午夜免费观看网址| 久久精品国产综合久久久| 啪啪无遮挡十八禁网站| 悠悠久久av| 久久久国产成人精品二区 | 美女福利国产在线| 久久久久久久久久久久大奶| 亚洲专区中文字幕在线| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久av网站| 国产成+人综合+亚洲专区| 嫁个100分男人电影在线观看| 人人妻,人人澡人人爽秒播| 日韩欧美在线二视频| 亚洲精品粉嫩美女一区| 9热在线视频观看99| 欧美人与性动交α欧美精品济南到| 午夜影院日韩av| 中文字幕最新亚洲高清| 俄罗斯特黄特色一大片| 成人特级黄色片久久久久久久| 很黄的视频免费| 国产蜜桃级精品一区二区三区| 男男h啪啪无遮挡| 最近最新免费中文字幕在线| 波多野结衣高清无吗| 黄色丝袜av网址大全| 国产一区二区三区在线臀色熟女 | 欧美日韩视频精品一区| 在线视频色国产色| 亚洲精品久久午夜乱码| 男女下面插进去视频免费观看| 99久久久亚洲精品蜜臀av| 久久久国产一区二区| 久久香蕉国产精品| 亚洲欧美精品综合一区二区三区| 国产麻豆69| 在线观看一区二区三区激情| 一级毛片女人18水好多| 交换朋友夫妻互换小说| 自线自在国产av| 正在播放国产对白刺激| 欧美日韩亚洲综合一区二区三区_| 亚洲 欧美 日韩 在线 免费| 成年女人毛片免费观看观看9| 久久精品影院6| 亚洲av五月六月丁香网| 午夜老司机福利片| 1024香蕉在线观看| 欧美人与性动交α欧美软件| 欧美人与性动交α欧美精品济南到| 国产又色又爽无遮挡免费看| 麻豆一二三区av精品| 1024视频免费在线观看| 91成人精品电影| 50天的宝宝边吃奶边哭怎么回事| 日日干狠狠操夜夜爽| 精品电影一区二区在线| 夫妻午夜视频| 国产成人精品在线电影| 天堂俺去俺来也www色官网| 老司机午夜福利在线观看视频| 久久久水蜜桃国产精品网| 国产精品99久久99久久久不卡| 精品久久久久久电影网| 亚洲男人天堂网一区| 欧美日韩瑟瑟在线播放| 人人妻人人澡人人看| 18禁国产床啪视频网站| 99国产精品一区二区三区| 男人操女人黄网站| 欧美黑人精品巨大| 搡老熟女国产l中国老女人| 制服诱惑二区| 日韩 欧美 亚洲 中文字幕| 一级毛片高清免费大全| 嫁个100分男人电影在线观看| 日本欧美视频一区| 男男h啪啪无遮挡| 黄片大片在线免费观看| 亚洲国产毛片av蜜桃av| 久久影院123| 满18在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 丰满迷人的少妇在线观看| 久久99一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 久久人妻av系列| 男女下面插进去视频免费观看| 日韩欧美国产一区二区入口| 国产精品一区二区免费欧美| 人成视频在线观看免费观看| 国产男靠女视频免费网站| 怎么达到女性高潮| a级毛片在线看网站| 亚洲成人免费av在线播放| 窝窝影院91人妻| a在线观看视频网站| 国产真人三级小视频在线观看| 丝袜美足系列|