• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tensile reliability analysis for gravity dam foundation surface based on FEM and response surface method

    2010-08-12 08:51:50TongchunLIDandanLIZhiqiangWANG
    Water Science and Engineering 2010年2期

    Tong-chun LI, Dan-dan LI*, Zhi-qiang WANG

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    Tensile reliability analysis for gravity dam foundation surface based on FEM and response surface method

    Tong-chun LI, Dan-dan LI*, Zhi-qiang WANG

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    In this study, the limit state equation for tensile reliability analysis of the foundation surface of a gravity dam was established. The possible crack length was set as the action effect and allowable crack length was set as the resistance in the limit state. The nonlinear FEM was used to obtain the crack length of the foundation surface of the gravity dam, and the linear response surface method based on the orthogonal test design method was used to calculate the reliability, providing a reasonable and simple method for calculating the reliability of the serviceability limit state. The Longtan RCC gravity dam was chosen as an example. An orthogonal test, including eleven factors and two levels, was conducted, and the tensile reliability was calculated. The analysis shows that this method is reasonable.

    tensile reliability; foundation surface of gravity dam; nonlinear FEM; response surface method; Longtan RCC gravity dam

    1 Introduction

    Reliability calibration of gravity dams mainly focuses on reliability analysis of stability against sliding of the foundation, local weakness, tensile resistances of the dam heal, and compressive strength of the dam toe. In recent years, many studies on this issue have been conducted in China and elsewhere. Up to now, research on the reliability of gravity dams has mainly focused on the analysis of reliability against sliding, and there has been little research on tensile reliability (Hao et al. 2009). The main reason is that the material mechanics method, which does not allow for the occurrence of stress, is the basic analysis method according to theDesign Specifications for Concrete Gravity Dams(SETC 2000). The control standards of tensile stress corresponding to the material mechanics method are experiential, and the real stress characteristics and possibility of the destruction of the dam and foundation cannot be reflected accurately. If these standards are satisfied, uncontrollable destruction of the dam cannot occur, but the possible destruction mode and range cannot be described either. In order to reflect the real stress distribution of the dam, the results of finite element method (FEM) analysis are combined with the current criteria of the gravity dam, and control standards of upstream vertical stress of the gravity dam are stipulated as follows: (1) Taking the upliftpressure of the upstream face of the dam foundation into account, the distribution width of the tensile stress should be less than 0.07 times the width of the dam base, or the distance between the dam heel and centerline of the curtain. (2) Taking the uplift pressure of the upstream face of the dam into account, the distribution width of the tensile stress should be less than 0.07 times the distance between the upstream face of the calculation section and the centerline of drainage holes (pipes). These standards cannot be used directly for dam cracking examination, because a dam subjected to tension is not necessarily destroyed; even if the distribution width of tensile stress is large, the tensile stress still might not exceed the tensile strength.

    In fact, cracking in the upstream foundation surface is allowable, and the dam may fall into the serviceability limit states of normal operation if the crack width meets the control standards described above. The method of tensile reliability analysis of the dam foundation surface in the serviceability limit state is introduced in this paper. The possible crack length was set as the action effect and the allowable crack length was set as the resistance in this limit state. The nonlinear FEM was applied to obtain the crack length of the foundation surface of the gravity dam (Frangopol and Imai 2000). The linear response surface method (Deng et al. 2005) was applied and the orthogonal test design method (Ren et al. 2005) was used to reduce the workload of finite element analysis. The Longtan RCC gravity dam was considered as an example, and the results of the analysis are provided.

    2 Reliability analysis based on response surface method

    At present, the methods for reliability analysis of the engineering structure include the first-order second-moment method, Monte-Carlo method, response surface method, and stochastic finite element method. The response surface method, which has been developed in recent years, is a comprehensive statistical test technique and is effective for large and complicated engineering structures (Wong 1985). It is used to handle the effects of different variables on a system or structure, or as a conversion between the input and output of the system or structure. It is described withnvariables,x1,x2,…,xn, as follows:Z=g(x1,x2,…,xn), whereZis the structure response. This functional relationship is implicit. In general, large amounts of simulations are necessary to obtain this function. The response surface method seeks to obtain the relationshipZ=g(x1,x2,…,xn) by means of regression and fitting based on limited testing, and then to replace the real curve surface in the reliability analysis.

    The method should be as simple as possible and flexible enough to reflect different real curve surfaces while selecting the expression form of the response surface (Kim and Na 1997; Bucher and Bourgund 1990). To bring the response surface function close to the real limit state function, the first-degree polynomial function is usually selected (Rajashekhar and Ellingwood 1993). For a situation withnrandom variables,

    The coefficientai(i=0, 1,…,n) is determined as follows: Consideringμxi, the mean value ofxi, to be central,n+1 sampling points are selected from (μxi?f′σxi,μxi+f′σxi), whereσxiis the standard deviation ofxi, andf′ is the parameter for determination of marginal value, usually between 1 and 3. After the determination of the coefficientaiwith then+1 function valuesg(x) at sampling points, the response surface function is determined, and the reliability indexβand testing point, which is closer to the origin in the limit state surface, are obtained. Then, the testing point is considered the center, new sampling points are selected, and undetermined coefficients are determined by the same method. It is very important to conduct as few tests as possible but to achieve the goal of high precision at the same time.

    In this study, the orthogonal test design method was used to arrange the response surface test. In the test, variables that might influence the reliability index, including the size of the structure and the geometrical character, are called factors. The specific condition of each factor is called a level. To determine the level of a factor, the values beyond the region of (μ?σ,μ+σ) are abandoned based on theσstatistics principle, whereμandσare the mean and standard deviation of the variable, respectively. According to the factors of the response equation as well as the level and number of the unknown factors, the scheme of the orthogonal test is selected. In the orthogonal test, each level of each factor and each combination of any two factors at different levels appear at the same frequency, so the test can comprehensively reflect the effect of each factor and level on the reliability index, and effectively reduce the number of tests.

    Finally, the reliability indexβand design point, which is the closest one to the origin on the limit state surface, are calculated based on the reliability analysis with the generalized random space method (Zhao and Wang 1996). The calculation formula is

    3 Nonlinear contact algorithm for crack length calculation

    Pairs of contact points are assigned in the potential fracture area of the contact interface between the gravity dam and the bedrock, and the finite element hybrid method is adopted to deal with the frictional contact problem (Zhao et al. 2006), in which the initial tensile forces are allowable. The action force is decomposed into the external force and the contact forceon the contact interface, and the displacements of the contact interface and the contact force are considered mixed variables. With the displacement of the contact interface being the basic unknown variable, and the contact forces at nodes in the local coordinate system of the contact region being iterative variables, nonlinear iteration is carried out and restricted within the contact interface, and complicated nonlinear frictional contact is reflected by the changes of the contact force. Then, the iterative calculation of contact states and contact forces is performed. This makes the iterative calculation simpler, greatly improving the computational efficiency (Zheng and Das 2000; Refaat and Meguid 1998). In the process of calculation, it is unnecessary to specify coefficients of normal stiffness and tangential stiffness; the effect of human factors on the results and the embedding problem of other methods can thus be avoided.

    At the beginning of calculation, various elements of the flexibility matrix are pre-calculated. In each step of calculation, the deformation modes of the contact interface, such as the opening, closing, and slip, are considered, the Mohr-Coulomb criterion is used to describe the friction effect of the contact interface, and the contact force at the node is obtained by an iterative solution based on the state assembly of the contact flexibility matrix. Finally, the contact force at the node is added to the total cumulative load array to obtain an integrated solution. Specific calculation methods and formulas can be found in the literature (Zhao and Wang 2006).

    Another advantage of this method is that the uplift pressure can be considered to be acting directly on the dam and the surface of the bedrock. If the foundation surface does not crack, the uplift pressure can be reflected by the contact force between two contact interfaces; if the foundation surface cracks, the uplift pressure is equivalent to the external load on the bedrock and the dam, reflecting the splitting effect of water on the foundation surface.

    4 Tensile reliability analysis of foundation surface of gravity dam

    The analysis of tensile reliability of a gravity dam based on a combination of FEM and the response surface method is described above. The details of the processes are as follows:

    (1) Based on the number of random variables and a reasonable scheme of orthogonal tests, the number of groups of FEM calculation is considered. The mean value of each variable is taken as the initial value of each random variable for iterative calculation, and their standard deviations are determined.

    (2) Each group is calculated with the FEM, and the crack length of the foundation surface is calculated with the nonlinear contact algorithm.

    (3) The limit state equation is obtained through regression and fitting, and the reliability index and values of random variables at testing points are calculated.

    (4) These steps are repeated until the relative error of the reliability index between the two successive calculations is within a reasonable range. In this study, the relative error limit was set at 1%.

    5 Case study

    5.1 Validation of response surface method

    We performed a case study to demonstrate the superiority of the response surface method. Fig. 1 is a calculation diagram of a plane frame structure, a building with three spans and twelve stories. The height of the building was 48 m, and the span lengths were 7.5 m, 3.5 m, and 7.5 m. The structure was composed of five kinds of rods, with different cross-section areas, denoted as 1 through 5. The elastic modulus of each rod was 2.0× 107kN/m2. The section areas of the rodsAi(i=1, 2,…,5)and the external loadPwere considered random variables. All the variables were normally distributed except the variableP, which was log-normally distributed. The mean values ofAi(i=1, 2,…,5) were 0.25 m2, 0.16 m2, 0.36 m2, 0.20 m2, and 0.15 m2, and the mean value ofPwas 30.0 kN. The standard deviations ofAi(i=1, 2,…,5)were 0.025 m2, 0.016 m2, 0.036 m2, 0.020 m2, and 0.015 m2, and the standard deviation ofPwas 7.50 kN.

    Fig. 1 Calculation diagram

    Based onCode for Design of Steel Structures(MC 2003), the maximum allowable horizontal displacement at pointBis=0.096 m, whereHis the height of the structure, which is 48 m in this case, so the limit state equation is as follows:

    whereuBis the real horizontal displacement at pointB.

    According to the literature (Tong and Zhao 1997), the reliability calculation requires 41 FEM analyses and three iterations. However, with the present method, the reliability is calculated with eight FEM analyses and three iterations. The reliability indexβand the design values of the variables,(i=1, 2,…,5) andP?, obtained with the two schemes are shown in Table 1. The present method is rational, and can effectively reduce the workload of numerical analysis.

    Table 1 Reliability index and design values obtained with different schemes

    5.2 Analysis of tensile reliability of Longtan Dam

    The Longtan dam is located in Tian’e Country, in the Guangxi Autonomous Region. Itis the key project for power transmission from the west to the east of China. The dam is a grade I structure. It is a roller-compacted concrete gravity dam with a normal impounded level of 400 m above the mean sea level, a base level elevation of 210.0 m, and a dam height of 196.5 m. The dam was classified in three parts, I, II, and III, according to the different material characteristics, shown in Fig. 2.

    A 2-D finite element model was established, as shown in Fig. 3. Thex-axis is the direction from upstream to downstream, and they-axis is the vertical direction. The grid graph contains 7 792 nodes and 7 562 elements. The different colors correspond to different materials.

    Fig. 2 Material partition of dam (Unit: m)

    Fig. 3 Grid graph of dam section

    The different engineering loads on the dam are the following:

    (1) Dead weight load: The density of concrete is 2.45 kg/m3.

    (2) Hydrostatic pressure: The density of water is 1 kg/m3.

    (3) Wind and wave load: The average elevation of the reservoir bottom in the water area is 280 m. For a basic load combination, the calculated wind speed is 24 m/s; for an accidental load combination, the calculated wind speed is 14 m/s. The length of the wind area is 2 km, and the prevailing wind is southwesterly.

    (4) Sediment load: The centennial elevation of silt sediment is 287.6 m, the density of sediment is 1.22 kg/m3, and the internal friction angle of sediment is 24o.

    (5) Uplift pressure: The calculation coefficients are determined according toDesign Specifications for Concrete Gravity Dams(SETC 2000).

    Random properties of variables are listed in Table 2. The wind and wave load and sediment load have little effect on calculation results, so they are not treated as random variables. In Table 2,ρis the density of concrete;α1andα2are the upstream and downstream uplift reduction coefficients, respectively;Ei(i= I, II, and III) is the elastic modulus of different material partitions;Hsis the upstream water level;Hxis the downstream water level;cis the cohesive force;fis the friction factor; andftis the tensile strength. All the variables are normally distributed exceptc, which is log-normally distributed.

    Table 2 Properties of variables

    According toDesign Specifications for ConcreteGravity Dams(SETC 2000), the distribution width of tensile stress should be less than 0.07 times the width of the dam base or the distance between the dam heel and the centerline of the curtain. The distance is considered the resistance term and was 27 m in this study, so the limit state equation of tensile reliability was as follows:

    wherexis the crack length.

    A scheme of an orthogonal test (Ren et al. 2005) that includes eleven factors and two levels was adopted. Twelve nonlinear FEM analyses were conducted and the response equation was obtained by regression.

    Using this method, the reliability index and design values were calculated. The detailed iterative process is shown in Table 3. The reliability indexβ= 2.56. The design values and sensitive coefficients of variables are shown in Table 4. The variableHshas the most significant influence on the reliability.

    Table 3 Iterative process of reliability

    Table 4 Design values of variables

    6 Conclusions

    In this study, the analysis of tensile reliability of a gravity dam was performed with the nonlinear FEM based onDesign Specifications for Concrete Gravity Dams(SETC 2000). In this method, the limit state equation of tensile reliability is established with the possible crack length being considered the action effect and the allowable crack length the resistance. Because this limit state equation is implicit, the linear surface response method was applied and the orthogonal test design method was used. The number of FEM analyses was greatly reduced. The Longtan RCC gravity dam was considered as an example, and the analysisshows that this method is reasonable, but further research is needed on the determination of the allowable crack length.

    Bucher, C. G., and Bourgund, U. 1990. A fast and efficient response surface approach for structural reliability problems.Structural Safety, 7(1), 57-66. [doi:10.1016/0167-4730(90)90012-E]

    Deng, J., Gu, D. S., Li, X. B., and Yue, Z. Q. 2005. Structural reliability analysis for implicit performance functions using artificial neural network.Structural Safety, 27(1), 25-48. [doi:10.1016/j.strusafe.2004. 03.004]

    Frangopol, D. M., and Imai, K. 2000. Geometrically nonlinear finite element reliability analysis of structural systems.Computer and Structures, 77(6), 693-709. [doi:10.1016/S0045-7949(00)00010-9]

    Hao, Z. Q., Wu, L., and Guo, J. 2009. Reliability computation of stability for gravity dams based on FEM.China Rural Water and Hydropower, 5, 127-129. (in Chinese)

    Kim, S. H., and Na, S. W. 1997. Response surface method using vector projected sampling points.Structural Safety, 19(1), 3-19. [doi:10.1016/S0167-4730(96)00037-9]

    Ministry of Construction, P. R. China (MC). 2003.Code for Design of Steel Structures (GB50017-2003). Beijing: China Planning Press. (in Chinese)

    Rajashekhar, M. R., and Ellingwood, B. R. 1993. A new look at the response surface approach for reliability analysis.Structural Safety, 12(3), 205-220. [doi:10.1016/0167-4730(93)90003-J]

    Refaat, M. H., and Meguid, S. A. 1998. A new strategy for the solution of frictional contact problems.International Journal for Numerical Methods in Engineering, 43(6), 1053-1068. [doi:10.1002/(SICI) 1097-0207(19981130) 43:6<1053::AID-NME460>3.0.CO;2-L]

    Ren, X. J., Shi, D. Y., and Wang, J. H. 2005. Positive cross method of responsive section experiment design.Shanxi Architecture, 31(2), 17-18. (in Chinese)

    State Economic and Trade Commission, P. R. China (SETC). 2000.Design Specifications for Concrete Gravity Dams (DL5108-1999). Beijing: China Electric Power Press. (in Chinese)

    Tong, X. L., and Zhao, G. F. 1997. The response surface method in conjunction with geometric method in structural reliability analysis.Civil Engineering Journal, 30(4), 51-57. (in Chinese)

    Wong, F. S. 1985. Slope reliability and response surface method.Journal of Geotechnical Engineering, 111(1), 32-53. [doi:10.1061/(ASCE)0733-9410(1985)111:1(32)]

    Zhao, G. F., and Wang, H. D. 1996. A practical analysis method for reliability of structures in generalized random space.China Civil Engineering Journal, 29(4), 47-51. (in Chinese)

    Zhao, L. H., Li, T. C., and Niu, Z. W. 2006. Mixed finite element method for contact problems with friction and initial gaps.Chinese Journal of Geotechnical Engineering, 28(11), 2016-2018. (in Chinese)

    Zheng, Y., and Das, P. K. 2000. Improved response surface method and its application to stiffened plate reliability analysis.Engineering Structures, 22(5), 544-551. [doi:10.1016/S0141-0296(98)00136-9]

    *Corresponding author (e-mail:ldd0517@hhu.edu.cn)

    Received Jan. 13, 2010; accepted Apr. 21, 2010

    90打野战视频偷拍视频| 国产精品影院久久| 在线国产一区二区在线| 成人精品一区二区免费| av网站在线播放免费| 亚洲欧洲精品一区二区精品久久久| 99香蕉大伊视频| 欧美国产精品一级二级三级| 亚洲成av片中文字幕在线观看| 午夜免费观看网址| 国产91精品成人一区二区三区| 午夜福利免费观看在线| а√天堂www在线а√下载 | 老汉色∧v一级毛片| 精品视频人人做人人爽| 狠狠狠狠99中文字幕| 精品无人区乱码1区二区| 我的亚洲天堂| 亚洲精品在线美女| 亚洲久久久国产精品| 亚洲精华国产精华精| 成人国语在线视频| 久久久久国产精品人妻aⅴ院 | 亚洲第一欧美日韩一区二区三区| 欧美日韩瑟瑟在线播放| 国产主播在线观看一区二区| 亚洲国产欧美一区二区综合| 国产精品 欧美亚洲| 欧美日韩瑟瑟在线播放| av视频免费观看在线观看| 在线看a的网站| 女人被狂操c到高潮| 精品国产国语对白av| 91字幕亚洲| 1024香蕉在线观看| 久久久国产精品麻豆| 久久久久久免费高清国产稀缺| 少妇的丰满在线观看| 色综合欧美亚洲国产小说| 在线观看免费午夜福利视频| 久久久国产成人精品二区 | 成年女人毛片免费观看观看9 | 中文亚洲av片在线观看爽 | 一级毛片精品| 精品人妻1区二区| 国产精品一区二区在线观看99| 如日韩欧美国产精品一区二区三区| 校园春色视频在线观看| 国产激情欧美一区二区| 亚洲av电影在线进入| 人人妻,人人澡人人爽秒播| 在线观看一区二区三区激情| 免费少妇av软件| 丰满的人妻完整版| 日韩视频一区二区在线观看| 成人黄色视频免费在线看| 国产精品成人在线| 69av精品久久久久久| 另类亚洲欧美激情| 国产精品香港三级国产av潘金莲| 成人国产一区最新在线观看| 欧美乱妇无乱码| 最近最新免费中文字幕在线| 亚洲一区二区三区欧美精品| 男人操女人黄网站| 十分钟在线观看高清视频www| 午夜久久久在线观看| 人人澡人人妻人| 国产精品99久久99久久久不卡| 国产又色又爽无遮挡免费看| 亚洲精品中文字幕一二三四区| 在线av久久热| 亚洲午夜精品一区,二区,三区| 村上凉子中文字幕在线| 国产成人精品久久二区二区91| 女人被狂操c到高潮| 波多野结衣一区麻豆| 精品久久蜜臀av无| 久久青草综合色| 久久久精品区二区三区| 在线天堂中文资源库| 香蕉国产在线看| 欧美久久黑人一区二区| 纯流量卡能插随身wifi吗| 宅男免费午夜| 久久香蕉激情| av电影中文网址| 乱人伦中国视频| 国产精品九九99| 麻豆av在线久日| 成人18禁在线播放| 又紧又爽又黄一区二区| 人妻 亚洲 视频| 亚洲av第一区精品v没综合| 两人在一起打扑克的视频| 免费在线观看日本一区| 悠悠久久av| 精品乱码久久久久久99久播| 一区二区三区精品91| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 女性生殖器流出的白浆| 国产黄色免费在线视频| 久久久久久亚洲精品国产蜜桃av| 两个人看的免费小视频| 中文字幕高清在线视频| 一级a爱视频在线免费观看| 男人舔女人的私密视频| 巨乳人妻的诱惑在线观看| 深夜精品福利| 久久热在线av| 久久久久视频综合| 国产亚洲欧美98| 在线观看免费高清a一片| 亚洲午夜精品一区,二区,三区| 国产三级黄色录像| 国产激情欧美一区二区| 高清毛片免费观看视频网站 | 亚洲伊人色综图| tube8黄色片| 老司机影院毛片| 国产一区二区三区综合在线观看| 老司机靠b影院| 久久青草综合色| 人人妻人人添人人爽欧美一区卜| 亚洲 欧美一区二区三区| 久久久国产成人精品二区 | 国产精品1区2区在线观看. | 国产片内射在线| 女人精品久久久久毛片| 别揉我奶头~嗯~啊~动态视频| 国产成人精品无人区| 亚洲综合色网址| 久久精品亚洲精品国产色婷小说| 啦啦啦在线免费观看视频4| 制服诱惑二区| 久久精品人人爽人人爽视色| 老熟女久久久| 国产无遮挡羞羞视频在线观看| 成年版毛片免费区| 王馨瑶露胸无遮挡在线观看| 精品少妇久久久久久888优播| 婷婷丁香在线五月| 精品久久蜜臀av无| 777米奇影视久久| 久久久久国产一级毛片高清牌| 99久久国产精品久久久| 桃红色精品国产亚洲av| 电影成人av| 99riav亚洲国产免费| 国产黄色免费在线视频| 一边摸一边抽搐一进一小说 | 老司机亚洲免费影院| 老司机亚洲免费影院| 女性被躁到高潮视频| 搡老熟女国产l中国老女人| 国产激情欧美一区二区| 黄色a级毛片大全视频| 亚洲在线自拍视频| 美女扒开内裤让男人捅视频| 大码成人一级视频| 十分钟在线观看高清视频www| 国产极品粉嫩免费观看在线| 国产av又大| tocl精华| 人成视频在线观看免费观看| 亚洲av日韩精品久久久久久密| 国产免费av片在线观看野外av| 亚洲伊人色综图| 天天躁夜夜躁狠狠躁躁| 欧美日韩黄片免| 久久国产精品影院| 热re99久久国产66热| 精品久久蜜臀av无| 极品人妻少妇av视频| 麻豆av在线久日| 国产精品永久免费网站| 久久久久久亚洲精品国产蜜桃av| 久久久国产一区二区| 在线观看免费视频日本深夜| 50天的宝宝边吃奶边哭怎么回事| 狠狠婷婷综合久久久久久88av| 又黄又爽又免费观看的视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩瑟瑟在线播放| 亚洲中文字幕日韩| 亚洲精品在线观看二区| 搡老岳熟女国产| 欧美激情 高清一区二区三区| 亚洲熟妇中文字幕五十中出 | 女人爽到高潮嗷嗷叫在线视频| 成年版毛片免费区| 三上悠亚av全集在线观看| 国产在线观看jvid| 人妻一区二区av| 日韩 欧美 亚洲 中文字幕| 国产男靠女视频免费网站| videos熟女内射| 午夜免费成人在线视频| 亚洲精品中文字幕在线视频| 黑人操中国人逼视频| 国产日韩一区二区三区精品不卡| 大码成人一级视频| 成年人黄色毛片网站| cao死你这个sao货| 啦啦啦 在线观看视频| 亚洲精品一二三| 丰满的人妻完整版| 深夜精品福利| 黑丝袜美女国产一区| 久久99一区二区三区| a在线观看视频网站| 丝袜人妻中文字幕| 国产欧美日韩综合在线一区二区| 男人的好看免费观看在线视频 | 亚洲第一欧美日韩一区二区三区| 制服人妻中文乱码| 九色亚洲精品在线播放| 精品视频人人做人人爽| av超薄肉色丝袜交足视频| 国内久久婷婷六月综合欲色啪| www日本在线高清视频| 精品人妻1区二区| 国产一区二区激情短视频| 久久久久久久精品吃奶| 精品欧美一区二区三区在线| 91在线观看av| 乱人伦中国视频| 91成年电影在线观看| x7x7x7水蜜桃| 亚洲欧美日韩另类电影网站| 精品国产乱码久久久久久男人| 最新美女视频免费是黄的| 日韩制服丝袜自拍偷拍| 如日韩欧美国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 宅男免费午夜| 国产精品亚洲av一区麻豆| 国产亚洲一区二区精品| 亚洲av日韩在线播放| 18禁美女被吸乳视频| 久久久国产成人精品二区 | 久久午夜亚洲精品久久| 一级毛片女人18水好多| 777久久人妻少妇嫩草av网站| 欧美精品高潮呻吟av久久| 日韩三级视频一区二区三区| 超色免费av| 国产男女内射视频| 757午夜福利合集在线观看| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久人妻精品电影| 色综合欧美亚洲国产小说| 欧美日韩av久久| 久热这里只有精品99| 黄色片一级片一级黄色片| a级毛片黄视频| 美女高潮到喷水免费观看| 法律面前人人平等表现在哪些方面| 大型黄色视频在线免费观看| 成年人黄色毛片网站| 欧美日韩瑟瑟在线播放| 90打野战视频偷拍视频| 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| 多毛熟女@视频| 婷婷精品国产亚洲av在线 | 黑人巨大精品欧美一区二区蜜桃| 亚洲熟女精品中文字幕| 侵犯人妻中文字幕一二三四区| 国产有黄有色有爽视频| 国精品久久久久久国模美| 亚洲片人在线观看| 精品无人区乱码1区二区| 欧美成人午夜精品| 免费观看人在逋| 99精品在免费线老司机午夜| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 无遮挡黄片免费观看| 欧美人与性动交α欧美精品济南到| 亚洲色图av天堂| 国产有黄有色有爽视频| 亚洲国产欧美网| 精品人妻熟女毛片av久久网站| 亚洲精品国产一区二区精华液| 新久久久久国产一级毛片| 嫁个100分男人电影在线观看| 无限看片的www在线观看| 亚洲中文av在线| 精品欧美一区二区三区在线| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费午夜福利视频| 不卡一级毛片| 在线观看免费日韩欧美大片| 又紧又爽又黄一区二区| 久久亚洲真实| 老司机深夜福利视频在线观看| 视频区欧美日本亚洲| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久,| 欧美日韩福利视频一区二区| 麻豆成人av在线观看| 亚洲av第一区精品v没综合| 一级毛片精品| 日韩三级视频一区二区三区| 国产激情欧美一区二区| 亚洲熟妇中文字幕五十中出 | 成人特级黄色片久久久久久久| 亚洲黑人精品在线| 女性被躁到高潮视频| 丝袜美腿诱惑在线| 一本综合久久免费| 欧美日韩乱码在线| 亚洲一区二区三区不卡视频| 国产精品一区二区在线观看99| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人国产一区在线观看| 在线播放国产精品三级| 一区二区日韩欧美中文字幕| 国产区一区二久久| 极品少妇高潮喷水抽搐| 老司机午夜十八禁免费视频| 韩国精品一区二区三区| 国产成人av教育| 国产亚洲一区二区精品| 又大又爽又粗| 精品少妇一区二区三区视频日本电影| 亚洲av第一区精品v没综合| 91九色精品人成在线观看| 日韩三级视频一区二区三区| 国产成人免费无遮挡视频| 男女床上黄色一级片免费看| 最新美女视频免费是黄的| 久久精品国产亚洲av香蕉五月 | 久久中文看片网| 午夜久久久在线观看| 亚洲少妇的诱惑av| 黄色片一级片一级黄色片| 国产高清视频在线播放一区| 午夜精品久久久久久毛片777| 麻豆乱淫一区二区| 日韩大码丰满熟妇| 热re99久久精品国产66热6| 欧美日韩成人在线一区二区| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 精品福利观看| 中国美女看黄片| 亚洲专区国产一区二区| 超色免费av| 亚洲欧美激情在线| 亚洲五月婷婷丁香| 亚洲五月色婷婷综合| 一级片免费观看大全| 女性被躁到高潮视频| 俄罗斯特黄特色一大片| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| 欧美一级毛片孕妇| 18禁观看日本| 免费看十八禁软件| 黄色成人免费大全| 亚洲五月婷婷丁香| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 欧美日韩亚洲高清精品| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 精品久久久久久电影网| 日本五十路高清| 国产麻豆69| 日本五十路高清| 夜夜夜夜夜久久久久| 国产精品影院久久| 少妇的丰满在线观看| 村上凉子中文字幕在线| 老司机午夜福利在线观看视频| 十八禁高潮呻吟视频| 女人精品久久久久毛片| 99re在线观看精品视频| 男女高潮啪啪啪动态图| 91麻豆精品激情在线观看国产 | 久久香蕉精品热| 黄片大片在线免费观看| 成人av一区二区三区在线看| 精品一区二区三区四区五区乱码| 精品亚洲成a人片在线观看| av片东京热男人的天堂| 亚洲国产毛片av蜜桃av| 99久久综合精品五月天人人| 日韩精品免费视频一区二区三区| 黑人猛操日本美女一级片| 他把我摸到了高潮在线观看| 91老司机精品| 黄色视频不卡| 男男h啪啪无遮挡| 黑丝袜美女国产一区| 午夜福利影视在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲男人天堂网一区| 国产精品一区二区免费欧美| 欧美激情极品国产一区二区三区| 午夜91福利影院| 国产精品av久久久久免费| 午夜福利影视在线免费观看| 亚洲av欧美aⅴ国产| 777久久人妻少妇嫩草av网站| 中国美女看黄片| 国产亚洲一区二区精品| 一进一出抽搐动态| 新久久久久国产一级毛片| 狂野欧美激情性xxxx| 国产xxxxx性猛交| 欧美日韩亚洲国产一区二区在线观看 | 欧美人与性动交α欧美软件| 欧美在线一区亚洲| 久久国产精品影院| 国产熟女午夜一区二区三区| 亚洲av成人不卡在线观看播放网| 亚洲一区高清亚洲精品| 久久精品国产亚洲av香蕉五月 | 日韩视频一区二区在线观看| 国产免费男女视频| 亚洲精品自拍成人| 超碰97精品在线观看| 久9热在线精品视频| 女同久久另类99精品国产91| tocl精华| 涩涩av久久男人的天堂| 高清av免费在线| 久久精品国产亚洲av香蕉五月 | 俄罗斯特黄特色一大片| 岛国在线观看网站| 久久精品亚洲av国产电影网| 韩国精品一区二区三区| 成人三级做爰电影| 日韩欧美三级三区| 色综合婷婷激情| 亚洲九九香蕉| 激情在线观看视频在线高清 | 国产精品综合久久久久久久免费 | 亚洲性夜色夜夜综合| 热99国产精品久久久久久7| 欧美在线一区亚洲| 不卡一级毛片| 夜夜夜夜夜久久久久| 欧美黑人精品巨大| 午夜精品久久久久久毛片777| 嫩草影视91久久| 国产亚洲欧美98| av欧美777| 久久人人爽av亚洲精品天堂| videosex国产| 欧美 亚洲 国产 日韩一| 69av精品久久久久久| 麻豆成人av在线观看| 麻豆国产av国片精品| 嫩草影视91久久| 99久久综合精品五月天人人| 亚洲第一青青草原| 久久国产亚洲av麻豆专区| 黄色视频,在线免费观看| 一边摸一边抽搐一进一出视频| 久久久久国内视频| 大型黄色视频在线免费观看| 精品午夜福利视频在线观看一区| 在线永久观看黄色视频| 啦啦啦视频在线资源免费观看| 久久人妻福利社区极品人妻图片| 成年版毛片免费区| 免费观看a级毛片全部| av线在线观看网站| av网站在线播放免费| 成年动漫av网址| 成人18禁高潮啪啪吃奶动态图| 天堂√8在线中文| 亚洲av成人一区二区三| 高清黄色对白视频在线免费看| 黄色成人免费大全| 操出白浆在线播放| 天天躁狠狠躁夜夜躁狠狠躁| av天堂久久9| 日韩熟女老妇一区二区性免费视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧美一区二区综合| 999精品在线视频| 亚洲成a人片在线一区二区| 日韩欧美一区视频在线观看| 夜夜躁狠狠躁天天躁| 露出奶头的视频| 日日摸夜夜添夜夜添小说| 18禁美女被吸乳视频| 亚洲三区欧美一区| 国产成人av教育| 久久狼人影院| 夜夜躁狠狠躁天天躁| 极品教师在线免费播放| 亚洲精品成人av观看孕妇| 久久久国产成人免费| 涩涩av久久男人的天堂| 成人影院久久| 亚洲,欧美精品.| 丰满迷人的少妇在线观看| 精品乱码久久久久久99久播| 亚洲中文日韩欧美视频| 午夜亚洲福利在线播放| 757午夜福利合集在线观看| 国产成人精品久久二区二区91| 亚洲中文字幕日韩| 夜夜夜夜夜久久久久| 一进一出好大好爽视频| 丝袜美足系列| 久久亚洲真实| 成人国产一区最新在线观看| 欧美成人免费av一区二区三区 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一二三| netflix在线观看网站| 久久久久久久久久久久大奶| 91字幕亚洲| 欧美中文综合在线视频| 啦啦啦 在线观看视频| 女性被躁到高潮视频| 成人黄色视频免费在线看| 国产野战对白在线观看| 欧美久久黑人一区二区| 中文字幕人妻丝袜制服| 黄网站色视频无遮挡免费观看| 操美女的视频在线观看| 亚洲第一青青草原| 亚洲专区字幕在线| 制服诱惑二区| 国产真人三级小视频在线观看| 黄片播放在线免费| 精品国产乱码久久久久久男人| 亚洲中文字幕日韩| 久久久国产成人精品二区 | 欧美色视频一区免费| 搡老岳熟女国产| 免费在线观看日本一区| 亚洲七黄色美女视频| 亚洲色图av天堂| 欧美日韩成人在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 视频区图区小说| 欧美一级毛片孕妇| 99久久人妻综合| 国产精品亚洲av一区麻豆| 午夜福利欧美成人| 99久久综合精品五月天人人| 国产主播在线观看一区二区| svipshipincom国产片| 另类亚洲欧美激情| 在线播放国产精品三级| 亚洲成人国产一区在线观看| 国产精品一区二区在线不卡| 91麻豆精品激情在线观看国产 | 亚洲综合色网址| 国产免费av片在线观看野外av| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久久久99蜜臀| 国产1区2区3区精品| 午夜福利在线免费观看网站| 韩国av一区二区三区四区| 久久精品国产亚洲av高清一级| 国产精品国产高清国产av | 一二三四在线观看免费中文在| 一边摸一边抽搐一进一小说 | 国产精品成人在线| 亚洲精品中文字幕在线视频| 午夜老司机福利片| 免费黄频网站在线观看国产| 欧美成人免费av一区二区三区 | 18禁裸乳无遮挡免费网站照片 | 亚洲熟女精品中文字幕| 日韩精品免费视频一区二区三区| 看黄色毛片网站| 男人的好看免费观看在线视频 | 久久久久久久精品吃奶| 黑人巨大精品欧美一区二区蜜桃| 久久午夜综合久久蜜桃| 香蕉丝袜av| 欧美日韩黄片免| 国产精品久久电影中文字幕 | 50天的宝宝边吃奶边哭怎么回事| 欧美在线一区亚洲| 婷婷精品国产亚洲av在线 | 香蕉丝袜av| 女人被躁到高潮嗷嗷叫费观| 男女高潮啪啪啪动态图| 久久人妻福利社区极品人妻图片| 老司机靠b影院| 亚洲avbb在线观看| 久久精品人人爽人人爽视色| 日本黄色视频三级网站网址 | 天堂√8在线中文| 国产精品98久久久久久宅男小说| 国产区一区二久久| 啦啦啦 在线观看视频| 侵犯人妻中文字幕一二三四区| 久久精品国产99精品国产亚洲性色 | 国产精品欧美亚洲77777| 99热只有精品国产| 一级毛片高清免费大全| 日韩视频一区二区在线观看| 亚洲午夜精品一区,二区,三区| 亚洲五月婷婷丁香| 自线自在国产av| 亚洲综合色网址| 亚洲男人天堂网一区| 91在线观看av| av超薄肉色丝袜交足视频| 黄色 视频免费看| 少妇的丰满在线观看|