• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of flow past circular duct

    2010-11-02 13:35:28ZegaoYINXianweiCaoHongdaSHIJianMA
    Water Science and Engineering 2010年2期

    Ze-gao YIN*, Xian-wei Cao, Hong-da SHI, Jian MA

    1. Ocean Engineering Key Laboratory of Shandong Province, Ocean University of China,Qingdao 266100, P. R. China

    2. Civil Engineering Department, Zhejiang University, Hangzhou 310027, P. R. China

    1 Introduction

    Pipelines are the main way that oil and gas are transported through the sea. The exterior flow past horizontal circular ducts is an important factor that many scholars and engineers are concerned about. In order to investigate flow near the circular cylinder, physical models have been intensively employed. Bearman and Zdravkovich (1978)used a wind tunnel test to investigate flow around a circular cylinder when the Reynolds numbers (Re)were 2.5 × 104and 4.8 × 104, and the gap ratio between the circular cylinder and the plate wall varied from 0 to 3.5. Then, the smoke-wire method was used to express the flow visualization and pressure distribution, and it was found that the Strouhal number remained constant when the gap ratio was greater than 0.3. On the basis of Bearman’s research, Freds?e and Hansen (1987)conducted flume experiments to study flow separation, drag force, and lift force of the cylinder.According to the variable diameter cylinder, flow past the cylinder near the bottom boundary was investigated with the experiments. Qi et al. (2006)analyzed the characteristics of the vortex of flow past the cylinder on the basis of physical model data when the gap ratio was 0.5.

    With the increase of computational power, mathematical models have been utilized to simulate flow past the circular duct. Williamson (1996), Travin et al. (2000), Kravchenko and Moin (2000), and Sarpkaya (2004)used the Reynolds-averaged Navier-Stokes equations to study the flow near a circular cylinder. Kalro and Tezduyar (1997), Breuer (2000), Jordan(2002), and Catalano et al. (2003)used the large eddy simulation method to study the flow around a cylinder. This research focused mainly on the hydraulic characteristics and the fluid structure near the cylinder.

    As far as direct numerical simulation for Reynolds numbers from 10 to 1 000 is concerned,Henderson (1997)improved the capabilities of research on flow transition from two dimensions to three dimensions. Mittal and Balachandar (1995)investigated the three-dimensional effect on simulation accuracy at Re = 525.

    Although these scholars have concentrated on flow past the cylinder, there have been few studies on the flow force on circular ducts with various upper and bottom gap ratios. In this study, the Renormalization Group (RNG)k-ε turbulence model and Volume of Fluid (VOF)method were employed to calculate the hydraulic parameters around a circular duct with various upper and bottom gap ratios, and the forces on the circular duct were also computed and analyzed.

    2 Mathematical model

    The circular duct boundary causes the streamline to curve intensively. Compared with the standard k-ε model, the RNG k-ε model more accurately simulates complex boundary flow. Therefore, the RNG k-ε model was employed in this study. The tensor form of the Navier-Stokes equations and the RNG k-ε equations can be written as follows (Liu et al.2004; Baumal et al. 1998; Bazdidi et al. 2004):

    Continuity equation:

    Momentum equation:

    k equation:

    ε equation:

    where ρ is fluid density; μ is molecular viscosity; uiis the velocity component in the xi(i =1, 2)coordinate direction, denoting x and y coordinates, respectively, when i is equal to 1 and 2;is pressure in the xidirection; k is turbulent kinetic energy; ε is the turbulent dissipation rate;Fiis the body force in the xidirection: F1=0 and F2=g; δijis the Kronecker delta; when i = j,and when

    3 Numerical methods and boundary conditions

    3.1 Numerical methods

    The VOF method was adopted to handle the free surface. Its concept can be expressed as follows: a water volume fraction function (WVFF), Fw, is defined to present the relative water volume fraction in every computational grid cell. In each cell, the WVFF plus the volume fraction of air, Fa, is 1:

    For a given cell, three situations exist: Fw=1, when the cell is completely filled with water; Fw=0, when the cell is completely filled with air; and 0<Fw<1, which indicates that the cell is filled with both water and air, and an interface between the two exists in the cell.Free surface flow conforms to the third situation. The control equation of Fwcan be expressed as follows:

    where ρwand ρa(bǔ)are the densities of water and air, respectively; μwand μaare the molecular viscosity coefficients of water and air, respectively; and ρ and μ can be obtained by Eqs. (7)and (8)after Fwhas been computed.

    After the governing equations of the turbulence model consisting of the coupled RNG k-ε model and the VOF method, including Eqs. (1)through (4)and Eqs. (6)through (8), are solved, the hydraulic factors can be obtained.

    In this study, the mesh generation was performed with GAMBIT 2.2.30. In the Fluent software, a two-dimensional, single-precision, implicit, segregated solver was selected. The PLIC-VOF algorithm was used for the reconstruction of the interface, and the semi-implicit method for a pressure-linked equation algorithm was adopted for the solution of discrete equations. The solutions were considered to have converged when residuals were less than 10-3. The simulations were performed on a PC with a 2.8 GHz processor and one GB of RAM.

    3.2 Boundary conditions

    The inlet boundary was divided into a water velocity inlet and an air pressure boundary.The water velocity at the inlet boundary was defined as U0. The air boundary was regarded as atmospheric pressure. The k and ε at the inlet boundary were evaluated according to the following formulas:

    where H0is the water depth at the inlet boundary. The outlet boundary was regarded as the atmospheric pressure boundary. At the wall, a no-slip boundary was specified, and fluid velocities were set to zero. The wall function was adopted to treat the viscous sub-layer.

    4 Numerical results and analysis

    4.1 Model validation

    In Fig. 1, we can see that D is the diameter of the circular duct; e is the distance between the lower end of the circular duct and the bottom plane; H is the water depth; U is the mean flow velocity; Re=UDν, with ν being the kinematic viscosity; E is defined as the bottom gap ratio: E=e D; and G is defined as the upper gap ratio: G = (H - D- e)D.

    In order to validate the mathematical model, a physical model and a mathematical model were established where Re = 5 × 105, E = 1, G = 3, and D = 0.2 m. Velocity measurement was conducted with an acoustic Doppler velocimeter (ADV), as in Fig. 2. Pressure was measured by pressure sensors. The computational area was partitioned by unstructured grids, whose cell size was 0.1 m, and the total number of grid cells was 3 477. Due to the hydraulic complexity near the circular duct boundary, the area near the duct was partitioned with refined grids (Fig. 3).Then, the data of the physical model were compared with computed results.

    Fig. 1 Sketch map of computational case

    Fig. 2 Velocity measurement sketch of physical model with ADV

    Fig. 3 Computational grids of case where E = 1 and G = 3

    From Fig. 4, we can see that the measured free surface agrees with the computational results for the most part. From Table 1, we can see that all the relative errors between physical model velocities (Up)and computational velocities (Uc)are less than 7%, and measured data approach computational results. From Table 2, we can see that all the relative errors between physical model pressures (pp)and computational pressures (pc)are less than 6%, and measured data also approach computational results. Thus, computations of flow past the circular duct with the RNG k-ε turbulent model and the VOF method are valid and reliable.

    Fig. 4 Comparison between computational free surface and measured free surface (E = 1, G = 3, x is the horizontal distance from the duct center, and H is the water depth)

    Table 1 Comparison between Up and Uc

    Table 2 Comparison between pp and computational pc

    4.2 Computational velocities and pressure

    When Re = 5 × 105, E varies among the values 0, 1, and 2; G varies among the values 1, 2,3, and 4; and we obtain 12 conditions with different values of E and G (Table 3). The mathmatical model was used to compute the hydraulic factors associated with the 12 conditions.The results of the 7th condition, where E = 1 and G = 3, were chosen to be analyzed.

    Table 3 Twelve computational conditions

    From Fig. 5 we can see that the velocity direction is significantly deflected near the front of the circular duct boundary owing to the squeezing action that the circular duct boundary exerts on the flow, and the magnitude of the velocity becomes larger. The velocity distribution is symmetrical in the wake area, and the magnitudes of velocities are less than those of other areas.

    From Fig. 6 we can see that the pressure along the duct boundary is unevenly distributed.The pressure on the duct close to the inflow direction and the bottom plane is the largest, and the pressure on the duct close to the free surface is the smallest. The pressure recovers faster than the velocity does. Pressure contours approximately parallel each other in the section that is about five times the duct diameter away from circular duct, and the contour direction is almost horizontal, showing that the influence of the duct on pressure can be ignored here.

    Fig. 5 Computational flow velocities (E = 1, G = 3)

    Fig. 6 Computational pressure (Pa)(E = 1, G = 3)

    4.3 Computational turbulent kinetic energy and turbulence dissipation rate

    It can be seen in Fig. 7 and Fig. 8 that the distribution of turbulent kinetic energy approximately agrees with that of the turbulence dissipation rate. The largest area lies on a duct close to the inflow and the free surface, and the turbulent stress is the largest here. In the wake area, the turbulent intensity is the lowest. The turbulent kinetic energy and the turbulence dissipation rate are distributed symmetrically, and the horizontal line across the duct center is the symmetry axis.

    Fig. 7 Turbulent kinetic energy (m2/s2)(E = 1, G = 3)

    Fig. 8 Turbulence dissipation rate (m2/s3)(E = 1, G = 3)

    4.4 Analysis of force on duct

    The force on the duct can be decomposed into a horizontal drag force and a vertical lift force. The drag force coefficient (CD), lift force coefficient (CL), composite force (F), and azimuth (α)can be defined as follows:

    where Fxand Fyare the horizontal drag force and vertical lift force, respectively.

    In Fig. 9, Fig. 10, Fig. 11, and Fig. 12, we can see that, when E = 0, CD, CL, and F are at their largest values, but α is at its smallest. If we do not consider the duct dead weight and the internal flow force, the circular duct is most likely to break when E = 0. With an increase of E from 0 to 1, CDand F decrease sharply, and CLdoes not decreases so much, but α increases dramatically. With an increase of E from 1 to 2, CD, CL, F, and α vary slightly.With an increase of G from 1 to 4, CD, CL, and F decrease, but α increases when E = 0.More specifically, with the increase of G from 1 to 2 when E = 0, CD, CL, and F decrease sharply, but α increases quickly, showing that lift force contributes more and more to composite force. With the continuing increase of G from 2 to 4 when E = 0, CD, CL, and F decrease slowly. The value of α, however, also increases slowly. With an increase of G from 1 to 4 when E = 1 and E = 2, CD, CL, F, and α vary slightly. More specifically, CDvaries from 1.5 to 1.7, CLvaries from 60 to 61, F varies from 7 550 N to 7 620 N, and α varies from 88.3° to 88.6°, showing that the variation of G has little influence on CD, CL, F, and α when E = 1 and E = 2.

    Fig. 9 Relation curve of CD and G

    Fig. 10 Relation curve of CL and G

    Fig. 11 Relation curve of F and G

    Fig. 12 Relation curve of α and G

    5 Conclusions

    (1)Using Fluent software, the RNG k-ε turbulence model and the VOF method were employed to simulate the flow past a circular duct. The computational results regarding related hydraulic parameters, including surface position, velocities, pressure, turbulent kinetic energy,and the turbulence dissipation rate, were obtained and analyzed.

    (2)The forces on the duct were computed and analyzed with different bottom gap ratios and upper gap ratios. When E = 0, the drag force coefficient, lift force coefficient, and composite force are at their largest, but the azimuth is at its smallest, compared to other conditions. When E = 0, the drag force coefficient, lift force coefficient, and composite force decrease, but the azimuth increases along with the upper gap ratio. With an increase of the bottom gap ratio from 0 to 1, the drag force coefficient and the composite force decrease sharply, and the lift force coefficient does not decrease so much, but the azimuth increases dramatically.

    (3)The bottom gap ratio is the most important factor influencing the force on the circular duct. When the bottom gap ratio is less than 1, the upper gap ratio has a significant influence on the force of the circular duct. When the bottom gap ratio is greater than 1, the variation of the upper gap ratio has little influence on the force of the circular duct.

    Baumal, A. E., McPhee, J. J., Calamai, P. H., and Mompean, G. 1998. Numerical simulation of a turbulent flow near a right-angled corner using the Speziale non-linear model with RNG k-ε equations.Computers and Fluids, 27(7), 847-859. [doi:10.1016/S0045-7930(98)00004-8]

    Bazdidi, T. F, Shahmir., A, and Haghparast, K. A. 2004. Numerical analysis of a single row of coolant jets injected into a heated crossflow. Journal of Computational and Applied Mathematics, 168(1-2), 53-63.[doi:10.1016/j.cam.2003.05.012]

    Bearman, P. W, and Zdravkovich, M. M. 1978. Flow around a circular cylinder near a plane boundary. Journal of Fluid Mechanics, 89(1), 33-47. [doi:10.1017/S002211207800244X]

    Breuer, M. 2000. A challenging test case for large eddy simulation: High Reynolds number circular cylinder flow. International Journal of Heat and Fluid Flow, 21(5), 648-654.

    Catalano, P., Wang, M., Iaccarino, G., and Moin, P. 2003. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. International Journal of Heat and Fluid Flow, 24(4), 463-469. [doi:10.1016/S0142-727X(03)00061-4]

    Freds?e, J., and Hansen, E. A. 1987. Lift forces on pipelines in steady flow. Journal of Waterway, Port,Coastal and Ocean Engineering, 113(2), 139-155. [doi:10.1061/(ASCE)0733-950X(1987)113:2(139)]

    Henderson, R. D. 1997. Nonlinear dynamics and pattern formation in turbulent wake transition. Journal of Fluid Mechanics, 352(1), 65-112. [doi:10.1017/S0022112097007465]

    Jordan, S. A. 2002. Investigation of the cylinder separated shear-layer physics by large-eddy simulation.International Journal of Heat and Fluid Flow, 23(1), 1-12.

    Kalro, V., and Tezduyar, T. 1997. Parallel 3D computation of unsteady flows around circular cylinders.Parallel Computing, 23(9), 1235-1248. [doi:10.1016/S0167-8191(97)00050-1]

    Kravchenko, A. G., and Moin, P. 2000. Numerical studies of flow over a circular cylinder at ReD= 3900.Physics of Fluids, 12(2), 403-417. [doi:10.1063/1.870318]

    Liu, P. Q., Qu, Q. L., Wang, Z. G., and Zhang, H. M. 2004. Numerical simulation on hydrodynamic characteristics of bifurcation pipe with internal crescent rib. Journal of Hydraulic Engineering, 35(3),42-46. (in Chinese)

    Mittal, R., and Balachandar, S. 1995. Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders. Physics of Fluids, 7(8), 1841-1865.

    Qi, E. R., Li G. Y., Li, W., Wu, J., and Zhang, X. 2006. Study of vortex characteristics of the flow around a horizontal circular cylinder at various gap-ratios in the cross-flow. Journal of Hydrodynamics, Series B,18(3), 334-340.

    Sarpkaya, T. 2004. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 19(4), 389-447. [doi:10.1016/S0889-9746(04)00035-0]

    Travin, A., Shur, M., Strelets, M., and Spalart, P. 2000. Detached-eddy simulations past a circular cylinder.Flow, Turbulence and Combustion, 63(1-4), 293-313. [doi:10.1023/A:1009901401183]

    Williamson, C. H. K. 1996. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 28(1),477-539. [doi:10.1146/annurev.fl.28.010196.002401]

    日韩中文字幕欧美一区二区| 麻豆国产97在线/欧美| 琪琪午夜伦伦电影理论片6080| 免费大片18禁| www国产在线视频色| 精品国内亚洲2022精品成人| 亚洲中文字幕一区二区三区有码在线看| 色噜噜av男人的天堂激情| 露出奶头的视频| 久久九九热精品免费| 欧洲精品卡2卡3卡4卡5卡区| 老司机在亚洲福利影院| 国产免费av片在线观看野外av| 九九热线精品视视频播放| 欧美色视频一区免费| 在线播放国产精品三级| 精品不卡国产一区二区三区| 黄片小视频在线播放| 嫩草影院入口| 欧洲精品卡2卡3卡4卡5卡区| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 免费搜索国产男女视频| 法律面前人人平等表现在哪些方面| 搞女人的毛片| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| e午夜精品久久久久久久| 麻豆一二三区av精品| av在线蜜桃| 99热只有精品国产| 日本一二三区视频观看| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 亚洲精品久久国产高清桃花| 首页视频小说图片口味搜索| 亚洲av不卡在线观看| 午夜视频国产福利| 精品福利观看| 在线观看一区二区三区| 99久久无色码亚洲精品果冻| 精品人妻一区二区三区麻豆 | 精品人妻一区二区三区麻豆 | 97超视频在线观看视频| 黄片大片在线免费观看| 看免费av毛片| 身体一侧抽搐| 露出奶头的视频| 精品无人区乱码1区二区| 色综合婷婷激情| 精品电影一区二区在线| 亚洲内射少妇av| 麻豆成人午夜福利视频| 日日摸夜夜添夜夜添小说| 亚洲成人久久性| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 亚洲国产精品999在线| 我要搜黄色片| 国产单亲对白刺激| 亚洲欧美日韩东京热| 国产真实伦视频高清在线观看 | 亚洲内射少妇av| 在线观看免费午夜福利视频| 国产午夜精品论理片| 亚洲精品一区av在线观看| 嫩草影院精品99| e午夜精品久久久久久久| 欧美乱码精品一区二区三区| 中文字幕人成人乱码亚洲影| www.www免费av| 精品久久久久久久久久久久久| av福利片在线观看| 国产91精品成人一区二区三区| 午夜免费激情av| 国产色爽女视频免费观看| 日韩中文字幕欧美一区二区| 亚洲国产欧美人成| 中出人妻视频一区二区| 亚洲色图av天堂| 国产一区二区亚洲精品在线观看| 亚洲成a人片在线一区二区| 18+在线观看网站| 人人妻,人人澡人人爽秒播| 嫩草影院精品99| www国产在线视频色| 又黄又爽又免费观看的视频| 久久中文看片网| 日本一二三区视频观看| 91在线观看av| 亚洲片人在线观看| 一区二区三区免费毛片| 成人一区二区视频在线观看| 村上凉子中文字幕在线| 最近最新免费中文字幕在线| 中文字幕人妻熟人妻熟丝袜美 | 可以在线观看的亚洲视频| 国产成人a区在线观看| 老汉色∧v一级毛片| 国产高清视频在线观看网站| 老司机午夜十八禁免费视频| 免费无遮挡裸体视频| 久久久成人免费电影| www.www免费av| 怎么达到女性高潮| 此物有八面人人有两片| 亚洲aⅴ乱码一区二区在线播放| svipshipincom国产片| 又紧又爽又黄一区二区| 97超视频在线观看视频| 在线免费观看不下载黄p国产 | 成人欧美大片| 亚洲国产精品sss在线观看| 成人午夜高清在线视频| 日本一本二区三区精品| 日韩欧美 国产精品| 国产精品日韩av在线免费观看| 国产中年淑女户外野战色| 中文资源天堂在线| 国产蜜桃级精品一区二区三区| 嫁个100分男人电影在线观看| 淫妇啪啪啪对白视频| 久久久久久九九精品二区国产| 淫秽高清视频在线观看| 日韩欧美在线二视频| 亚洲精品在线美女| 国产精品精品国产色婷婷| 亚洲第一欧美日韩一区二区三区| 在线观看免费视频日本深夜| 国产国拍精品亚洲av在线观看 | 亚洲一区二区三区色噜噜| 亚洲无线在线观看| 黄色丝袜av网址大全| 午夜福利在线观看免费完整高清在 | 亚洲av成人av| 国产97色在线日韩免费| 女同久久另类99精品国产91| 琪琪午夜伦伦电影理论片6080| 免费在线观看亚洲国产| 老熟妇乱子伦视频在线观看| 麻豆国产97在线/欧美| 亚洲一区高清亚洲精品| 欧美日韩综合久久久久久 | 老熟妇仑乱视频hdxx| 丰满乱子伦码专区| 校园春色视频在线观看| 国产高潮美女av| 乱人视频在线观看| 久久久久精品国产欧美久久久| 亚洲 欧美 日韩 在线 免费| 听说在线观看完整版免费高清| 久久精品国产99精品国产亚洲性色| 又黄又爽又免费观看的视频| 亚洲熟妇熟女久久| 欧美国产日韩亚洲一区| 国产乱人视频| 亚洲精华国产精华精| 夜夜躁狠狠躁天天躁| 91字幕亚洲| 亚洲av熟女| 最新美女视频免费是黄的| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产精品成人综合色| 男女那种视频在线观看| 国产午夜精品久久久久久一区二区三区 | 人妻久久中文字幕网| 欧美区成人在线视频| 国产一区二区在线av高清观看| 美女高潮的动态| 欧美日韩国产亚洲二区| 91麻豆精品激情在线观看国产| 免费看十八禁软件| 国产亚洲精品av在线| 黄色女人牲交| 国内精品久久久久久久电影| 黄色成人免费大全| 国产欧美日韩精品亚洲av| 成人鲁丝片一二三区免费| 网址你懂的国产日韩在线| 91麻豆精品激情在线观看国产| 成人av在线播放网站| 看片在线看免费视频| 国产男靠女视频免费网站| 夜夜爽天天搞| 91在线观看av| 午夜免费观看网址| aaaaa片日本免费| 国产黄片美女视频| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 我的老师免费观看完整版| 深爱激情五月婷婷| 看免费av毛片| 国产伦精品一区二区三区视频9 | 亚洲中文字幕日韩| 免费观看人在逋| 亚洲人成网站高清观看| 欧美bdsm另类| 精品一区二区三区视频在线 | 男人和女人高潮做爰伦理| 在线国产一区二区在线| 国产精品久久久人人做人人爽| 国产成人aa在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久人人做人人爽| 国产成人aa在线观看| 国语自产精品视频在线第100页| 国产一区二区激情短视频| 亚洲男人的天堂狠狠| 久久国产精品影院| 男女之事视频高清在线观看| 黑人欧美特级aaaaaa片| 亚洲美女视频黄频| 欧美黄色淫秽网站| 嫩草影视91久久| 免费看十八禁软件| 搞女人的毛片| 一个人免费在线观看的高清视频| 国产高清三级在线| 日本 av在线| 别揉我奶头~嗯~啊~动态视频| 内射极品少妇av片p| 美女黄网站色视频| 亚洲avbb在线观看| 男女午夜视频在线观看| 一进一出抽搐动态| 日韩中文字幕欧美一区二区| 久久亚洲真实| 国产午夜精品论理片| 亚洲专区中文字幕在线| 男人舔女人下体高潮全视频| 19禁男女啪啪无遮挡网站| 欧美色视频一区免费| 内地一区二区视频在线| 18+在线观看网站| 精品国产亚洲在线| 波多野结衣高清无吗| 国产一区二区在线观看日韩 | 亚洲精品粉嫩美女一区| 欧美午夜高清在线| 亚洲av免费在线观看| 岛国视频午夜一区免费看| 淫秽高清视频在线观看| 亚洲精品粉嫩美女一区| 最近视频中文字幕2019在线8| 欧美成人一区二区免费高清观看| 久久天躁狠狠躁夜夜2o2o| 亚洲最大成人手机在线| 中出人妻视频一区二区| 怎么达到女性高潮| 好男人电影高清在线观看| 精品久久久久久久末码| 欧美乱色亚洲激情| a级毛片a级免费在线| 亚洲男人的天堂狠狠| 人人妻,人人澡人人爽秒播| 久久性视频一级片| 精品不卡国产一区二区三区| 母亲3免费完整高清在线观看| 亚洲国产日韩欧美精品在线观看 | 成人一区二区视频在线观看| 午夜免费观看网址| 亚洲av不卡在线观看| 国产精品久久久久久亚洲av鲁大| 久99久视频精品免费| 波野结衣二区三区在线 | 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 国产精品永久免费网站| 男人舔女人下体高潮全视频| 99久国产av精品| 老汉色∧v一级毛片| 欧美xxxx黑人xx丫x性爽| 又黄又粗又硬又大视频| 国产一区二区亚洲精品在线观看| 脱女人内裤的视频| 国产精品,欧美在线| 成熟少妇高潮喷水视频| 人人妻人人澡欧美一区二区| 18禁黄网站禁片午夜丰满| 国产老妇女一区| 性色av乱码一区二区三区2| 看片在线看免费视频| 88av欧美| 国产aⅴ精品一区二区三区波| 国产午夜精品久久久久久一区二区三区 | 天堂影院成人在线观看| av欧美777| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线播放欧美日韩| 成人午夜高清在线视频| 欧美精品啪啪一区二区三区| 国产精品精品国产色婷婷| 一级毛片女人18水好多| 免费高清视频大片| 免费在线观看日本一区| 国产av不卡久久| 精品人妻一区二区三区麻豆 | 亚洲欧美激情综合另类| 神马国产精品三级电影在线观看| 在线观看免费午夜福利视频| 欧美一区二区精品小视频在线| 久久性视频一级片| 精品国产超薄肉色丝袜足j| 久久天躁狠狠躁夜夜2o2o| 少妇熟女aⅴ在线视频| 深爱激情五月婷婷| 国产精品亚洲美女久久久| 淫秽高清视频在线观看| 中文字幕久久专区| 九色成人免费人妻av| 一本精品99久久精品77| 91麻豆精品激情在线观看国产| 法律面前人人平等表现在哪些方面| 亚洲国产精品999在线| 老司机午夜十八禁免费视频| 精品人妻1区二区| bbb黄色大片| 无人区码免费观看不卡| 国产午夜福利久久久久久| 亚洲精华国产精华精| 岛国在线观看网站| 免费人成视频x8x8入口观看| 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 韩国av一区二区三区四区| 欧美性猛交黑人性爽| 啦啦啦韩国在线观看视频| 亚洲,欧美精品.| av黄色大香蕉| 91麻豆精品激情在线观看国产| svipshipincom国产片| 国产精品香港三级国产av潘金莲| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久人人做人人爽| 亚洲国产中文字幕在线视频| 久久99热这里只有精品18| 老司机福利观看| 人人妻,人人澡人人爽秒播| 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 亚洲成人久久爱视频| ponron亚洲| tocl精华| 亚洲成人久久性| 国产欧美日韩一区二区精品| 国产爱豆传媒在线观看| 99热6这里只有精品| 欧美+亚洲+日韩+国产| 黄色片一级片一级黄色片| 国产高潮美女av| 国产淫片久久久久久久久 | 神马国产精品三级电影在线观看| 一进一出抽搐动态| 精品电影一区二区在线| 免费在线观看成人毛片| 最好的美女福利视频网| 首页视频小说图片口味搜索| 3wmmmm亚洲av在线观看| 日本在线视频免费播放| 美女黄网站色视频| 精品国内亚洲2022精品成人| 久久久国产精品麻豆| 麻豆一二三区av精品| 欧美一区二区国产精品久久精品| 久久精品国产综合久久久| 国产精品爽爽va在线观看网站| 色综合婷婷激情| 亚洲av电影在线进入| 天堂av国产一区二区熟女人妻| 国产一区二区亚洲精品在线观看| 最近最新中文字幕大全电影3| 午夜福利在线在线| 一本久久中文字幕| 日韩欧美在线乱码| 午夜免费观看网址| 日韩有码中文字幕| 99国产精品一区二区三区| 国产精品一区二区三区四区久久| 免费人成在线观看视频色| 亚洲精品国产精品久久久不卡| 脱女人内裤的视频| 精品久久久久久久毛片微露脸| 亚洲中文日韩欧美视频| 极品教师在线免费播放| 欧美日韩瑟瑟在线播放| 99久久无色码亚洲精品果冻| 全区人妻精品视频| 国产欧美日韩一区二区精品| 久久欧美精品欧美久久欧美| 亚洲精品456在线播放app | 大型黄色视频在线免费观看| 国产亚洲欧美98| 在线视频色国产色| 欧美极品一区二区三区四区| 久久久久久久久大av| 日本一本二区三区精品| 国产精品三级大全| 国产伦在线观看视频一区| 超碰av人人做人人爽久久 | 成年女人永久免费观看视频| 99久久99久久久精品蜜桃| 国内毛片毛片毛片毛片毛片| 国产免费男女视频| 天天躁日日操中文字幕| 亚洲中文字幕日韩| 日韩有码中文字幕| 久久人人精品亚洲av| 性欧美人与动物交配| 欧美在线黄色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 琪琪午夜伦伦电影理论片6080| 午夜日韩欧美国产| 国产黄色小视频在线观看| 亚洲av五月六月丁香网| 欧美在线一区亚洲| 又紧又爽又黄一区二区| 成人av在线播放网站| 神马国产精品三级电影在线观看| 99久久综合精品五月天人人| eeuss影院久久| 亚洲av不卡在线观看| 国产精品久久久人人做人人爽| www国产在线视频色| 97碰自拍视频| 亚洲五月婷婷丁香| 男女那种视频在线观看| 精品久久久久久,| 亚洲五月婷婷丁香| 欧美绝顶高潮抽搐喷水| 免费高清视频大片| 99久久精品国产亚洲精品| av在线蜜桃| 日韩欧美精品免费久久 | 美女高潮喷水抽搐中文字幕| a级一级毛片免费在线观看| 俄罗斯特黄特色一大片| 国产精品99久久99久久久不卡| 美女cb高潮喷水在线观看| 久久久久久九九精品二区国产| xxxwww97欧美| 亚洲美女视频黄频| 脱女人内裤的视频| 国产精品女同一区二区软件 | 午夜免费男女啪啪视频观看 | 国产午夜福利久久久久久| 亚洲成人久久爱视频| 久久人人精品亚洲av| 蜜桃久久精品国产亚洲av| 老熟妇乱子伦视频在线观看| 日韩欧美精品免费久久 | 丰满乱子伦码专区| 岛国在线观看网站| 青草久久国产| 日本五十路高清| 免费看日本二区| 草草在线视频免费看| 天堂网av新在线| 久久久国产精品麻豆| 伊人久久精品亚洲午夜| 免费看十八禁软件| 好男人电影高清在线观看| 国产精品久久久久久久久免 | АⅤ资源中文在线天堂| 在线播放无遮挡| 欧美zozozo另类| 在线天堂最新版资源| 在线观看日韩欧美| 日韩成人在线观看一区二区三区| 国产在视频线在精品| 国产成年人精品一区二区| 成人一区二区视频在线观看| 搡老妇女老女人老熟妇| 亚洲人成网站在线播放欧美日韩| 午夜激情福利司机影院| 国产高清激情床上av| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 欧美激情久久久久久爽电影| 国产亚洲av嫩草精品影院| 神马国产精品三级电影在线观看| 国产成人啪精品午夜网站| 亚洲熟妇中文字幕五十中出| 无限看片的www在线观看| 在线观看午夜福利视频| 日本免费一区二区三区高清不卡| 久久草成人影院| 搡女人真爽免费视频火全软件 | 97人妻精品一区二区三区麻豆| 欧美国产日韩亚洲一区| 国产亚洲欧美在线一区二区| 国内精品一区二区在线观看| tocl精华| 无遮挡黄片免费观看| 亚洲精品在线美女| 首页视频小说图片口味搜索| 久久中文看片网| 国产亚洲精品综合一区在线观看| 国产精品久久久久久人妻精品电影| 在线a可以看的网站| 精品一区二区三区视频在线 | 内地一区二区视频在线| 亚洲精品粉嫩美女一区| 久久久久久久久中文| 91在线精品国自产拍蜜月 | 国内精品久久久久久久电影| 久久婷婷人人爽人人干人人爱| 国产av麻豆久久久久久久| 欧美成人性av电影在线观看| 我的老师免费观看完整版| www国产在线视频色| 欧美黄色片欧美黄色片| 在线播放无遮挡| 国模一区二区三区四区视频| 97碰自拍视频| 色av中文字幕| 国产av不卡久久| 亚洲最大成人中文| 精品一区二区三区视频在线 | 天堂影院成人在线观看| 噜噜噜噜噜久久久久久91| 老司机在亚洲福利影院| 国产麻豆成人av免费视频| 国内揄拍国产精品人妻在线| a级一级毛片免费在线观看| 制服丝袜大香蕉在线| 九九在线视频观看精品| 很黄的视频免费| 丰满的人妻完整版| 日韩欧美在线乱码| 午夜福利在线观看吧| 中文字幕av成人在线电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲无线在线观看| 国产精品1区2区在线观看.| 99在线视频只有这里精品首页| 免费看a级黄色片| 制服人妻中文乱码| 少妇裸体淫交视频免费看高清| 熟女电影av网| 国产成人欧美在线观看| 岛国视频午夜一区免费看| 特级一级黄色大片| 真人一进一出gif抽搐免费| 亚洲精品成人久久久久久| 日韩大尺度精品在线看网址| 99国产精品一区二区蜜桃av| 午夜福利高清视频| 国产精品永久免费网站| 听说在线观看完整版免费高清| 中文亚洲av片在线观看爽| 国产日本99.免费观看| 他把我摸到了高潮在线观看| 亚洲午夜理论影院| 日韩欧美精品免费久久 | 国产国拍精品亚洲av在线观看 | 最新中文字幕久久久久| 亚洲国产精品久久男人天堂| 国内揄拍国产精品人妻在线| 日本三级黄在线观看| 91麻豆精品激情在线观看国产| 亚洲不卡免费看| 97超视频在线观看视频| 成人永久免费在线观看视频| 啦啦啦免费观看视频1| 国产精品永久免费网站| 18禁在线播放成人免费| 动漫黄色视频在线观看| 亚洲第一欧美日韩一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲av二区三区四区| 日本撒尿小便嘘嘘汇集6| 美女高潮喷水抽搐中文字幕| 亚洲国产精品合色在线| 熟女人妻精品中文字幕| www.色视频.com| 中文资源天堂在线| 久久久色成人| 精品国产三级普通话版| 中文资源天堂在线| 麻豆国产av国片精品| 草草在线视频免费看| 韩国av一区二区三区四区| 欧美乱妇无乱码| 色噜噜av男人的天堂激情| 亚洲国产欧美网| 久久久久九九精品影院| www日本黄色视频网| 一区二区三区国产精品乱码| 黄片大片在线免费观看| 国产一区二区在线观看日韩 | 宅男免费午夜| 成人高潮视频无遮挡免费网站| 精品熟女少妇八av免费久了| 精品国产美女av久久久久小说| 熟妇人妻久久中文字幕3abv| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久人人做人人爽| 国产精品99久久久久久久久| 成人av在线播放网站| 精品国产美女av久久久久小说| 又黄又粗又硬又大视频| 女警被强在线播放| 91麻豆精品激情在线观看国产| 伊人久久精品亚洲午夜| 三级毛片av免费| 在线免费观看的www视频| 激情在线观看视频在线高清| 国产日本99.免费观看| 免费高清视频大片| 日本成人三级电影网站| 女人被狂操c到高潮| 久久久久久久午夜电影|