• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved PSO algorithm based on chaos theory and its application to design flood hydrograph

    2010-11-02 13:35:16SifangDONGZengchuanDONGJunjianMAKangningCHEN
    Water Science and Engineering 2010年2期

    Si-fang DONG*, Zeng-chuan DONG, Jun-jian MA, Kang-ning CHEN

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University, Nanjing 210098, P. R. China

    2. Department of Remote Sensing Center, China Institute of Water Resources and Hydropower Research,Beijing 100044, P. R. China

    1 Introduction

    The particle swarm optimization (PSO)algorithm was first described by Eberhart and Kennedy (1995). It is a swarm intelligence-based algorithm used to find a solution to an optimization problem in a search space, or to model and predict social behavior in the pursuit of objectives. It has been successfully applied to many optimization problems, including learning artificial neural networks and model predictive control (Eberhart and Shi 2001). A brief and complete overview of the principle, technique, and application of the PSO algorithm is provided by Kennedy and Eberhart (2001)and Clerc (2006). Schutte et al. (2005)used the PSO algorithm for biomechanical optimization and concluded that the performance of the PSO algorithm is superior to that of the genetic algorithm.

    Just like other evolutionary algorithms of global optimization, PSO has the disadvantages of premature convergence, delay of convergence in later periods, and an excessive decrease of particle variety with more iterations, which may render it incapable of converging at the global optimal solution. Therefore, domestic and foreign scholars have tried to improve the optimization performance of the basic PSO (bPSO)algorithm and developed some representative improved versions with superior performance. These improved models can be classified into four types: (1)those that balance the global and local searching capabilities of the algorithm by fluctuating or adjusting the parameters of PSO (Angeline 1998; Higashi and Iba 2003); (2)those that improve the performance of the algorithm by designing different types of topological structures (Mendes et al. 2004; Shi and Eberhart 2001); (3)those that decrease the gathering of particles by increasing the particle variety in PSO (Baskar and Suganthan 2004; Kennedy and Eberhart 1997); and (4)those that form a blending algorithm with superior performance by combining PSO with other searching technology (Wang et al.2001; Koay and Srinivasan 2003; Fukuyama and Yoshida 2001).

    In order to improve the PSO algorithm, this paper introduces the chaos optimization mechanism and a global particle stagnation-disturbance strategy, which keeps the particles from the stagnation state. An optimal model called the chaos-PSO (COSPOS)model was set up to calculate the design flood hydrograph based on similar disparity theory. In general, the following problems are encountered when using the conventional homogeneous frequency enlargement method to draw the design flood hydrograph: (1)when the flood peak and flood volume relation is not satisfactory, the homogeneous frequency enlargement method might cause different amplification rates in different time intervals of the hydrograph, leading to mutation or discontinuity of hydrographs between successive time intervals; (2)the conventional method simply duplicates the flood discharge in the same time interval, and cannot maintain the original typical flood process after linking each time interval; (3)the hydrograph is smoothed manually, rather than with a computer science technique, which takes more time and effort. In this study, the COSPOS algorithm was used to solve these problems in calculating the design flood hydrograph.

    2 Establishment of COSPSO model

    2.1 Initialization strategy

    The bPSO algorithm initializes the stochastic location of each particle in the solution space. The uniform distribution of particles cannot be guaranteed in this way and more time is needed for the particles to seek the global optimal solution. The particles’ random distribution also increases the randomness of the global optimal solution. If the locations of most particles are significantly inferior to the others, the variety of particles will rapidly decrease as the algorithm runs, ultimately causing prematurity. Therefore, the chaos theory and chaotic optimization mechanism were introduced into the bPSO algorithm to guide the optimal distribution of the particles in the solution space: the locations of the particles were mapped in the optimal chaos space so that particles would stay in the chaos state and move in a chaotic trajectory after they were initialized randomly (Bloch 2005). Most of the particles arrive at a better location within a given period. Therefore, the rational selection of origin remarkably increases the probability that the PSO algorithm will reach the global optimal solution and reduces the number of iterations. At the same time, the diversity of particles does not decrease rapidly during the running of the algorithm, as the particles have a good initial location. We picked two chaos theory mapping methods, Logistic mapping and Ken mapping, for the following analysis:

    (1)Logistic mapping is formulated as follows:

    where x is the variable (0<x<1); f is the self-mapping function; k is the number of iterations ( k = 1, 2,… ,n); and μ is the control parameter (0< μ≤4).

    (2)Kent mapping and Logistic mapping have a mutual transformation relationship and topological conjugacy property. The formula for Kent mapping is as follows:

    where β is the control parameter. Since 0<β≤1, the Lyapunov exponent of Kent mapping is greater than 0, and the mapping is in chaos status. The chaos invariant set of Kent mapping is (0, 1). However, the chaotic sequence of Kent mapping can easily be influenced by such restraints of the computer as finite word length and accuracy.

    2.2 Global particle stagnation-disturbance strategy

    An important cause of prematurity of the bPSO algorithm is that the gBest particle that reaches the global optimal solution makes no contribution in the later period, and just follows the velocity and direction of the former iteration in the search. It is easily trapped in a local extremum in a complicated environment with lots of local extrema. No strategy is provided to help it escape from local optimization, but only to force calculation. The chaos theory was introduced to carry out a random disturbance strategy for stagnant gBest particles. The following is an example using Logistic mapping:

    The chaos stagnation-disturbance strategy not only guarantees that the algorithm can enhance the ability of the gBest particles to avoid local optimization when the local extremum is close to the global optimal point, but also provides a continuous transform mechanism to help gBest particles escape from local extrema gradually when the local extrema are far from the global optimal point.

    2.3 Calculation steps

    (1)Two initial numbers of iterations are set as k=1 and k′=1. m chaos variables xi,k+1(i =1, 2,… ,m)with different traces are obtained by assigning xkin Eq. (1)with m initial values, which have slight differences from one another.

    (5)If f*is unchanged, we go on to the next step. If not, we return to step (2).

    (8)If the global optimal solution remains unchanged for many iterations, then we carry out the disturbance strategy and return to step (2). If not, we go on to the next step.

    (9)It is necessary to determine whether f*= f( xi,k′)and xi*= xi,k′comply with the termination rule. If not, then step (6)is repeated. If so, then the optimal solution is found: the optimal solution is x*and the corresponding function is f*.

    3 Verification of COSPSO

    3.1 Introduction of benchmark functions

    In order to evaluate the performance of COSPSO based on chaos theory, including the convergence speed of global optimization, five benchmark optimizations (Table 1)were introduced and analyzed (Runarsson and Yao 2000), facilitating comparison of the performance of COSPSO to that of bPSO. These benchmark optimizations, which aim at a global minimum value, are often used to test the performance of a reformed algorithm. They are composed of two single-peak (unimodal)functions and three multi-peak (multimodal)functions, which possess different characteristics and can thus test every aspect of the optimized performance in various problems.

    In Table 1, minF(x)is the global minimum, and f1and f2are consecutive unimodal functions, usually used to inspect the convergence rate of the algorithm. The Rosenbrock function is a typical complex function with a smooth trend, and its global optimal point is in an even, narrow, parabola-shaped valley. It is usually used to test the convergence rate of the algorithm because it requires little information and has a small likelihood of convergence to the global optimal point. f3, f4, and f5are complex nonlinear multimodal functions with plenty of local extrema. Therefore, they work effectively for the inspection of the algorithm’s global search performance, particle diversity, and ability to allow particles to escape from local extrema,guarantee convergence, and prevent prematurity.

    Table 1 Five benchmark functions

    The functions with more dimensions, wider independent variable scopes, and higher target accuracy are more difficult to be optimized. In order to facilitate the comparison between the original algorithm and the improved algorithm, and to give priority to the performance of the latter, this study selected the most rigorous parameter sets (Eberhart and Kennedy 1995), shown in Table 2.

    Table 2 Function parameter settings

    3.2 Parameter setting of COSPSO

    For better comparison of the performances of COSPSO and bPSO, the same parameter values were used, in addition to some new parameters. In bPSO the tactic of linear dynamic descending within the range of 0.4 to 0.9 was adopted for the inertia weight w(Parsoploulos et al. 2001), while a constant value of w=0.9 was used for the COSPSO.The same value of 2 was used for the acceleration coefficients c1and c2of COSPSO and bPSO. The particle quantity was 30. There were 500 low-accuracy searches and 200 high-accuracy searches in COSPSO. When the control parameter was 4, it could be ensured that Logistic mapping would be in the chaotic state. In this way, the efficient optimization performance of COSPSO was fully examined.

    3.3 Unimodal function comparison

    Fig. 1 and Fig. 2 show that the performance of COSPSO with the Logistic and Kent mapping functions presents a great improvement over bPSO. In the figures, L-MAP and K-MAP are the processes of COSPOS with Logistic mapping and Kent mapping, respectively,and y indicates the accuracy of iterative calculation. When solving the sphere function,COSPSO always maintains a speedy convergence and could be said to have a tendency of accelerating convergence compared with PSO. The global optimal solution of COSPSO in the initial stage was by no means better than that of bPSO. However, the initial individual value of the particles was much superior to that of randomly initialized bPSO. Therefore, the descending speed of the iterative curve of COSPOS was higher than that of bPSO, thus guaranteeing speed, efficiency, and accuracy in convergence. As seen in Fig. l, it took at least 1 000 iterations before bPSO reached a relatively high convergence accuracy, while in COSPSO only 150 iterations were needed. Furthermore, the accuracy of e-160at the 7 000th iteration of COSPSO was far higher than the accuracy of e-50of bPSO, as shown in Fig. 2.

    Fig. 1 Optimization process of Rosenbrock function

    Fig. 2 Optimization process of Sphere function

    3.4 Multimodal function comparison

    In the optimization of multimodal functions (f3, f4, and f5), the abundance of local extrema easily ran the algorithm into local optimization and then caused prematurity, and thus limited the ability of the algorithm to escape from the local extremum and converge at global optimization. Fig. 3, Fig. 4, and Fig. 5 show that the convergence accuracy of COSPSO was the same as that of the bPSO in the Griewank function. However, in other respects, such as the ability to escape from local extrema, convergence speed, and global optimization, COSPSO was evidently better than bPSO. This was well proven by its speedy convergence in the initial 500 to 1 000 iterations. Besides, the initial accuracy of the new algorithm was significantly higher than that of bPSO. All of these factors lead to a global optimal solution. COSPSO can improve the efficiency of multimodal function optimization mainly because of the chaotic optimization process, in which the initial locations of particles are calculated with high accuracy and searching directions are highly precise, thus increasing the variety of particles.The variety does not diminish as iteration continues, and it can enhance particles’ ability to escape from the local extremum, thus avoiding the prematurity in bPSO. This can be seen clearly from the results of the experiment.

    Fig. 3 Optimization process of Rastrigin function

    Fig. 4 Optimization process of Griewank function

    Fig. 5 Optimization process of Schwefel function

    4 Design flood hydrograph model

    The design flood hydrograph model was established based on complete water level and discharge data from Changba Hydrological Station, 4 500 m upstream of the Wantou hydro-junction, for the period of 1953 to 2004. This model was meant for dealing with the following problems in solving the design flood hydrograph by enlarging a typical flood hydrograph at the same frequency: (1)When the flood peak and flood volume relation is not satisfactory, a mutation on the hydrograph may occur at the connecting point of two successive periods. (2)The original typical flood mode can easily be destroyed (CWRC 2001).Similar disparity theory was applied to establish the object function of the design flood hydrograph model:

    The constraint conditions are as follows:

    The constrained nonlinear optimization problem of Eq. (6)can be converted into an unconstrained optimization problem by Eq. (8):

    where M is a positive even number, which is set as 2 in the following calculation; and σi(i= 1, 2, 3, 4)are the penalty function factors, which are related to the current number of iterations n′. σi(i= 1, 2, 3, 4)is small at the beginning and increases gradually, which is helpful to the search for the optimal solution at a large scale, leading to the final solution to the original question:

    A flood process in 1976 was considered as a typical example. Frequency analysis was carried out based on the long-term hydrological data series and the eigenvalue of a typical flood at Changba Hydrological Station. The typical flood process was mapped with 168 actual measurement points and the time step was one hour. The COSPSO algorithm was applied to draw the design flood hydrograph of Changba Hydrological Station, and, further, to calculate the design flood standard hydrographs of various frequencies.

    Some of the COSPSO parameters were set in Section 3.2. In addition, the initial values of penalty function factors were set as σi=5 and=103(i= 1, 2, 3, 4). There were 500 iterations during the whole optimization process and 700 iterations during chaos optimization.

    Table 3 shows the eigenvalues of a typical flood and design floods for different frequencies at Changba Hydrological Station. Fig. 6 shows different frequency design flood hydrographs, which basically maintain the distribution pattern of a typical flood process and demonstrate the good effect of curve-fitting.

    Table 3 Eigenvalues of typical flood and design floods for different frequencies

    Fig. 6 Different frequency design flood hydrographs of Changba Station

    5 Conclusions

    In COSPSO, a particle’s initial movement trajectory is assumed to be chaotic instead of the desultory stochastic trajectory of other models. The chaos factor is used to guide the particle’s path and a disturbance strategy is used to keep the global particles from stagnation.In the optimization solution tests of two unimodal functions and three multimodal functions,the COSPSO displayed its main advantages, including: (1)speedy convergence to a global optimum solution, (2)high efficiency in the search of particles’ initial direction, (3)refrainment from prematurity, (4)guarantee of particles’ initial variety, and (5)high ability to keep particles from the stagnation state and allow them to maintain chaotic movement.

    Based on the similar disparity theory, the scaling model for calculating a design flood was established and a new method of processing penalty function constraints was put forward.In addition, COSPSO, a cluster intelligent algorithm, was applied to optimize the solution,thus radically solving the problems that arise from drawing the design flood hydrograph using the conventional homogeneous frequency enlargement method. With Changba Hydrological Station as an example, the design flood hydrographs for frequencies ranging from 0.05% to 5% were drawn by the flood hydrograph enlargement model with COSPSO. The process is speedy and practical, and the results are in agreement with the typical flood process in 1976.The case study shows that the new method is effective for calculating the peak discharge and flood volumes of the design flood, and that the design flood is consistent with the typical flood patterns. This method allows the user to avoid the randomness and complexity of manual modification.

    Angeline, P. J. 1998. Using selection to improve particle swarm optimization. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, 84-89. Piscataway: IEEE Press. [doi:10.1109/ICEC.1998.699327]

    Baskar, S., and Suganthan, P. N. 2004. A novel concurrent particle swarm optimization. Proceedings of the 2004 Congress on Evolutionary Computation, 1, 792-796. Piscataway: IEEE Press. [doi:10.1109/CEC.2004.1330940]

    Bloch, D. P. 2005.Complexity, chaos, and nonlinear dynamics: A new perspective on career development theory. Career Development Quarterly, 53(3), 194-207.

    Changjiang Water Resources Commission (CWRC). 2001. The Calculation Handbook of Design Flood for Water Conservancy and Hydropower Project. Beijing: China WaterPower Press. (in Chinese)

    Clerc, M. 2006. Particle Swarm Optimization. London: ISTE.

    Eberhart, R. C., and Kennedy, J. 1995. A new optimizer using particle swarm theory. Proceedings of the 6th International Symposium on Micro Machine and Human Science, 39-43. New York: IEEE Press. [doi:10.1109/MHS.1995.494215]

    Eberhart, R. C., and Shi, Y. H. 2001. Particle swarm optimization: Developments, applications and resources.Proceedings of the 2001 Congress on Evolutionary Computation, 1, 81-86. Piscataway: IEEE Press. [doi:10.1109/CEC.2001.934374]

    Fukuyama, Y, and Yoshida, H. 2001. Particle swarm optimization for reactive power and voltage control in electric power systems. Proceedings of the 2001 Congress on Evolution Computation, 1, 87-93.Piscataway: IEEE Press. [doi:10.1109/CEC.2001.934375]

    Higashi, N, and Iba, H. 2003. Particle swarm optimization with Gaussian mutation. Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 72-79. Piscataway: IEEE Press. [doi:10.1109/SIS.2003.1202250]

    Kennedy, J., and Eberhart, R. C. 1997. A discrete binary version of the particle swarm algorithm. Proceedings of the 1997 IEEE International Conference on Computational Cybernetics and Simulation, 5, 4104-4108.Piscataway: IEEE Press. [doi:10.1109/ICSMC.1997.637339]

    Kennedy, J., and Eberhart, R. C. 2001. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers.

    Koay, C. A., and Srinivasan, D. 2003. Particle swarm optimization-based approach for generator maintenance scheduling. Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 167-173. Piscataway: IEEE Press. [doi:10.1109/SIS.2003.1202263]

    Mendes, R., Kennedy, J., and Neves, J. 2004. The Fully Informed Particle Swarm: Simpler, maybe better.IEEE Transactions on Evolutionay Computation, 8(3), 204-210. [doi:10.1109/TEVC.2004.826074]

    Parsoploulos, K. E., Magoulas, G. D., Plagianakos, V. P., Vrahatis, M. N. 2001. Stretching technique for obtaining global minimizers through Particle Swarm Optimization. Proceedings of the Workshop on PSO.Indianapolis: Purdue School of Engineering and Technology, INPUI.

    Runarsson, T. P., and Yao, X. 2000. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 4(3), 284-294. [doi:10.1109/4235.873238]

    Schutte, J. F., Koh, B. I., Reinbolt, J. A., Haftka, R. T., George, A. D., and Fregly, B. J. 2005. Evaluation of a particle swarm algorithm for biomechanical optimization. Journal of Biomechanical Engineering, 127(3),465-474. [doi:10.1115/1.1894388]

    Shi, Y. H., and Eberhart, R. C. 2001. Fuzzy Adaptive Particle Swarm Optimization. Proceedings of the 2001 Congress on Evolutionary Computation, 1, 101-106. Piscataway: IEEE Press. [doi:10.1109/CEC.2001.934377]

    Wang, L., Zheng, D. Z., and Li, Q. S. 2001. Survey on chaotic optimization methods. Computing Technology and Automation, 20(1), 1-5. (in Chinese)

    99久久精品一区二区三区| 亚洲一区二区三区色噜噜| 在线天堂最新版资源| 村上凉子中文字幕在线| 国产精品爽爽va在线观看网站| 精品久久久久久久久av| 亚洲人与动物交配视频| 免费一级毛片在线播放高清视频| 夜夜看夜夜爽夜夜摸| 色噜噜av男人的天堂激情| 乱人视频在线观看| 国产成人aa在线观看| 又爽又黄a免费视频| 欧美不卡视频在线免费观看| 精华霜和精华液先用哪个| or卡值多少钱| 夜夜夜夜夜久久久久| av专区在线播放| 动漫黄色视频在线观看| 久久人人爽人人爽人人片va | 亚洲精品影视一区二区三区av| 亚洲国产色片| 国产精品野战在线观看| 此物有八面人人有两片| 国产精品三级大全| 午夜激情福利司机影院| 国产午夜精品论理片| 久久精品人妻少妇| 深爱激情五月婷婷| 欧美丝袜亚洲另类 | 一个人看视频在线观看www免费| 欧美三级亚洲精品| 国产黄a三级三级三级人| 久久久色成人| 99久久精品一区二区三区| 国产高潮美女av| 十八禁网站免费在线| 观看美女的网站| 老司机午夜十八禁免费视频| 熟妇人妻久久中文字幕3abv| 久久精品夜夜夜夜夜久久蜜豆| 乱人视频在线观看| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| а√天堂www在线а√下载| 国产成人欧美在线观看| 国产黄片美女视频| 亚洲,欧美精品.| 俺也久久电影网| 尤物成人国产欧美一区二区三区| av专区在线播放| 久久热精品热| 欧美性感艳星| 国产69精品久久久久777片| 国产激情偷乱视频一区二区| 久久精品国产亚洲av涩爱 | 欧美+日韩+精品| 白带黄色成豆腐渣| 日本黄大片高清| 自拍偷自拍亚洲精品老妇| 精品乱码久久久久久99久播| 黄色视频,在线免费观看| www.www免费av| 老司机午夜十八禁免费视频| 国产 一区 欧美 日韩| 欧美乱色亚洲激情| 国内少妇人妻偷人精品xxx网站| av在线观看视频网站免费| 国产成年人精品一区二区| 亚洲av第一区精品v没综合| 给我免费播放毛片高清在线观看| 欧美xxxx性猛交bbbb| 亚洲不卡免费看| 91九色精品人成在线观看| 国产精品久久久久久久电影| 男插女下体视频免费在线播放| 国产爱豆传媒在线观看| 搡女人真爽免费视频火全软件 | 亚洲av成人精品一区久久| 欧美最新免费一区二区三区 | 一夜夜www| 一级黄片播放器| 丁香六月欧美| 亚洲中文字幕日韩| 村上凉子中文字幕在线| 97超视频在线观看视频| 我要看日韩黄色一级片| 无人区码免费观看不卡| 直男gayav资源| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网| 日韩中字成人| 琪琪午夜伦伦电影理论片6080| 舔av片在线| 一区二区三区四区激情视频 | 尤物成人国产欧美一区二区三区| 国产激情偷乱视频一区二区| 成年版毛片免费区| 中文字幕av成人在线电影| www.色视频.com| 亚洲最大成人av| 亚洲五月婷婷丁香| 亚洲第一欧美日韩一区二区三区| 欧美一级a爱片免费观看看| 欧美日韩瑟瑟在线播放| 国产高潮美女av| 淫秽高清视频在线观看| 99热这里只有精品一区| 91久久精品电影网| 在线观看美女被高潮喷水网站 | 真人做人爱边吃奶动态| 亚洲欧美精品综合久久99| 国产精品美女特级片免费视频播放器| 三级毛片av免费| 亚洲av不卡在线观看| 美女高潮的动态| 99热精品在线国产| 成人一区二区视频在线观看| av天堂中文字幕网| 日韩成人在线观看一区二区三区| 欧美bdsm另类| 精品午夜福利在线看| 少妇裸体淫交视频免费看高清| 日韩欧美精品免费久久 | 欧美日韩国产亚洲二区| 1000部很黄的大片| 一进一出好大好爽视频| 成年女人永久免费观看视频| 99久久久亚洲精品蜜臀av| 亚洲国产精品999在线| 免费一级毛片在线播放高清视频| 一本久久中文字幕| 成年女人毛片免费观看观看9| 国产 一区 欧美 日韩| 国产成+人综合+亚洲专区| 99久久久亚洲精品蜜臀av| 免费电影在线观看免费观看| 成人午夜高清在线视频| 国产视频内射| 中文字幕高清在线视频| 国产一区二区三区视频了| 国产免费av片在线观看野外av| 欧美性猛交黑人性爽| 久久久色成人| 最近最新中文字幕大全电影3| 国产伦在线观看视频一区| 欧美+亚洲+日韩+国产| 亚洲自偷自拍三级| 久久天躁狠狠躁夜夜2o2o| 极品教师在线视频| 久久久久免费精品人妻一区二区| 成年女人看的毛片在线观看| 九九久久精品国产亚洲av麻豆| 久久久久久久精品精品| 少妇 在线观看| 青春草视频在线免费观看| 全区人妻精品视频| 精品国产三级普通话版| 免费观看性生交大片5| 久久精品久久久久久久性| 久久久精品免费免费高清| 午夜福利在线观看免费完整高清在| 美女主播在线视频| 超碰av人人做人人爽久久| 一级黄片播放器| 亚洲av中文字字幕乱码综合| 永久网站在线| av免费在线看不卡| 亚洲国产最新在线播放| 日本三级黄在线观看| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| 免费大片18禁| 国产精品一二三区在线看| 看黄色毛片网站| av网站免费在线观看视频| 国产成人精品婷婷| 免费观看的影片在线观看| videos熟女内射| h日本视频在线播放| 欧美bdsm另类| 久久6这里有精品| 在线亚洲精品国产二区图片欧美 | 亚洲成色77777| 搡女人真爽免费视频火全软件| 日韩成人av中文字幕在线观看| 国产淫片久久久久久久久| tube8黄色片| 美女脱内裤让男人舔精品视频| 黄片wwwwww| 久久精品久久精品一区二区三区| 一级黄片播放器| kizo精华| 国产精品国产三级专区第一集| 国产精品人妻久久久影院| 久久国内精品自在自线图片| 涩涩av久久男人的天堂| 精品国产一区二区三区久久久樱花 | 午夜福利视频精品| 国产一级毛片在线| 久久久久国产网址| 日韩伦理黄色片| 午夜福利视频精品| av线在线观看网站| 欧美最新免费一区二区三区| 免费av毛片视频| 国产成人免费无遮挡视频| 一级av片app| 99re6热这里在线精品视频| 亚洲欧美精品专区久久| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的 | av在线播放精品| 香蕉精品网在线| 九草在线视频观看| 久久精品国产自在天天线| 色播亚洲综合网| 亚洲图色成人| 插逼视频在线观看| 日日撸夜夜添| 色婷婷久久久亚洲欧美| 国产淫语在线视频| 日韩精品有码人妻一区| 性色av一级| 亚洲第一区二区三区不卡| 日韩成人av中文字幕在线观看| 中文在线观看免费www的网站| 国产永久视频网站| 国产免费一区二区三区四区乱码| 亚洲精华国产精华液的使用体验| 男女下面进入的视频免费午夜| 在现免费观看毛片| 精品国产一区二区三区久久久樱花 | 国内揄拍国产精品人妻在线| 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| 嫩草影院入口| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频 | 免费看日本二区| 国产精品嫩草影院av在线观看| 一个人观看的视频www高清免费观看| 91精品伊人久久大香线蕉| 亚洲人与动物交配视频| av在线app专区| 国产精品一区二区在线观看99| 少妇人妻一区二区三区视频| 久久人人爽av亚洲精品天堂 | 最近的中文字幕免费完整| 日韩成人伦理影院| 婷婷色麻豆天堂久久| 国产精品.久久久| 日产精品乱码卡一卡2卡三| 一级片'在线观看视频| 亚洲av免费高清在线观看| 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 亚洲欧洲国产日韩| 亚洲va在线va天堂va国产| 美女被艹到高潮喷水动态| 国产黄频视频在线观看| 综合色丁香网| 亚洲不卡免费看| 制服丝袜香蕉在线| 久久久久久久午夜电影| 美女高潮的动态| 三级经典国产精品| 丰满人妻一区二区三区视频av| 18禁在线无遮挡免费观看视频| 乱码一卡2卡4卡精品| 纵有疾风起免费观看全集完整版| 亚洲内射少妇av| 韩国高清视频一区二区三区| 看十八女毛片水多多多| 亚洲精品色激情综合| 精品人妻熟女av久视频| 久久久久国产网址| 五月玫瑰六月丁香| 青春草国产在线视频| 欧美xxⅹ黑人| 亚洲综合精品二区| 国产毛片a区久久久久| 亚洲最大成人av| 青春草视频在线免费观看| 亚洲综合色惰| 国产在线一区二区三区精| 亚洲天堂av无毛| 亚洲精品第二区| 成人毛片60女人毛片免费| 18禁裸乳无遮挡免费网站照片| 人妻一区二区av| 男女边吃奶边做爰视频| 日韩一区二区视频免费看| 各种免费的搞黄视频| 亚洲久久久久久中文字幕| 亚洲自拍偷在线| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 午夜福利视频1000在线观看| 人体艺术视频欧美日本| 丰满少妇做爰视频| 人体艺术视频欧美日本| 日韩欧美精品免费久久| 欧美区成人在线视频| 少妇猛男粗大的猛烈进出视频 | 日本猛色少妇xxxxx猛交久久| 99热这里只有精品一区| 日韩精品有码人妻一区| 蜜桃久久精品国产亚洲av| 国产精品无大码| 亚洲精品第二区| 91久久精品电影网| 精品人妻熟女av久视频| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区| 神马国产精品三级电影在线观看| 在线免费十八禁| 国产黄片美女视频| 一边亲一边摸免费视频| 午夜福利在线观看免费完整高清在| 久久国产乱子免费精品| 午夜老司机福利剧场| 国产在线男女| 菩萨蛮人人尽说江南好唐韦庄| 久久韩国三级中文字幕| 成人美女网站在线观看视频| 亚洲精品aⅴ在线观看| 亚洲精品国产成人久久av| 国产精品久久久久久久久免| 亚洲电影在线观看av| 欧美少妇被猛烈插入视频| 蜜桃亚洲精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 久久99蜜桃精品久久| 国模一区二区三区四区视频| 欧美变态另类bdsm刘玥| 少妇丰满av| av女优亚洲男人天堂| 久久精品国产亚洲av涩爱| 国产一区亚洲一区在线观看| 免费看av在线观看网站| 日本黄大片高清| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 99久国产av精品国产电影| 大陆偷拍与自拍| 毛片一级片免费看久久久久| .国产精品久久| 亚洲高清免费不卡视频| 美女脱内裤让男人舔精品视频| 国精品久久久久久国模美| 亚洲最大成人中文| 一区二区三区四区激情视频| 久久久久久久久久久免费av| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久久免费av| 97热精品久久久久久| 在线a可以看的网站| 欧美成人a在线观看| 久久久久久久久久久免费av| 午夜老司机福利剧场| 女人久久www免费人成看片| 夫妻午夜视频| 伊人久久国产一区二区| 亚洲熟女精品中文字幕| 99久国产av精品国产电影| 麻豆成人av视频| 国产成人91sexporn| 狂野欧美白嫩少妇大欣赏| 白带黄色成豆腐渣| 日本猛色少妇xxxxx猛交久久| 国产精品一二三区在线看| 男女啪啪激烈高潮av片| 三级国产精品片| 国产黄频视频在线观看| 欧美成人精品欧美一级黄| 精品久久久久久久久亚洲| 日本欧美国产在线视频| 亚洲欧美成人精品一区二区| 国内揄拍国产精品人妻在线| 国产精品99久久99久久久不卡 | 亚洲三级黄色毛片| 久久久国产一区二区| 亚洲丝袜综合中文字幕| 久久久精品欧美日韩精品| 中国美白少妇内射xxxbb| 欧美一区二区亚洲| 国产免费又黄又爽又色| 亚洲欧美精品专区久久| 亚洲高清免费不卡视频| 久久精品熟女亚洲av麻豆精品| 2021天堂中文幕一二区在线观| 91在线精品国自产拍蜜月| 亚洲av中文字字幕乱码综合| 菩萨蛮人人尽说江南好唐韦庄| 国产淫片久久久久久久久| 国产有黄有色有爽视频| 男女那种视频在线观看| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| www.色视频.com| 亚洲精品中文字幕在线视频 | 国产成人91sexporn| 超碰97精品在线观看| 欧美精品人与动牲交sv欧美| av卡一久久| 亚洲,欧美,日韩| 一级毛片电影观看| 国产高清三级在线| 日韩中字成人| 麻豆精品久久久久久蜜桃| 人妻夜夜爽99麻豆av| 能在线免费看毛片的网站| 免费看光身美女| 99九九线精品视频在线观看视频| 亚洲人成网站高清观看| 少妇丰满av| 天堂俺去俺来也www色官网| 人妻夜夜爽99麻豆av| 能在线免费看毛片的网站| 免费大片黄手机在线观看| 在线观看国产h片| 日韩视频在线欧美| 我的女老师完整版在线观看| 欧美成人精品欧美一级黄| 亚洲一区二区三区欧美精品 | 老司机影院毛片| 啦啦啦中文免费视频观看日本| 日韩一区二区视频免费看| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 免费观看a级毛片全部| 国产乱来视频区| 欧美精品人与动牲交sv欧美| 毛片女人毛片| 国产成人freesex在线| 国产亚洲最大av| 高清毛片免费看| 日韩欧美一区视频在线观看 | 水蜜桃什么品种好| 网址你懂的国产日韩在线| 欧美性感艳星| 午夜免费观看性视频| 黑人高潮一二区| 中文字幕人妻熟人妻熟丝袜美| 91aial.com中文字幕在线观看| 热99国产精品久久久久久7| 大陆偷拍与自拍| 一个人观看的视频www高清免费观看| 国产精品人妻久久久久久| 有码 亚洲区| 精品久久久噜噜| 国产精品国产三级国产av玫瑰| 欧美 日韩 精品 国产| 中文欧美无线码| 国产乱来视频区| 神马国产精品三级电影在线观看| 久久国内精品自在自线图片| 老司机影院毛片| 国产精品久久久久久av不卡| 九草在线视频观看| 国产高清有码在线观看视频| 人人妻人人看人人澡| 黑人高潮一二区| 国产亚洲av片在线观看秒播厂| eeuss影院久久| 美女被艹到高潮喷水动态| 亚洲真实伦在线观看| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站| 一区二区三区乱码不卡18| 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图| 日韩电影二区| 国产成年人精品一区二区| 国产一区有黄有色的免费视频| 又大又黄又爽视频免费| 18禁动态无遮挡网站| 久久国产乱子免费精品| 极品教师在线视频| 精品人妻视频免费看| 女人被狂操c到高潮| 国产女主播在线喷水免费视频网站| 18禁在线播放成人免费| 亚洲精华国产精华液的使用体验| 精品午夜福利在线看| 男女那种视频在线观看| 少妇人妻久久综合中文| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 狂野欧美白嫩少妇大欣赏| 日韩人妻高清精品专区| 国产人妻一区二区三区在| 三级国产精品欧美在线观看| 久久久色成人| 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看| 欧美日韩综合久久久久久| 91精品伊人久久大香线蕉| 三级经典国产精品| 欧美成人a在线观看| 亚洲经典国产精华液单| 精品久久久久久久末码| 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 精品酒店卫生间| 18禁在线无遮挡免费观看视频| 欧美xxⅹ黑人| 亚洲精品456在线播放app| 高清日韩中文字幕在线| 亚洲欧美成人精品一区二区| 日韩欧美精品免费久久| 蜜臀久久99精品久久宅男| 亚洲精品一区蜜桃| a级毛片免费高清观看在线播放| 一个人看视频在线观看www免费| 18禁在线无遮挡免费观看视频| 国内精品美女久久久久久| 人妻系列 视频| 国产伦精品一区二区三区视频9| 一级爰片在线观看| 天美传媒精品一区二区| 欧美xxⅹ黑人| 国产v大片淫在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 成人午夜精彩视频在线观看| 嫩草影院入口| 亚洲精品亚洲一区二区| 高清在线视频一区二区三区| 精品久久久久久久久av| 亚洲国产日韩一区二区| 丝袜脚勾引网站| 免费播放大片免费观看视频在线观看| 夜夜爽夜夜爽视频| 天美传媒精品一区二区| 1000部很黄的大片| 特大巨黑吊av在线直播| 国产精品人妻久久久影院| 不卡视频在线观看欧美| 日韩亚洲欧美综合| 26uuu在线亚洲综合色| 国产欧美日韩精品一区二区| 毛片一级片免费看久久久久| freevideosex欧美| 国产亚洲av片在线观看秒播厂| 精品一区在线观看国产| 五月开心婷婷网| 丰满少妇做爰视频| 欧美日韩一区二区视频在线观看视频在线 | 久久人人爽av亚洲精品天堂 | 国产精品福利在线免费观看| 又黄又爽又刺激的免费视频.| 噜噜噜噜噜久久久久久91| 国产高清不卡午夜福利| 在线观看免费高清a一片| 一个人看的www免费观看视频| 嫩草影院入口| 夜夜看夜夜爽夜夜摸| 在线免费十八禁| 婷婷色麻豆天堂久久| 极品教师在线视频| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 男人添女人高潮全过程视频| 成人特级av手机在线观看| 亚洲欧美成人精品一区二区| 亚洲av一区综合| 成人高潮视频无遮挡免费网站| 狂野欧美激情性xxxx在线观看| 波多野结衣巨乳人妻| 青春草亚洲视频在线观看| 国产精品不卡视频一区二区| 久久99热这里只频精品6学生| 免费大片黄手机在线观看| 欧美xxxx黑人xx丫x性爽| 免费观看av网站的网址| 国产精品一区www在线观看| 国产精品国产三级专区第一集| 日韩一区二区三区影片| 少妇被粗大猛烈的视频| 又爽又黄a免费视频| 国产av不卡久久| 18+在线观看网站| av国产精品久久久久影院| 国产熟女欧美一区二区| 狂野欧美激情性bbbbbb| 哪个播放器可以免费观看大片| 成人亚洲精品av一区二区| 九九久久精品国产亚洲av麻豆| 中文字幕人妻熟人妻熟丝袜美| 丰满人妻一区二区三区视频av| 国产日韩欧美在线精品| 久久ye,这里只有精品| 日韩,欧美,国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲av二区三区四区| 国产亚洲精品久久久com| 久久精品人妻少妇| 久久精品久久久久久久性| 少妇人妻 视频| 99热这里只有是精品50| 亚洲最大成人av| 久久女婷五月综合色啪小说 | 欧美日本视频| 国产亚洲精品久久久com| 又大又黄又爽视频免费| 中文资源天堂在线| 中文乱码字字幕精品一区二区三区| 看非洲黑人一级黄片| 波多野结衣巨乳人妻| 一个人观看的视频www高清免费观看| 91久久精品电影网|