• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of drag reduction in flumes and spillway tunnels

    2010-11-02 13:34:32YingkuiWANGChunboJIANG
    Water Science and Engineering 2010年2期

    Ying-kui WANG*, Chun-bo JIANG

    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, P. R. China

    1 Introduction

    Laboratory experiments constitute an effective method for investigation of complicated hydraulic problems, especially for large hydropower projects. Most experiments are carried out with physical models, which are built according to different similarity criteria. If the physical model is based on the Froude similarity criterion, roughnesss dissimilarity may occur in some model experiments. The roughness coefficient of material can affect the frictional head loss, especially for a long-distance flood discharge structure such as a spillway tunnel. In some hydraulic models, the surface is not smooth enough, which can lead to inauthentic experimental results. The investigation of drag reduction techniques is necessary for large hydraulic models, but there has been little previous research on this issue.

    Drag reduction has been studied for almost 60 years. Early in 1948, Toms discovered the phenomenon of drag reduction when adding small amounts of dilute high polymers to the fluid(Toms 1948), which is why it was called the Toms effect. Subsequently, Meyer (1966), Virk(1971), Lumley (1969, 1973), Gordon (1970), Donohue et al. (1972), and Berman (1986)made many contributions to the understanding of this problem. Early experiments emphasized statistics of turbulent flow, such as the velocity profile (Virk 1971), and the change of the molecular structure of high polymer (Bewersdoff et al. 1986). Shah et al. (2006)set up an experimental system to study the effect of drag reduction using polymeric fluid with different concentrations, and obtained satisfactory results. Although direct numerical simulation (DNS)has also been used to study this problem (Li et al. 2006; Jovanovic et al. 2006; Sher and Hetsroni 2008), the experimental studies have continued over the last 60 years. Experimental studies can provide more supportive data and helpful information so that advanced research can progress.

    Another drag reduction technique is adding an inner coating to the flume or the tunnel.This technique has been widely used in oil and gas transportation and navigation (Cai et al.2008). Related research has been carried out by oil companies on their transport pipes,including the Zeepipe submarine pipeline and the Alliance pipeline. The internal coating technique may provide 5% to 20% drag reduction (Lin et al. 2002), increasing the transfer efficiency of the pipe so that it is more economically beneficial. However, little research has been conducted on the effect of coating water pipes. Zhu and Wang (2006)compared the drag reduction effect of several coating materials and concluded that dimethyl silicone oil is the most effective common coating material.

    In this study, the drag reduction effects of the techniques described above were studied in flume model experiments. The investigation also included the application of the coating technique to a large hydraulic model, the first attempt of its kind. The effect and characteristics of the drag reduction techniques were discussed and analyzed, and the results demonstrate their application prospects.

    2 Experimental setup

    In hydraulics, the frictional resistance relates to water head loss, which is often called frictional head loss (hf). The well-known formula for calculating the frictional head loss is the Darcy-Weisbach equation:

    where l is length (m), R is the hydraulic radius (m), v is the average velocity (m/s), g is the gravitational acceleration, τ0is the shear stress, ρ is the fluid density, and λ is the resistance coefficient. When drag reduction techniques are applied, the resistance coefficient decreases,so the relative drag reduction (Dλ)can be defined as

    where λwis the resistance coefficient without any drag reduction technique, and λpis the resistance coefficient with a drag reduction technique.

    The experiments were carried out in an open channel flume system, which is a water-circulating system. Water is forced up to the top tank by a pump from a pool at the lower end, and, after the water is stabilized in the tank, it flows into the flume. The flume is made from a piece of organic glass that is 11 m long, long enough to allow uniform flow to form and the placement of five point needles to measure the water depth. The width and height of the flume are 0.14 m and 0.25 m, respectively. At the middle of the flume there is a tackle that can lift or lower the flume in order to change the slope. The design of the experiment is shown in Fig. 1.

    Fig. 1 Drawing of experimental model structure (Unit: m)

    In this study, polyacrylamide (PAM)was used as the high polymer addition. It has been widely used in previous drag reduction experiments. In the coating experiment, the coating material was dimethyl silicone oil, whose efficiency has been verified by Zhu and Wang (2006).

    3 Experimental results of polymer addition

    It is well known that energy loss is not a constant value in turbulent flow. Thus,experiments must be conducted under varying conditions. In engineering practice, the Moody diagram is most widely used to modify the resistance coefficient λ (Yen 2002). Therefore, the experimental results were compared with the resistance coefficient curve of smooth pipe in the Moody smooth surface, as shown in Fig. 2, where i is the flume slope.

    Generally, the resistance coefficient curve of smooth pipe in the Moody diagram shows that λ decreases as the Reynolds number (Re)increases. The tendency of the experimental results is reliable as compared with the resistance coefficient curve of smooth pipe in the Moody diagram. The results show that λ increases along with i. The variation tendencies of λ with change in Re and i can be explained by the following formula:

    where ν is the kinematic viscosity. Eq. (3)shows that the tendencies of the experimental results are coincident: λ increases along with i and decreases as Re increases.

    Fig. 2 Variation of resistance coefficient λ with Reynolds number Re for four polymer solution concentrations

    As shown in Fig. 2, the ranges of λ are 1.30 × 10-2to 1.85 × 10-2, 1.24 ×10-2to 1.80 ×10-2, 1.16 × 10-2to 1.63 × 10-2, and 1.02 × 10-2to 1.54 × 10-2when the polymer solution concentration is 0 mg/L, 100 mg/L, 200 mg/L, and 300 mg/L, respectively. The experimental results show that the polymer PAM reduces the drag. The range of the resistance coefficient is much smaller with a higher polymer solution concentration, which means that the drag reduction effect is greater when the solution concentration is also greater.

    In the experiments, the relative drag reduction (Dλ)is not constant; it varies with Re and i. Fig. 3 compares Dλwith different flume slopes when the PAM concentration is 300 mg/L. The ranges of Dλare 14.65% to 17.32%,13.21% to 15.60%, 12.05% to 13.99%, and 10.71% to 13.05% when the flume slope is 1.44%, 1.92%, 2.14%, and 2.62%, respectively.In short, Dλis mainly influenced by the solution concentration and less influenced by the flume slope. In this experiment, the largest Dλwas 17.32%, obtained when the concentration was 300 mg/L and i = 1.44%.

    Fig. 3 Comparison of Dλ for different flume slopes with 300 mg/L polymer concentration

    4 Experimental results of coating technique

    The drag reduction technique of coating has been applied in engineering practice, but there has not been an experimental study in a water flume. In order to verify the drag reduction effect of the coating technique, model experiments were carried out. The experimental results are shown in Fig. 4 and Fig. 5.

    Fig. 4 Variation of resistance coefficient λ with Reynolds number for coating technique

    Fig. 5 Comparison of Dλ for different flume slopes with coating technique

    The results show that the variation of λ has the same tendency as the resistance coefficient curve of smooth pipe in the Moody diagram, which means that the results are reliable. The coating technique provides an apparent drag reduction effect. The average value of Dλis 8.18% and the maximum value is 10.6%. The Dλvalue decreases as Re increases,which means that the turbulence intensity of the flow can weaken the effect of drag reduction.The value of Dλshows little variation with the increase of i, which means that the drag reduction effect is stable. Meanwhile, the coating technique also has advantages in initial cost, implementation, and technology. These advantages make it widely applicable in engineering practice.

    5 Model experiment for hydropower station

    5.1 Design of experiments

    Most experimental studies on drag reduction have been performed in a small water flume,which differs from real engineering situations. In a real project or a large hydraulic model, the flow pattern is complex and the parameters of the flow pattern are changing all the time. It is difficult to use the experimental results from a small-scale model in engineering practice. It is therefore necessary to carry out drag reduction experiments with large physical models; the results can provide more reasonable suggestions for solving real engineering problems.

    A physical model of the Xiluodu Hydropower Station, which is under construction in southwestern China, was built. The dam’s height is about 278 m. There are four spillway tunnels for flood discharge, which are all 14.0 m × 12.0 m at the cross-section and all over 1 600 m in length. The hydraulic model includes the upper reservoir, the double curvature arch dam, the spillway tunnels, the stilling basin, and the lower reaches, as shown in Fig. 6. The original purpose of drag reduction in this model was to make the roughness of the model similar to that of the prototype. The geometric scale of the model is 1:100, and the Manning roughness coefficient n needed for the model is so small that the application of drag reduction techniques is required.

    Fig. 6 Sketch of hydropower station model

    As demonstrated in the discussion above, the polymer addition and the coating both provide significant drag reduction. However, the advantages of the coating technique make it more suitable for its application in large hydropower project models. Therefore, the coating technique was used for drag reduction, with dimethyl silicone oil as the coating material.Experiments were carried out to compare differences in the outlet velocity and the jet trajectory distance. Both are related to the flood discharge and the energy dissipation, and can be considered an evaluation of the drag reduction.

    5.2 Experimental results of hydraulic model

    5.2.1 Outlet velocity

    The outlet velocities of four spillway tunnels were measured under different conditions.Since the four velocities were almost the same, the average velocity values are shown in Fig. 7.

    Fig. 7 Comparison of outlet velocities with and without coating

    The results show that the outlet velocities increase significantly when the coating technique is applied, and the increment percentage ranges from 3.8% to 4.0%. That means that the coating technique is effective for drag reduction in a large hydropower model. The coating technique enhances the flood discharge of the spillway tunnel. Therefore, the drag reduction technique can be readily used in large hydraulic models, and also applied in engineering practice.

    5.2.2 Jet trajectory distance

    When the hydropower station discharges the flood, sufficient energy dissipation is necessary. The jet trajectory distance results are shown in Table 1.

    Table 1 Comparison of jet trajectory distances with and without coating

    The results show that the jet trajectory distances were increased by 1.9% to 2.9% when the coating technique was applied.

    The drag reduction experiments were carried out for the spillway tunnel model, and the coating technique had significant effects. The flow discharges, outlet velocities, and jet trajectory distances confirmed the stability and efficacy of the coating technique.

    6 Conclusions

    These drag reduction experiments demonstrate the effects of polymer addition and coating techniques. The drag reduction effects are significant both in the flume model and the spillway tunnel model. The conclusions are as follows:

    (1)When using the polymer addition technique, the relative drag reduction increases mainly with the PAM concentration. The relative drag reduction increases with Re and decreases as the flume slope increases. The largest relative drag reduction value is 17.32%when the PAM concentration is 300 mg/L with a flume slope of 1.44%.

    (2)The experiments that used the coating technique obtained drag reduction. The Dλvalue is larger for smaller flume slopes; its maximum value is 10.6%. The relative drag reduction value stays almost constant as Re changes, which indicates stability of the drag reduction effect when the coating technique is used.

    (3)The drag reduction experiments were carried out with a spillway tunnel model. With a complex flow pattern, the effect of drag reduction was confirmed by the flow discharge, outlet velocity, and jet trajectory distance. The experimental results show that the coating technique enhances the flood discharge and energy dissipation of the spillway tunnel, as well as the capacity for safe operation of the entire hydropower project.

    Berman, N. S. 1986. Velocity fluctuations in non-homogeneous drag reduction. Chemical Engineering Communications, 42(1-3), 37-51. [doi:10.1080/00986448608911735]

    Bewersdoff, H. W., Frings, B., Lindner, P., and Oberthür, R. C. 1986. The conformation of drag reducing micelles from small-angle-neutron-scattering experiments. Rheologica Acta, 25(6), 642-646.[doi:10.1007/BF01358173]

    Cai, S. P., Jin, G. Y., Li, D. M., and Yang, L. 2008. Drag reduction effect of coupling flexible tubes with turbulent flow. Journal of Hydrodynamics, Series B, 20(1), 96-100. [doi:10.1016/S1001-6058(08)60033-5]

    Cong, Q., Feng, Y., and Ren, L. Q. 2006. Affecting of riblets shape of nonsmooth surface on drag reduction.Journal of Hydrodynamics, Series A, 21(2), 232-238. (in Chinese)

    Donohue, G. L., Tiderman, W. G., and Reischman, M. M. 1972. Flow visualization of the near-wall region in a drag-reducing channel flow. Journal of Fluid Mechanics, 56, 559-575. [doi:10.1017/S0022112072002514]

    Gordon, R. J. 1970. Mechanism for turbulent drag reduction in dilute polymer solutions. Nature, 227(5258),599-600. [doi:10.1038/227599a0]

    Jovanovic, J., Pashtrapanska, M., Frohnapfel, B., Durst, F., Koskinen, J., and Koskinen, K. 2006. On the mechanism responsible for turbulent drag reduction by dilute addition of high polymers: Theory,experiments, simulations, and predictions. Journal of Fluids Engineering, 128(1), 118-130. [doi:http://dx.doi.org/10.1115/1.2073227]

    Li, C. F., Gupta, V. K., Sureshkumar, R., and Khomami, B. 2006. Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model. Journal of Non-Newtonian Fluid Mechanics, 139(3), 177-189. [doi:10.1016/j.jnnfm.2006.04.012]

    Lin, Z., Zhang, L. P., Yuan, Z. L., and Qin, Y. L. 2002. Application of resistance reducing coating material on gas pipeline. Welded Pipe and Tube, 25(6), 1-4. (in Chinese)

    Lumley, J. L. 1969. Drag reduction by additives. Annual Review of Fluid Mechanics, 1, 367-384.[doi:10.1146/annurev.fl.01.010169.002055]

    Lumley, J. L. 1973. Drag reduction in turbulent flow by polymer additives. Journal of Polymer Science:Macromolecular Reviews, 7(1), 290-363. [doi:10.1002/pol.1973.230070104]

    Meyer, W. A. 1966. A correlation of the frictional characteristics for turbulent flow of dilute non-Newtonian fluids in pipes. AIChE Journal, 12(3), 522-525.

    Shah, S. N., Kamel, A., and Zhou, Y. X. 2006. Drag reduction characteristics in straight and coiled tubing - An experimental study. Journal of Petroleum Science Engineering, 53(3-4), 179-188. [doi:10.1016/j.petrol.2006.05.004]

    Sher, I., and Hetsroni, G. 2008. A mechanistic model of turbulent drag reduction by additives. Chemical Engineering Science, 63(7), 1771-1778. [doi:10.1016/j.ces.2007.11.035]

    Toms, B. A. 1948. Some observation on the flow of linear polymer solution through straight tubes at large Reynolds numbers. Proceedings of the 1st International Congress on Rheology, 135-141. Scheveningen.

    Virk, P. S. 1971. An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules.Journal of Fluid Mechanics, 45, 417-440. [doi:10.1017/S0022112071000120]

    Yen, B. C. 2002. Open channel flow resistance. Journal of Hydraulic Engineering, 128(1), 20-39.[doi:10.1061/(ASCE)0733-9429(2002)128:1(20)]

    Zhu. X. F., and Wang, J. 2006. Study on the drag reduction effect of high polymer coating in water. Science and Technology of Overseas Building Materials, 27(2), 6-7. (in Chinese)

    欧美日韩视频精品一区| 欧美亚洲 丝袜 人妻 在线| 久久久久精品人妻al黑| 久久亚洲国产成人精品v| 另类亚洲欧美激情| 亚洲第一青青草原| 深夜精品福利| 国产毛片在线视频| 亚洲精品美女久久av网站| 亚洲经典国产精华液单| 肉色欧美久久久久久久蜜桃| 女人久久www免费人成看片| 美女高潮到喷水免费观看| 国产精品av久久久久免费| 日本-黄色视频高清免费观看| 成年美女黄网站色视频大全免费| 制服丝袜香蕉在线| 男的添女的下面高潮视频| 亚洲精品自拍成人| 男的添女的下面高潮视频| 国产黄色免费在线视频| 汤姆久久久久久久影院中文字幕| 在线观看免费日韩欧美大片| 欧美日韩成人在线一区二区| 午夜av观看不卡| 最新中文字幕久久久久| 日韩一卡2卡3卡4卡2021年| 精品久久蜜臀av无| 亚洲欧洲日产国产| 男女边吃奶边做爰视频| 久久影院123| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品一区三区| 久久 成人 亚洲| 啦啦啦视频在线资源免费观看| 丰满少妇做爰视频| 新久久久久国产一级毛片| 汤姆久久久久久久影院中文字幕| 亚洲五月色婷婷综合| 国产精品成人在线| 肉色欧美久久久久久久蜜桃| av有码第一页| 日韩精品免费视频一区二区三区| 日韩 亚洲 欧美在线| 成年人午夜在线观看视频| 亚洲成人手机| 久久综合国产亚洲精品| 美女xxoo啪啪120秒动态图| 亚洲内射少妇av| 精品午夜福利在线看| 亚洲av男天堂| 国产精品无大码| 欧美日韩成人在线一区二区| 伊人亚洲综合成人网| 狠狠婷婷综合久久久久久88av| 日韩欧美一区视频在线观看| 国产不卡av网站在线观看| 国产精品不卡视频一区二区| 精品一区二区三卡| 在线亚洲精品国产二区图片欧美| 国产无遮挡羞羞视频在线观看| 韩国高清视频一区二区三区| 少妇熟女欧美另类| 久久久精品区二区三区| 少妇熟女欧美另类| 久久久精品区二区三区| 一级a爱视频在线免费观看| 午夜激情av网站| 97人妻天天添夜夜摸| 下体分泌物呈黄色| 亚洲精品日本国产第一区| 亚洲精品日本国产第一区| 国产精品嫩草影院av在线观看| 久久韩国三级中文字幕| 国产成人av激情在线播放| 亚洲 欧美一区二区三区| 久久久久人妻精品一区果冻| 久久久国产一区二区| 在线观看三级黄色| 成人国产av品久久久| 久久影院123| 国产亚洲欧美精品永久| 国产精品秋霞免费鲁丝片| 亚洲美女视频黄频| 国产一区二区在线观看av| 亚洲,一卡二卡三卡| 免费少妇av软件| 丰满饥渴人妻一区二区三| 曰老女人黄片| 国产精品久久久久成人av| 免费日韩欧美在线观看| 国产日韩欧美在线精品| 国产高清国产精品国产三级| 亚洲内射少妇av| 日日撸夜夜添| 中国三级夫妇交换| 日韩不卡一区二区三区视频在线| 亚洲欧洲国产日韩| 亚洲熟女精品中文字幕| 看非洲黑人一级黄片| 精品国产一区二区久久| 精品一区二区三区四区五区乱码 | 91久久精品国产一区二区三区| 免费久久久久久久精品成人欧美视频| 多毛熟女@视频| 成人国语在线视频| 777米奇影视久久| 欧美日韩亚洲国产一区二区在线观看 | av又黄又爽大尺度在线免费看| 亚洲国产av影院在线观看| 国产精品秋霞免费鲁丝片| 亚洲av.av天堂| 国产成人免费观看mmmm| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕色久视频| 激情五月婷婷亚洲| 日韩成人av中文字幕在线观看| 黄片播放在线免费| 高清不卡的av网站| 亚洲综合精品二区| a级毛片黄视频| 亚洲三区欧美一区| 亚洲av综合色区一区| 热re99久久精品国产66热6| 欧美 日韩 精品 国产| 丝瓜视频免费看黄片| 精品亚洲成国产av| 日韩欧美一区视频在线观看| 久久精品国产亚洲av涩爱| 国产在线免费精品| 国产有黄有色有爽视频| 大话2 男鬼变身卡| 永久网站在线| 男的添女的下面高潮视频| av在线观看视频网站免费| 国产熟女午夜一区二区三区| 国产国语露脸激情在线看| av片东京热男人的天堂| 777米奇影视久久| 国产亚洲午夜精品一区二区久久| 亚洲精品乱久久久久久| 黄片无遮挡物在线观看| 成人亚洲欧美一区二区av| 十八禁网站网址无遮挡| 久久99一区二区三区| 日产精品乱码卡一卡2卡三| 欧美日韩一级在线毛片| 桃花免费在线播放| 久久久精品94久久精品| 人人妻人人添人人爽欧美一区卜| 亚洲成人手机| 欧美日韩av久久| 一区二区三区激情视频| 极品少妇高潮喷水抽搐| 久久精品aⅴ一区二区三区四区 | 99国产精品免费福利视频| 在线天堂最新版资源| 边亲边吃奶的免费视频| 国产极品天堂在线| 日本vs欧美在线观看视频| 最近最新中文字幕免费大全7| 免费av中文字幕在线| 久久青草综合色| 国产精品熟女久久久久浪| 国产精品一二三区在线看| 在线观看人妻少妇| 欧美老熟妇乱子伦牲交| 成人亚洲精品一区在线观看| 成年美女黄网站色视频大全免费| 男人操女人黄网站| 国产精品亚洲av一区麻豆 | 少妇人妻 视频| 日韩三级伦理在线观看| 亚洲欧洲精品一区二区精品久久久 | 韩国精品一区二区三区| 波多野结衣av一区二区av| 国产又色又爽无遮挡免| 夫妻性生交免费视频一级片| 欧美日韩综合久久久久久| 91午夜精品亚洲一区二区三区| 国产精品无大码| 精品久久蜜臀av无| 久久精品国产综合久久久| 久久久久精品性色| 亚洲三区欧美一区| 精品亚洲成国产av| 免费看av在线观看网站| 婷婷色av中文字幕| 十八禁高潮呻吟视频| 尾随美女入室| 黄频高清免费视频| 久久免费观看电影| 国产成人免费观看mmmm| 亚洲精品久久午夜乱码| 热re99久久国产66热| 最近2019中文字幕mv第一页| 在线免费观看不下载黄p国产| 精品亚洲乱码少妇综合久久| 精品少妇黑人巨大在线播放| 日韩人妻精品一区2区三区| 国产成人91sexporn| 亚洲内射少妇av| 咕卡用的链子| 韩国高清视频一区二区三区| 巨乳人妻的诱惑在线观看| 亚洲成色77777| 视频在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 色视频在线一区二区三区| 亚洲国产精品成人久久小说| 久久精品国产亚洲av天美| 少妇被粗大的猛进出69影院| 人体艺术视频欧美日本| 免费在线观看黄色视频的| 国产片内射在线| 在现免费观看毛片| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区激情| 少妇的逼水好多| 色网站视频免费| 看非洲黑人一级黄片| 黑人欧美特级aaaaaa片| 九色亚洲精品在线播放| 亚洲精品一区蜜桃| 国产一区二区三区综合在线观看| 国产极品天堂在线| 97在线视频观看| 欧美 亚洲 国产 日韩一| 乱人伦中国视频| 亚洲精华国产精华液的使用体验| 日本免费在线观看一区| 久久精品久久久久久噜噜老黄| 久久综合国产亚洲精品| a 毛片基地| 在线观看免费视频网站a站| av.在线天堂| 少妇人妻 视频| 91在线精品国自产拍蜜月| 久久精品久久久久久久性| a级片在线免费高清观看视频| 国产av码专区亚洲av| 成人国产麻豆网| 高清不卡的av网站| 免费看av在线观看网站| 一区福利在线观看| 大陆偷拍与自拍| 久久久精品国产亚洲av高清涩受| 亚洲精品久久午夜乱码| 青春草国产在线视频| 久久久精品免费免费高清| 国产免费福利视频在线观看| 最新中文字幕久久久久| 国产1区2区3区精品| 在线免费观看不下载黄p国产| 久久精品aⅴ一区二区三区四区 | 久久久久久伊人网av| 多毛熟女@视频| 91精品国产国语对白视频| 婷婷成人精品国产| 亚洲视频免费观看视频| 美女大奶头黄色视频| 大码成人一级视频| 亚洲欧美清纯卡通| 波多野结衣av一区二区av| 美女脱内裤让男人舔精品视频| av福利片在线| 91精品伊人久久大香线蕉| 成年av动漫网址| 黄色配什么色好看| 中文字幕人妻熟女乱码| 精品少妇久久久久久888优播| 国产无遮挡羞羞视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲精品自拍成人| 亚洲精品国产一区二区精华液| 日韩欧美精品免费久久| 日韩制服丝袜自拍偷拍| 久久鲁丝午夜福利片| 欧美亚洲 丝袜 人妻 在线| www.精华液| 黄色视频在线播放观看不卡| h视频一区二区三区| 久久99一区二区三区| 欧美精品国产亚洲| 国产片特级美女逼逼视频| 欧美97在线视频| 伊人亚洲综合成人网| 国产精品欧美亚洲77777| 免费日韩欧美在线观看| 久久国产精品男人的天堂亚洲| 狠狠婷婷综合久久久久久88av| 大码成人一级视频| 欧美日韩av久久| 国产成人午夜福利电影在线观看| 视频在线观看一区二区三区| 国产精品 欧美亚洲| 麻豆乱淫一区二区| 久久精品熟女亚洲av麻豆精品| 黄频高清免费视频| 成人国产av品久久久| 免费在线观看完整版高清| 免费人妻精品一区二区三区视频| 久久午夜综合久久蜜桃| 久久精品久久久久久久性| 国产在线视频一区二区| 免费播放大片免费观看视频在线观看| 久久午夜福利片| 国产一区亚洲一区在线观看| 国产免费视频播放在线视频| 老熟女久久久| 国产av精品麻豆| 国产精品人妻久久久影院| av不卡在线播放| av在线老鸭窝| 纵有疾风起免费观看全集完整版| 伦理电影免费视频| 国产无遮挡羞羞视频在线观看| 国产一区二区三区综合在线观看| 精品久久久久久电影网| 亚洲四区av| 久久久精品免费免费高清| 一区二区三区精品91| 亚洲国产精品一区三区| 老汉色∧v一级毛片| 国产精品.久久久| 国产一区亚洲一区在线观看| 一本大道久久a久久精品| 免费少妇av软件| 成人毛片a级毛片在线播放| 国产激情久久老熟女| 一边摸一边做爽爽视频免费| 国产伦理片在线播放av一区| 亚洲精品,欧美精品| 亚洲 欧美一区二区三区| 久久人人爽人人片av| 免费看av在线观看网站| 免费播放大片免费观看视频在线观看| 9热在线视频观看99| 狂野欧美激情性bbbbbb| 少妇被粗大猛烈的视频| 一本—道久久a久久精品蜜桃钙片| 亚洲av免费高清在线观看| 久久久欧美国产精品| 一区二区三区精品91| 嫩草影院入口| 精品亚洲成国产av| 午夜日本视频在线| 国产一区二区 视频在线| 女人被躁到高潮嗷嗷叫费观| 国产av精品麻豆| xxx大片免费视频| 国产片特级美女逼逼视频| 18禁国产床啪视频网站| 国产 一区精品| 国语对白做爰xxxⅹ性视频网站| 成年女人在线观看亚洲视频| 久久精品亚洲av国产电影网| 久久韩国三级中文字幕| 国产又爽黄色视频| 日韩av不卡免费在线播放| 综合色丁香网| 丝袜喷水一区| 夫妻性生交免费视频一级片| 欧美中文综合在线视频| 飞空精品影院首页| 国产男女超爽视频在线观看| 日韩一卡2卡3卡4卡2021年| 下体分泌物呈黄色| 亚洲在久久综合| 国产97色在线日韩免费| 亚洲精品日本国产第一区| 国产成人一区二区在线| 日本vs欧美在线观看视频| 久久久久精品性色| 久久久久精品人妻al黑| 七月丁香在线播放| 欧美日韩av久久| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 麻豆乱淫一区二区| 看十八女毛片水多多多| 国产精品人妻久久久影院| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 国产亚洲午夜精品一区二区久久| 在线观看美女被高潮喷水网站| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 看免费av毛片| 国产xxxxx性猛交| 1024视频免费在线观看| 亚洲色图综合在线观看| 丝袜喷水一区| 午夜av观看不卡| 好男人视频免费观看在线| 国产免费又黄又爽又色| 如日韩欧美国产精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 欧美av亚洲av综合av国产av | 久久免费观看电影| 男男h啪啪无遮挡| 赤兔流量卡办理| 搡女人真爽免费视频火全软件| 我要看黄色一级片免费的| 免费在线观看完整版高清| 十分钟在线观看高清视频www| 色婷婷久久久亚洲欧美| 午夜福利,免费看| 成人国语在线视频| 一区二区三区激情视频| 成人亚洲欧美一区二区av| 久久ye,这里只有精品| 亚洲美女搞黄在线观看| 男女啪啪激烈高潮av片| 午夜福利视频精品| 国产精品香港三级国产av潘金莲 | 精品少妇一区二区三区视频日本电影 | 在线观看免费高清a一片| 成年女人在线观看亚洲视频| 国产极品粉嫩免费观看在线| 丝袜脚勾引网站| 久久久久久久久久人人人人人人| 国产精品免费大片| 熟妇人妻不卡中文字幕| 国产极品天堂在线| 咕卡用的链子| 99国产精品免费福利视频| 亚洲成国产人片在线观看| 亚洲av综合色区一区| 狠狠婷婷综合久久久久久88av| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说| 性高湖久久久久久久久免费观看| 成人国产麻豆网| 在线 av 中文字幕| 亚洲精品美女久久av网站| 夫妻午夜视频| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 曰老女人黄片| 国产男女超爽视频在线观看| 看十八女毛片水多多多| www.精华液| 少妇精品久久久久久久| 香蕉国产在线看| 国产精品99久久99久久久不卡 | 叶爱在线成人免费视频播放| 久久99热这里只频精品6学生| 亚洲精品久久成人aⅴ小说| 日本欧美视频一区| 在线观看免费视频网站a站| 国产精品无大码| 婷婷色综合www| 黄色一级大片看看| 91久久精品国产一区二区三区| 在线观看人妻少妇| 亚洲天堂av无毛| 国产精品久久久久久精品电影小说| 国产精品二区激情视频| 久久久久国产一级毛片高清牌| 狠狠精品人妻久久久久久综合| 男女啪啪激烈高潮av片| 一区二区三区乱码不卡18| 高清视频免费观看一区二区| 又粗又硬又长又爽又黄的视频| 韩国精品一区二区三区| 久久99蜜桃精品久久| 国产精品久久久久久精品电影小说| 免费高清在线观看日韩| 亚洲情色 制服丝袜| 久热这里只有精品99| av片东京热男人的天堂| 欧美日韩亚洲高清精品| 午夜日本视频在线| 国产 精品1| 大陆偷拍与自拍| 一二三四中文在线观看免费高清| 亚洲欧美成人精品一区二区| 中国三级夫妇交换| 男人舔女人的私密视频| 成人手机av| 曰老女人黄片| 欧美日韩综合久久久久久| 国产成人免费无遮挡视频| 亚洲精品美女久久久久99蜜臀 | 久久精品国产亚洲av涩爱| 亚洲欧洲精品一区二区精品久久久 | 五月伊人婷婷丁香| 性色av一级| 亚洲av欧美aⅴ国产| 亚洲欧美清纯卡通| 看十八女毛片水多多多| 天美传媒精品一区二区| 免费看不卡的av| 高清av免费在线| 欧美av亚洲av综合av国产av | 亚洲欧美成人综合另类久久久| 热re99久久精品国产66热6| 午夜日本视频在线| a 毛片基地| 成年美女黄网站色视频大全免费| 亚洲欧美一区二区三区久久| 午夜福利在线免费观看网站| 国产综合精华液| 秋霞伦理黄片| 亚洲精品乱久久久久久| 久久精品国产亚洲av天美| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 欧美精品一区二区大全| 免费日韩欧美在线观看| 美女脱内裤让男人舔精品视频| 高清不卡的av网站| 高清视频免费观看一区二区| 国产人伦9x9x在线观看 | av又黄又爽大尺度在线免费看| 97在线人人人人妻| 国产国语露脸激情在线看| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 99热全是精品| 一级,二级,三级黄色视频| 欧美日韩av久久| 成人毛片60女人毛片免费| 2021少妇久久久久久久久久久| 在线天堂最新版资源| 丰满少妇做爰视频| 90打野战视频偷拍视频| 国产1区2区3区精品| av有码第一页| 黄色毛片三级朝国网站| 十八禁网站网址无遮挡| 黄片播放在线免费| 国产成人一区二区在线| 精品第一国产精品| 久久亚洲国产成人精品v| 欧美精品av麻豆av| 一区二区日韩欧美中文字幕| 午夜激情久久久久久久| 男人添女人高潮全过程视频| 熟女少妇亚洲综合色aaa.| 天天影视国产精品| 亚洲精品乱久久久久久| 久久国产精品男人的天堂亚洲| 国产精品人妻久久久影院| 巨乳人妻的诱惑在线观看| 欧美精品国产亚洲| 国产免费又黄又爽又色| 高清av免费在线| 美女午夜性视频免费| 日韩中文字幕视频在线看片| 日本欧美视频一区| av免费在线看不卡| tube8黄色片| 国产一区亚洲一区在线观看| 亚洲第一av免费看| 免费不卡的大黄色大毛片视频在线观看| 男人舔女人的私密视频| 久久久精品国产亚洲av高清涩受| 亚洲少妇的诱惑av| 国产成人免费观看mmmm| 国产野战对白在线观看| 成人国产av品久久久| 国产精品秋霞免费鲁丝片| 亚洲美女搞黄在线观看| 国产一区二区在线观看av| 亚洲av在线观看美女高潮| 成人国语在线视频| 欧美在线黄色| 日韩av免费高清视频| 久久这里有精品视频免费| 亚洲精品国产色婷婷电影| 午夜福利,免费看| 国产成人av激情在线播放| 亚洲国产日韩一区二区| 国产1区2区3区精品| 国产成人精品在线电影| 99九九在线精品视频| 永久网站在线| 97在线视频观看| 亚洲三级黄色毛片| 国产精品三级大全| 久久毛片免费看一区二区三区| 国产高清国产精品国产三级| 深夜精品福利| 国产精品女同一区二区软件| 在线天堂中文资源库| 午夜日韩欧美国产| 国产高清不卡午夜福利| 午夜老司机福利剧场| 日本免费在线观看一区| 久久国内精品自在自线图片| 男的添女的下面高潮视频| 最近的中文字幕免费完整| 免费高清在线观看视频在线观看| 美女视频免费永久观看网站| 精品国产一区二区久久| 精品亚洲成国产av| 国产亚洲欧美精品永久| 欧美激情 高清一区二区三区| 精品少妇久久久久久888优播| 亚洲经典国产精华液单| 一级毛片我不卡| 天天操日日干夜夜撸| 国产亚洲一区二区精品| 最新中文字幕久久久久| 国产野战对白在线观看| 亚洲欧洲日产国产| 黄片小视频在线播放| 一二三四中文在线观看免费高清| 精品国产露脸久久av麻豆| 国产精品久久久久久精品电影小说| 亚洲精品日韩在线中文字幕| 黄色 视频免费看| 亚洲国产av影院在线观看|