• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ANALYTICAL STUDY OF WAVE MAKING IN A FLUME WITH A PARTIALLY REFLECTING END-WALL*

    2010-07-02 01:37:59ZHOUBinzhen

    ZHOU Bin-zhen

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China, E-mail: zhoubinzhen4827@163.com

    NING De-zhi

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

    TENG Bin, CHEN Li-fen

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    ANALYTICAL STUDY OF WAVE MAKING IN A FLUME WITH A PARTIALLY REFLECTING END-WALL*

    ZHOU Bin-zhen

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China, E-mail: zhoubinzhen4827@163.com

    NING De-zhi

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

    TENG Bin, CHEN Li-fen

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    Based on the eigenfunction expansion technique, the wave generation by a piston wave maker in a wave flume with a partially reflecting end-wall is studied. The corresponding velocity potential and wave elevation in the flume are obtained. The present analytical solution is verified by the numerical results obtained from a time-domain higher-order boundary element method in a closed flume. Numerical experiments are further carried out to study the difference between the partial/full reflection boundary and the transmission boundary and the effects of the reflection coefficient and the motion period of the wave maker on the wave height. Meanwhile, the natural frequency of the wave flume can be obtained from the analytical expression. The resonance occurs when the motion frequency is equal to the natural frequency. Even the partial reflection of the end-wall in the wave flume experiments has a great influence on the wave height, therefore, inaccurate measurements would be resulted in long-time simulations, especially when the wave frequency approaches the wave flume natural frequency. The present study can serve as a guidance for the physical experiment in wave flumes.

    wave flume, wave maker, partially reflecting end-wall, resonance, eigenfunction, analytical study

    1. Introduction

    The wave generation in flumes is of considerableimportance for offshore and coastal engineering. Many studies have been devoted to wave maker theories based on analytical and numerical methods. For example, Liu et al.[1]applied a theoretical method to study an active absorbing wave maker system. Schaffer and Steenberg[2]developed a complete second-order wave maker theory for the generation of multidirectional waves in a semi-infinite basin. With eigenfunction expansions and Fast Fourier Ttansform (FFT) algorithm, Wojciech and Maciej[3]proposed a semi-analytical nonlinear wave maker model to study the generation and propagation of transient nonlinearwaves in a wave flume. Spinneken and Swan[4]proposed a second-order wave maker theory for regular waves using the force-feedback control. With the eigenfunction expansion technique, Zhou et al.[5]obtained a linear analytical solution for wave generation by a piston wave maker in a deep step-type wave flume. He[6]applied the Boundary Element Method (BEM) combined with the time-stepping scheme to study the wave generation by the large amplitude oscillation of a rocker flap wave maker. Koo and Kim[7]utilized the fully nonlinear 2-D numerical wave tank to simulate the nonlinear wave and force generated by a wedge-shape wave maker. Yang et al.[8]employed a time-domain numerical model to simulate the wave making by a moving ship based on Green’s theorem. Based on a fully nonlinear numerical wave tank model, Zhou et al.[9]and Ning et al.[10]carried out a numerical simulation of waves generated by a piston wave maker. In the above studies, it is noted that the end walls of wave flumes are all defined as the transmission boundary. However, it is actually difficult for outgoing waves to be completely dissipated at the end of a physical flume. And some partial reflections may exist, which would result in inaccurate measurements in a long-time experiment due to the multi-reflections between the wave flume end and the wave maker. Therefore, it is necessary to study the effects of the partial reflection of the wave flume end on experimental results.

    Many investigations were carried out on the prediction of the wave field in a harbor with partial reflection boundaries. For example, Hammanaka[11]studied a harbor wave field for a range of boundary conditions, including partial reflection. Lee and Williams[12]presented a numerical model for the wave field due to the diffraction of multidirectional random waves in a harbor of arbitrary shape with partial reflection boundaries. Tan et al.[13]considered wave fields in harbors using a mesh generation software and the mid-slope equation with partial reflection boundary conditions at the wall boundary considered. Ghassan et al.[14]discussed the interaction of linear water waves with a moored floating breakwater with a leeward boundary composed of a vertical wall.

    In this article, an exact analytical solution is derived for the wave generation by a piston wave maker with a partial reflection wave flume end, based upon the usual assumptions of the linearized water-wave theory and the two-dimensional motion. The fluid is assumed to be ideal, the motion irrotational, and the wave amplitude small compared with the wavelength and the fluid depth. The method of eigenfunction expansions is adopted to calculate the velocity potential and the wave elevation. Moreover, numerical experiments are carried out to see the difference between the partial reflection boundary and the transmission boundary, and the effects of the reflection coefficient and the motion period of the wave maker on the wave height. Meanwhile, the natural frequency of the wave flume is obtained from the analytical solution. It is shown that the resonance occurs in a closed wave flume when the motion frequency is close to the natural frequency, with large waves for partial reflection boundaries.

    2. Mathematical model

    2.1Governing equation

    A wave flume with a vertical end-wall in water of depthdis considered here, as shown in Fig.1. A Cartesian coordinate system is adopted with the origin in the plane of the undisturbed free surfacez=0, with thez-axis positive upwards and thex-axis positive rightwards. At the left end of the wave flume, a monochromatic wave is generated by a piston wave maker with the following motion:

    Fig.1 Definition sketch

    The fluid is assumed to be inviscid and incompressible, and the motion is irrotational. It is further assumed that the motion is a simple time-harmonic with the angular frequencyω, the time parameter can be separated and the velocity potentialΦ(x,z,t) can be rewritten in the following form:

    whereφ(x,z) is the complex spatial velocity potential with the unit amplitude motion of the wave maker.

    2.2Boundary conditions

    The velocity potentialφ(x,z) is governed by the Laplace equation with the free surface condition, the incident boundary condition and the partial and full reflection boundary conditions.

    2.2.1 Free surface condition

    The linear free surface boundary condition atz=0can be written as:

    2.2.2 Incident boundary condition

    The condition says that the normal derivative of the velocity potential is equal to the wave maker velocity on the wave maker surface, which can be written in the following form:

    2.2.3 Reflection boundary condition

    On the flume bottom, the full reflection boundary condition, i.e., the non-penetrating boundary condition, is

    2.2.4 Partial reflection boundary condition

    In many numerical simulations, the full reflection or the transmission boundary conditions are applied at the right wave flume end. Actually, a partial reflection is the case at the physical flume end. In the present model, a partial reflection boundary condition is imposed by using a mixed boundary condition[14], i.e.,

    whereBis the flume length,kis the wave number andα(=α1+iα2) is a complex transmission coefficient and can be expressed by the conventional reflection coefficientKrand a reflection phase angleβas follows

    Ghassan[14]indicated that the phase angleβhas a minor influence on the results. Therefore, one may assume no phase shift between the incoming waves and the reflected waves, i.e.,β=0. Hence, the partial reflection boundary condition in Eq.(7) can be expressed as:

    3. Mathematical analyses

    The velocity potential, satisfying the linear free surface condition and the non-penetrating condition on the seabed bottom, can be written in the following form:

    where the first term is the rightward waves, the second is the leftward waves, the third is the evanescent waves exponentially decayed far from the wave maker and the last is the waves exponentially decayed away from the vertical sidewall,CmandRm(m=0,1,…) are the unknown coefficients. The vertical eigenfunctionsZm(kmz) form an orthogonal set in[?d,0] and are defined as:

    where wave numbersk0andkmsatisfy the following dispersion equations, respectively,

    In order to evaluate the unknown coefficientsCmandRm, we take (M+1) terms (0,1,…,M) forCmandRm.

    By substituting Eq.(11) into the wave maker boundary condition Eq.(5), the following relation can be obtained:

    Multiplying both sides of Eq.(16) by the vertical eigenfunctionsZm(kmz) and integrating over the interval ?d

    Equations (17) and (18) can be rewritten in the following forms:

    Substituting Eq.(11) into the partial reflecting boundary condition Eq.(10), the following relation can be obtained

    Multiplying both sides of Eq.(23) by the vertical eigenfunctionsZm(kmz) and integrating over the interval ?d

    Equations (24) and (25) can be rewritten in the following forms:

    By substituting Eqs.(26) and (27) into Eqs.(21) and (22), the following relation can be obtained

    The unknownsCmandRm(m=0,1,…,M) can be obtained from Eqs.(26)-(30). Thus the velocity potential can be obtained by substitutingCmandRminto Eq.(11).

    4. Wave elevation

    Based on the linear wave maker theory, the wave surface elevation in the wave flume is

    ForKr=0, it follows thatα=iandR0=0. In this case, the end of the wave flume satisfies the transmission boundary condition, and the wave amplitude agrees with the existing theoretical expression as follows

    ForKr=1, it follows thatα=0 andR=Ceik0B. In this case, the wave elevation can be

    00written as follows if we ignore the evanescent waves:

    From Eq.(33), it can be easily deduced that the wave amplitude reaches the maximum atx=B?nL/2.0(n=0,1,2,…) and the minimum atx=B?nL/4.0 (n=1,3,5,…), respectively, withLbeing the wavelength.

    5. Numerical results and analyses

    We now carry out some numerical simulations to illustrate the analytical method discussed above. First, some numerical experiments are performed to check the convergence of eigenfucntions in Eqs.(11) and (31). It shows that a converged solution can be obtained whenMis truncated with 10 terms.

    Two special casesKr=0 and 1.0 are then considered. The former one (Kr=0) shown in Eq.(32) is validated by a comparison with the existing analytical expression. For the latter one (Kr=1), a numerical wave tank based on the time-domain higher-order boundary element method (THOBEM, Ning and Teng[15]) is used for the comparison. For the frequency-domain method, a steady result can be obtained. But for the time-domain method, the result obtained includes not only the steady solution but also the transient solutions. The transient effects come from the resonant waves in the present case and are rapidly dissipated in the physical flume because of even a very small viscosity. In order to compare with the present steady solution, a damping mechanism invented by Kim[16]is used in the THOBEM to eliminate the transient effects with the corresponding damping coefficient1μ′ of 0.06. A closed wave flume with lengthB=5.0m and water depthd=1.0m is considered here. The motion period and the amplitude of the wave maker areT=2.5s andS=0.01m, respectively. From the above known conditions, the wavelengthL=6.985m is obtained.

    Fig.2 Time history of wave elevation atx=B

    Figure 2 shows the time history of the wave elevation at the wave flume (x=B). The comparisonsof the proposed analytical solution with numerical results from the HOBEM with linear boundary conditions are also given in the figure. From the figure, it can be seen that the numerical wave elevation eventually reaches that of harmonic oscillations, and the results given by the two methods agree well with each other, which validates the theoretical method presented in this article for the full reflection end-wall.

    Fig.3 Distribution of wave amplitudeAat different positions

    Further numerical calculations are carried out in a wave flume with lengthB=30.0m and water depthd=1.0m in the following section.

    Figure 3 is the distribution of the wave amplitudeAalong the line of symmetry of the flume forT=2.5sand different reflection coefficients (Kr=0.1, 0.3, 0.8, 1.0). From the figure, it can be seen that the distribution of the wave amplitude is non-uniform, and varies in a harmonic way with the distance from the wave maker. The oscillating amplitude increases with the increasing of the reflection coefficient. The wave amplitude reaches the maximum at positionsx=B?nL/2.0 (n=0,1,2,…) and reaches the minimum at positionsx=B?nL/4.0 (n=1,3,5,…) for different reflection coefficients. The minimum wave amplitude is zero for the full reflection condition.

    Figures 5(a) and 5(b) give the distribution of the parameterKAversus the reflection coefficientKr. From the figure, it can be seen that the parameterKAincreases with the increasing of the reflection coefficientKr, and the increasing value is related to the motion periodT. Figure 5(a) shows that when the motion period is near the natural period, the parameterKAis greater than the corresponding to other periods. It can be seen from Fig.5(b) that the parameterKAreaches the maximum when the motion period is equal to the natural period, and the resonance occurs forKr=1. Therefore, the partial reflection of the end wall in the wave flume also has a great influence on experimental results. Appropriate measures should be adopted to reduce such experimental errors.

    Fig.4 Distribution of the parameterKAwith periodT

    6. Conclusion

    Fig.5 Distribution ofKAwith the reflection coefficientKr

    [1] LIU Shu-xue, WU Bin and LI Mu-guo et al. Irregular active absorbing wave maker system[J].Journal of Hydrodynamics, Ser. A,2003, 18(5): 532-539(in Chinese).

    [2] SCHAFFER H. A., STEENBERG C. M. Second-order wave maker theory for multidirectional waves[J].Ocean Engineering,2003, 30(10): 1203-1231.

    [3] WOJCIECH S., MACIEJ P. Generation and propagationof transient nonlinear waves in a wave flume[J].Coastal Engineering,2008, 55(4): 277-287.

    [4] SPINNEKEN J., SWAN C. Second-order wave maker theory using force-feedback control. Part I: A new theory for regular wave generation[J].Ocean Engineering,2009, 36(8): 539-548.

    [5] ZHOU B. Z., NING D. Z. and TENG B. et al. Analytical study on wave making in a deep wave flume in step-type[J].Wave motion,2010, 47(1): 1-11.

    [6] HE Wu-zhou, DUAN Wen-yang. Fully nonlinear calculation of 2-D water wave generated by rocker flap wavemaker[J].Journal of Hydrodynamics, Ser. A,1996, 11(1): 35-42(in Chinese).

    [7] KOO W. C., KIM M. H. Numerical simulation of nonlinear wave and force generated by a wedge-shape wave maker[J].Ocean Engineering,2006, 33(8): 983-1006.

    [8] YANG Xiang-hui, YE Heng-kui and FENG Da-kui et al. Computation research on wave making of moving wigley hull in time domain[J].Journal of Hydrodynamics,2008, 20(4): 469-476.

    [9] ZHOU Bin-zhen, NING De-zhi and TENG Bin. Realtime simulation of waves generated by a wave maker[J].ChineseJournal of Hydrodynamics,2009, 24(4): 406-416(in Chinese).

    [10] NING D. Z., ZHOU B. Z. and TENG B. et al. Numerical simulation of nonlinear regular and focused waves generated by a piston wave maker[C].The 5thInternational Conference on Asian and Pacific Coasts.Singapore, 2009.

    [11] HAMMANAKA K. I. Open, partial reflection and incident-absorbing boundary conditions in wave analysis with a boundary integral method[J].Coastal Engineering,1997, 30(3): 281-298.

    [12] LEE H. S., WILLIAMS A. N. Boundary element modelling of multidirectional random waves in a harbour with partially reflecting boundaries[J].Ocean Engineering,2002, 29(1): 39-58.

    [13] TAN Li, TENG Bin and ZHAO Ming. Wave field computation in harbors using the mesh generation software and the mild-slope equation[J].The Ocean Engineering,2004, 22(4): 107-114(in Chinese).

    [14] GHASSAN E., RAFIC Y. and PASCAL L. The effects of reflection coefficient of the harbor sidewall on the performance of floating breakwaters[J].Ocean Engineering,2008, 35(11): 1102-1112.

    [15] NING D. Z., TENG B. Numerical simulation of fully nonlinear irregular wave tank in three-dimension[J].International Journal for Numerical Methods in Fluids,2007, 53(12): 1847-1862.

    [16] KIM Y. H. Artificial damping in water wave problems I: constant damping[J].International Journal of Offshore and Polar Engineering,2003, 13(2): 88-93.

    December 4, 2009, Revised January 14, 2010)

    * Project supported by the Open Fund of Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009491611), the National Natural Science Foundation of China (Grant Nos. 50709005, 10772040 and 50921001) and the Major National Science and Technology Projects of China (Grant No. 2008ZX05026-02).

    Biography:ZHOU Bin-zhen (1984-), Female, Ph. D.

    NING De-zhi,

    E-mail: dzning@dlut.edu.cn

    2010,22(3):402-409

    10.1016/S1001-6058(09)60071-8

    国产高清国产精品国产三级 | 日韩成人伦理影院| 肉色欧美久久久久久久蜜桃| 欧美日韩精品成人综合77777| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦视频在线资源免费观看| 亚洲国产精品成人久久小说| 2018国产大陆天天弄谢| 久久综合国产亚洲精品| 国产69精品久久久久777片| 男人添女人高潮全过程视频| 高清午夜精品一区二区三区| 国产成人91sexporn| 亚洲精品久久午夜乱码| 欧美丝袜亚洲另类| av视频免费观看在线观看| 成人亚洲精品一区在线观看 | 午夜老司机福利剧场| 国产精品伦人一区二区| 国产在线视频一区二区| 最黄视频免费看| 99九九线精品视频在线观看视频| 欧美xxxx性猛交bbbb| 99热这里只有是精品50| 亚洲国产高清在线一区二区三| 少妇人妻一区二区三区视频| 校园人妻丝袜中文字幕| 欧美日韩亚洲高清精品| 伦精品一区二区三区| 亚洲一区二区三区欧美精品| 成人无遮挡网站| 能在线免费看毛片的网站| 国产精品伦人一区二区| 国产精品.久久久| 日本av免费视频播放| 成人特级av手机在线观看| 99久国产av精品国产电影| 97在线人人人人妻| 夫妻性生交免费视频一级片| 国产成人精品久久久久久| 国产爱豆传媒在线观看| 久久人妻熟女aⅴ| 男女啪啪激烈高潮av片| 亚洲av国产av综合av卡| 观看av在线不卡| 亚洲一级一片aⅴ在线观看| 观看av在线不卡| 日本av免费视频播放| 欧美bdsm另类| 我的女老师完整版在线观看| 97超视频在线观看视频| 国产亚洲欧美精品永久| 18禁在线播放成人免费| 嫩草影院新地址| 国模一区二区三区四区视频| 女性被躁到高潮视频| 亚洲国产精品成人久久小说| 丝袜脚勾引网站| 国产 精品1| 国产乱来视频区| 妹子高潮喷水视频| 成年av动漫网址| 直男gayav资源| 国产免费又黄又爽又色| 午夜免费男女啪啪视频观看| 乱码一卡2卡4卡精品| 狠狠精品人妻久久久久久综合| 18禁在线无遮挡免费观看视频| 色哟哟·www| 菩萨蛮人人尽说江南好唐韦庄| 男的添女的下面高潮视频| 男的添女的下面高潮视频| 在线看a的网站| 亚洲精品亚洲一区二区| 自拍偷自拍亚洲精品老妇| 亚洲美女黄色视频免费看| 欧美日韩在线观看h| 日本wwww免费看| 欧美bdsm另类| 精品国产乱码久久久久久小说| 国产永久视频网站| 纵有疾风起免费观看全集完整版| .国产精品久久| 国产白丝娇喘喷水9色精品| 久久久久久久久久成人| 日韩成人伦理影院| 91精品一卡2卡3卡4卡| kizo精华| 国产精品人妻久久久久久| a级一级毛片免费在线观看| 国产日韩欧美在线精品| tube8黄色片| 乱码一卡2卡4卡精品| av在线app专区| 亚洲图色成人| 免费黄网站久久成人精品| 插阴视频在线观看视频| av一本久久久久| 有码 亚洲区| 黑人猛操日本美女一级片| 国产亚洲午夜精品一区二区久久| 菩萨蛮人人尽说江南好唐韦庄| 777米奇影视久久| 国产精品精品国产色婷婷| 国产av国产精品国产| 啦啦啦视频在线资源免费观看| 日韩三级伦理在线观看| 国产伦精品一区二区三区视频9| 国产黄频视频在线观看| 国产精品无大码| 国产精品成人在线| 国产午夜精品久久久久久一区二区三区| 1000部很黄的大片| 天堂中文最新版在线下载| 亚洲av日韩在线播放| 国产高潮美女av| 国内少妇人妻偷人精品xxx网站| 国产有黄有色有爽视频| 亚洲国产高清在线一区二区三| 九草在线视频观看| 黄色配什么色好看| 夫妻性生交免费视频一级片| 色网站视频免费| 自拍偷自拍亚洲精品老妇| 日韩三级伦理在线观看| 国产黄片视频在线免费观看| 久久久久精品性色| 欧美极品一区二区三区四区| 国产精品国产av在线观看| 午夜免费观看性视频| 国产高清不卡午夜福利| 亚洲av国产av综合av卡| 大码成人一级视频| 王馨瑶露胸无遮挡在线观看| 91精品国产九色| 欧美高清性xxxxhd video| av黄色大香蕉| 亚洲在久久综合| 男女边摸边吃奶| 深夜a级毛片| 少妇人妻久久综合中文| 欧美少妇被猛烈插入视频| 精品一区在线观看国产| 久久久久网色| 一级爰片在线观看| 精品国产露脸久久av麻豆| 黄片wwwwww| 色视频在线一区二区三区| 国产 精品1| 大又大粗又爽又黄少妇毛片口| 精品酒店卫生间| 欧美日韩在线观看h| 久久久久人妻精品一区果冻| a 毛片基地| 亚洲三级黄色毛片| .国产精品久久| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 最近2019中文字幕mv第一页| 青春草视频在线免费观看| 午夜福利网站1000一区二区三区| 国产极品天堂在线| 自拍欧美九色日韩亚洲蝌蚪91 | 在线看a的网站| 日韩制服骚丝袜av| 天天躁日日操中文字幕| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 国产精品无大码| 国产男女内射视频| 精品一区二区三区视频在线| 亚洲av综合色区一区| 91狼人影院| 亚洲激情五月婷婷啪啪| 久久久国产一区二区| 色婷婷久久久亚洲欧美| 中文字幕久久专区| 永久网站在线| 亚洲国产欧美人成| 亚洲精品第二区| 男人添女人高潮全过程视频| 一级毛片黄色毛片免费观看视频| 2022亚洲国产成人精品| 免费久久久久久久精品成人欧美视频 | 99热6这里只有精品| 国产在线一区二区三区精| 成人午夜精彩视频在线观看| 男女免费视频国产| av免费在线看不卡| 欧美成人a在线观看| 欧美3d第一页| 人妻一区二区av| 亚洲一区二区三区欧美精品| 多毛熟女@视频| 在现免费观看毛片| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 欧美精品一区二区免费开放| 人人妻人人添人人爽欧美一区卜 | 国产永久视频网站| 王馨瑶露胸无遮挡在线观看| 91狼人影院| 99久久中文字幕三级久久日本| 成年人午夜在线观看视频| 伦精品一区二区三区| 99久久中文字幕三级久久日本| 久久久久精品性色| 美女脱内裤让男人舔精品视频| 久久人人爽人人爽人人片va| 欧美成人午夜免费资源| 亚洲精品自拍成人| videossex国产| 国产精品人妻久久久久久| 99久久精品热视频| 国产中年淑女户外野战色| .国产精品久久| 国国产精品蜜臀av免费| 精品亚洲成国产av| av国产免费在线观看| 国产老妇伦熟女老妇高清| 精品少妇黑人巨大在线播放| 男女边吃奶边做爰视频| tube8黄色片| 亚洲真实伦在线观看| 亚洲国产最新在线播放| 日韩国内少妇激情av| 亚洲自偷自拍三级| 国产深夜福利视频在线观看| 黄片无遮挡物在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品.久久久| 欧美另类一区| 国产色婷婷99| 美女国产视频在线观看| 91精品国产九色| 日韩欧美 国产精品| 国产免费视频播放在线视频| 久久久久久久久久成人| 国产国拍精品亚洲av在线观看| 青春草国产在线视频| 亚洲久久久国产精品| 深夜a级毛片| 久久6这里有精品| 久久久久久久国产电影| 99视频精品全部免费 在线| 国产一区亚洲一区在线观看| 一区二区三区四区激情视频| 女性被躁到高潮视频| 欧美97在线视频| 国产乱人视频| 国产精品一区二区在线不卡| 韩国高清视频一区二区三区| 亚洲,欧美,日韩| 亚洲天堂av无毛| 毛片一级片免费看久久久久| 国产久久久一区二区三区| 亚洲色图av天堂| 三级国产精品欧美在线观看| 黑人猛操日本美女一级片| 免费看av在线观看网站| 亚洲最大成人中文| 成人国产麻豆网| 97在线视频观看| 91狼人影院| 国产精品秋霞免费鲁丝片| 欧美日韩国产mv在线观看视频 | 人人妻人人爽人人添夜夜欢视频 | 亚洲中文av在线| 久久精品久久久久久噜噜老黄| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站 | 免费观看在线日韩| 精品午夜福利在线看| 亚洲精品国产av蜜桃| 国产免费福利视频在线观看| 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区| 国产男人的电影天堂91| 丝袜喷水一区| 日韩伦理黄色片| 欧美xxxx性猛交bbbb| 一级毛片黄色毛片免费观看视频| 大片电影免费在线观看免费| 久久精品夜色国产| 一个人看视频在线观看www免费| 久久热精品热| 亚洲av电影在线观看一区二区三区| 在线免费观看不下载黄p国产| 国产欧美日韩精品一区二区| 2022亚洲国产成人精品| av在线播放精品| 亚洲av在线观看美女高潮| 身体一侧抽搐| 视频中文字幕在线观看| 精品亚洲成a人片在线观看 | 久久午夜福利片| 国产成人a区在线观看| 1000部很黄的大片| 伦理电影免费视频| 欧美丝袜亚洲另类| 久久久久国产网址| 久久精品国产自在天天线| 亚洲国产最新在线播放| 男人添女人高潮全过程视频| 亚洲一区二区三区欧美精品| 久久精品久久精品一区二区三区| 婷婷色av中文字幕| 女人久久www免费人成看片| 成人国产av品久久久| 国产精品伦人一区二区| 亚洲欧美精品专区久久| 麻豆乱淫一区二区| 永久网站在线| 一本一本综合久久| 全区人妻精品视频| 午夜老司机福利剧场| 精品酒店卫生间| 少妇裸体淫交视频免费看高清| 免费少妇av软件| 色婷婷av一区二区三区视频| 中文字幕制服av| 只有这里有精品99| 国产乱来视频区| 国产乱人视频| 国产黄色视频一区二区在线观看| 国产一区二区三区综合在线观看 | 免费播放大片免费观看视频在线观看| 国精品久久久久久国模美| 新久久久久国产一级毛片| 中文字幕av成人在线电影| 偷拍熟女少妇极品色| av线在线观看网站| 成人毛片60女人毛片免费| 成人漫画全彩无遮挡| 内地一区二区视频在线| 男女免费视频国产| 超碰av人人做人人爽久久| 久久久久久久久久久丰满| 亚洲精品aⅴ在线观看| 天美传媒精品一区二区| 在线观看一区二区三区激情| 蜜臀久久99精品久久宅男| 天堂8中文在线网| 久久精品国产a三级三级三级| 免费看不卡的av| 久久热精品热| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 美女脱内裤让男人舔精品视频| 高清av免费在线| 中文字幕亚洲精品专区| 国产免费福利视频在线观看| 久久人人爽av亚洲精品天堂 | 欧美亚洲 丝袜 人妻 在线| 亚洲婷婷狠狠爱综合网| 久久这里有精品视频免费| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 久久久久国产网址| 高清av免费在线| 中文字幕制服av| 久久久久久九九精品二区国产| 国产高清国产精品国产三级 | 看非洲黑人一级黄片| 下体分泌物呈黄色| 国产熟女欧美一区二区| 国产精品女同一区二区软件| 精品亚洲成a人片在线观看 | 五月天丁香电影| 日韩国内少妇激情av| 欧美精品国产亚洲| 亚洲av综合色区一区| 永久网站在线| 欧美zozozo另类| 在线观看免费视频网站a站| 婷婷色综合大香蕉| 丝袜脚勾引网站| 性高湖久久久久久久久免费观看| 国产精品人妻久久久影院| 欧美3d第一页| 欧美日韩一区二区视频在线观看视频在线| 国产男女内射视频| 中文字幕免费在线视频6| 国产乱人视频| 嫩草影院入口| 久久久欧美国产精品| 日本vs欧美在线观看视频 | 国产一级毛片在线| 夜夜看夜夜爽夜夜摸| 在线观看国产h片| 成人美女网站在线观看视频| 人妻夜夜爽99麻豆av| 在线观看美女被高潮喷水网站| 乱码一卡2卡4卡精品| 一区二区三区精品91| 丰满少妇做爰视频| 国产成人一区二区在线| 精品久久久久久电影网| 国产免费一区二区三区四区乱码| 老女人水多毛片| 免费观看a级毛片全部| 国产淫片久久久久久久久| www.av在线官网国产| 激情五月婷婷亚洲| 中文字幕人妻熟人妻熟丝袜美| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 国产成人freesex在线| 免费久久久久久久精品成人欧美视频 | 又粗又硬又长又爽又黄的视频| 超碰97精品在线观看| 亚洲精品视频女| 少妇熟女欧美另类| 日本午夜av视频| 欧美成人午夜免费资源| 国产欧美另类精品又又久久亚洲欧美| 久久国产精品男人的天堂亚洲 | 国产精品人妻久久久久久| 国国产精品蜜臀av免费| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 欧美日韩综合久久久久久| 免费观看的影片在线观看| 亚洲精品aⅴ在线观看| 国产黄色视频一区二区在线观看| 日产精品乱码卡一卡2卡三| 亚洲成人一二三区av| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 香蕉精品网在线| 亚洲欧洲国产日韩| 又黄又爽又刺激的免费视频.| 日韩大片免费观看网站| 日韩电影二区| 成人18禁高潮啪啪吃奶动态图 | 99热6这里只有精品| 日本与韩国留学比较| 中文字幕制服av| 亚洲av男天堂| 久热这里只有精品99| 欧美一区二区亚洲| 伦理电影大哥的女人| 18禁裸乳无遮挡免费网站照片| 最近中文字幕2019免费版| 日韩亚洲欧美综合| 91午夜精品亚洲一区二区三区| 一级黄片播放器| 久久久亚洲精品成人影院| 热99国产精品久久久久久7| 国产av精品麻豆| 在线观看免费高清a一片| 高清视频免费观看一区二区| 精品久久久久久久久av| 最近最新中文字幕大全电影3| 欧美日韩视频精品一区| 久久久久性生活片| 成人毛片60女人毛片免费| 亚洲综合精品二区| 精品酒店卫生间| 综合色丁香网| 色5月婷婷丁香| 国产亚洲午夜精品一区二区久久| 亚洲美女搞黄在线观看| 亚洲国产精品专区欧美| 一个人免费看片子| 狂野欧美激情性xxxx在线观看| 久久久欧美国产精品| 国精品久久久久久国模美| 在线天堂最新版资源| 亚洲国产精品成人久久小说| 国产一区二区三区av在线| 久久精品国产a三级三级三级| 我的女老师完整版在线观看| 国产伦精品一区二区三区四那| 国产精品爽爽va在线观看网站| 熟女av电影| 国产成人a∨麻豆精品| 身体一侧抽搐| 亚洲成人一二三区av| 日本vs欧美在线观看视频 | 亚洲欧美一区二区三区黑人 | kizo精华| 卡戴珊不雅视频在线播放| 国产成人精品久久久久久| 三级国产精品片| 国产极品天堂在线| a级毛色黄片| 中文欧美无线码| 欧美丝袜亚洲另类| 久久久午夜欧美精品| 狂野欧美激情性bbbbbb| 我的老师免费观看完整版| 最近手机中文字幕大全| 久久国产精品大桥未久av | 国产精品久久久久久av不卡| 国产在线视频一区二区| 国产av国产精品国产| 国产成人freesex在线| 天美传媒精品一区二区| 亚洲国产精品999| 狂野欧美激情性xxxx在线观看| 欧美一级a爱片免费观看看| 97超视频在线观看视频| 国产高清三级在线| 爱豆传媒免费全集在线观看| av在线老鸭窝| 国产精品人妻久久久影院| 久久国产精品男人的天堂亚洲 | 欧美成人a在线观看| 国产白丝娇喘喷水9色精品| 毛片一级片免费看久久久久| 性高湖久久久久久久久免费观看| 久久影院123| 欧美高清成人免费视频www| 国产精品三级大全| 老女人水多毛片| 久久久成人免费电影| 纯流量卡能插随身wifi吗| 亚洲熟女精品中文字幕| 久久99热6这里只有精品| 亚洲欧美精品专区久久| 99热6这里只有精品| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| a 毛片基地| 亚洲一区二区三区欧美精品| 免费在线观看成人毛片| 婷婷色麻豆天堂久久| 成年免费大片在线观看| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 深夜a级毛片| 国产欧美日韩一区二区三区在线 | 男女无遮挡免费网站观看| 十分钟在线观看高清视频www | 一级av片app| 爱豆传媒免费全集在线观看| 内射极品少妇av片p| 中文字幕精品免费在线观看视频 | 欧美高清性xxxxhd video| 亚洲欧洲日产国产| 人人妻人人澡人人爽人人夜夜| 能在线免费看毛片的网站| 国产亚洲5aaaaa淫片| 老女人水多毛片| 国产综合精华液| 欧美日韩一区二区视频在线观看视频在线| 久久午夜福利片| 在线观看人妻少妇| 亚洲精品色激情综合| 国产精品麻豆人妻色哟哟久久| 色吧在线观看| 又黄又爽又刺激的免费视频.| 丰满人妻一区二区三区视频av| 精品人妻一区二区三区麻豆| 亚洲精品色激情综合| 青春草视频在线免费观看| 99久久精品热视频| 欧美丝袜亚洲另类| 少妇人妻一区二区三区视频| 久热久热在线精品观看| 草草在线视频免费看| 久久久a久久爽久久v久久| 色吧在线观看| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区| 51国产日韩欧美| 国产爱豆传媒在线观看| 插阴视频在线观看视频| 人人妻人人澡人人爽人人夜夜| 亚洲高清免费不卡视频| 精品国产露脸久久av麻豆| 最近的中文字幕免费完整| 99热网站在线观看| 伦精品一区二区三区| 成年人午夜在线观看视频| 亚洲欧美成人综合另类久久久| 一级毛片aaaaaa免费看小| 男男h啪啪无遮挡| 国产极品天堂在线| 99热这里只有是精品50| 亚洲,一卡二卡三卡| 国产永久视频网站| av黄色大香蕉| 日本av手机在线免费观看| 在线看a的网站| 欧美高清性xxxxhd video| 我要看日韩黄色一级片| 你懂的网址亚洲精品在线观看| 三级国产精品片| 亚洲国产欧美在线一区| 看十八女毛片水多多多| 免费黄色在线免费观看| 亚洲精品乱久久久久久| 国产在线免费精品| 秋霞在线观看毛片| 国产精品人妻久久久影院| 女人久久www免费人成看片| 久久精品国产亚洲网站| 各种免费的搞黄视频| 免费大片黄手机在线观看| 亚洲欧美日韩另类电影网站 | 91精品国产九色| 国产亚洲午夜精品一区二区久久| 国产精品.久久久| 青春草国产在线视频| 大片电影免费在线观看免费| 免费av不卡在线播放| 啦啦啦啦在线视频资源| 有码 亚洲区| 高清午夜精品一区二区三区| 亚洲av不卡在线观看| 成人特级av手机在线观看|