• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    IMPROVED DEM-CFD MODEL AND VALIDATION: A CONICAL-BASE SPOUTED BED SIMULATION STUDY*

    2010-07-02 01:37:59RONGLiangwan
    水動力學研究與進展 B輯 2010年3期

    RONG Liang-wan

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China,

    E-mail: rongliangwan@163.com

    ZHAN Jie-min

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    Guangdong Province Key Laboratory of Coastal Ocean Engineering, Sun Yat-sen University, Guangzhou 510275, China

    IMPROVED DEM-CFD MODEL AND VALIDATION: A CONICAL-BASE SPOUTED BED SIMULATION STUDY*

    RONG Liang-wan

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China,

    E-mail: rongliangwan@163.com

    ZHAN Jie-min

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    Guangdong Province Key Laboratory of Coastal Ocean Engineering, Sun Yat-sen University, Guangzhou 510275, China

    An improved and efficient DEM-CFD approach is developed for spouted beds. A nonlinear Discrete Element Method (DEM), with a concept of spring, dash-pot and friction slider, is used for tracing the movement of each individual particle. The gas flow is described by a set of reorganized governing equations. Two phases are coupled through contributions due to effects of porosity, viscosity and drag. All equations are solved with the commercial package Fluent with an implementation of User Defined Functions (UDF). To validate the improved model, a two-dimensional conical-base spouted bed is chosen as a case study. An unstructured mesh system is adopted instead of regular grid system. The simulation also takes the Saffman force and Magnus effect into account. The calculation results show good agreement with the experimental observations which are taken from the literature.

    Discrete Element Method (DEM), spouted bed, Fluent User Defined Functions (UDF), unstructured mesh

    1. Introduction

    Spouted beds provide a means of good mixing of particles and gas-particle contacting for relatively large particles. The spouted bed technique has found applications in many industrial processes, such as catalytic cracking, tablets coating, combustion and granulations of fertilizers and other materials. The successful design and control of a spouted bed requires a better knowledge of the dynamics of the systems and the behaviors of each phase. An advanced experimental technique, such as the Particle Image Velocimetry (PIV), is an expensive approach to makea measurement of these properties. Theoretical studies of gas and solids motion in spouted bed have been conducted by many researchers. A characteristic common to most of these theoretical models is that all interaction forces between phases are lumped into one term through a special approach. The viscous stress terms for both phases are often neglected[1].

    The approach based on a computer simulation has been widely used for studying dense particle systems, with an advantage of easily describing detailed and wide range flow properties[2-5]. In recent years, two most commonly used methods in the simulation of multiphase flows are the Two-Fluid Model (TFM) and the discrete element/particle method (DEM/DPM). The TFM approach treats the different phases as interpenetrating continua and a set of equations that have similar structure apply to eachphase. For the DEM/DPM method, the gas phase is described by a locally averaged Navier-Stokes equation, while the motion of each individual particle is traced by a soft-sphere or a hard-sphere model, and two phases are coupled through a term due to inter-phase momentum transfer. Both approaches have been adopted in the simulations of spout beds. The hydrodynamic behavior in spouted bed was presented by many researchers[6-9]with a two-fluid gas-solids flow model. Huilin[10]and Wan[11]gintegrated a kinetic-frictional constitutive model for dense assemblies of solids in the simulation of spouted beds. The model treated the kinetic and frictional stresses of particles additively. Using the TFM method embedded in the commercial CFD simulation package Fluent, Du[12,13]described the influences of the drag coefficient correlations, frictional stress, maximum packing limit and coefficient of restitution of particles on the CFD simulation of spouted beds.

    The TFM approach is more feasible for practical application to complex multiphase flows, however, it does not recognize the discrete character of the solid phase, and there has not yet been a quantitative analysis to assess multi-particle microstructures. The DEM/DPM approach offers a more natural way to simulate the systems of spouted bed with complex behavior. Several attempts have been made to model spouted beds using this approach[14-18]. One of the challenges confronting the solution of spouted bed is how to handle the convergence problem induced by the porosity variation. Additionally, one should also pay attention to the boundary condition at the conical surface for the V-shape spouted beds. Several researchers have developed the DEM simulations of a conical-base spouted bed under a regular grid system[19-22]. The accuracy of the simulations will not be guaranteed because additional closure equations are required for their boundary conditions.

    In this article, an efficient DEM-CFD model is developed for the spouted beds. The model is incorporated into the commercial Fluent console with a method described by Wu[23,24]. The objective of the present work is to extend the previous simulation techniques under regular grid system to an unstructured mesh system. An advantage of our approach is that it can minimize codes modifications to adapt to spouted beds of arbitrary shape.

    2. Governing equations

    2.1Particle motion

    The motion of each individual particle in the system can be described by Newtonian second law of motion. Thus, at instantt, the translational and rotational motions of particleiwith massmiand volumeViare governed by

    wherefciis the particle-particle contact force,βthe inter-phase momentum transfer coefficient,Tithe summation of torque caused by the tangential components of the contact force, andIi, andupiandωpiare the moment of inertia, linear velocity and angular velocity, respectively, of the particle. The forces on the right side of Eq.(1) are respectively due to the pressure gradient, drag, inter-particle contact forces and gravity.

    2.2Fluid motion

    The continuity and momentum equations for the fluid motion are based on local mean variables, given as

    whereuf,fρandεare the fluid velocity, density and the void fraction, respectively,τfis the viscous stress tensor which is assumed to obey the general law for a Newtonian fluid:

    where the bulk viscosityfλcan be set to zero for gases.

    The interaction between the gas phase and the particles is achieved via the coupling termSp, which is computed from

    where ΔVrepresents volume of the mesh where the particles are located. The distribution functionδlocally distributes the reaction force acting on the gas-phase to the Eulerian grid. When the volume of the smallest computational cell for the fluid is much larger than the volume of a particle, the mapping of properties from the Lagrangian particle position to the Eulerian computational grid and vice versa can be done in a straightforward manner through using the volume-weighing techniques[25].

    2.3Momentum exchange coefficient

    A proper drag model for the description of the momentum exchange coefficientβis vital for an adequate description of fluidized beds. Several drag models have been reported in literature. The drag model that is used most frequently in discrete particle models is a combination of the Ergun equation, originally developed for packed beds, at low porosities (ε<0.8):

    and the Wen-Yu relation at high porosities (ε>0.8):

    whereCdis the drag coefficient for an isolated spherical particle given by Schiller and Naumann:

    2.4Inter-particle collisions

    Various types of contact relations are available to describe the interaction between particles. The simplest contact model is the linear contact law in which the spring stiffness is a constant. The nonlinear contact model, an improvement over the linear law, can be made by considering the Hertz theory to obtain the force-deformation relation and is used in this study.

    The total contact force and torque acting on particleiin Eqs.(1) and (2) are the summation of forces due to individual neighborjand can be decomposed into their normal (fcn,ij) and tangential (fct,ij) components:

    whereRiis the radius of the particle,nijis the unit normal vector between particleiandj.

    The equations for forces calculation of the nonlinear contact model are given as follows

    Normal force:

    In whichδnis the overlap of two particles andδtis the displacement in the tangential direction. The spring coefficientsknandktare calculated from the following equations based on the Hertz and MD contact theory:

    whereEsandsσare Young’s modulus and Poisson’s ratio for the solid, respectively.Gsis the shear modulus related to Young’s modulus by

    The damping coefficientsnηandtηare determined from the method of Tanaka, given as

    whereαis a coefficient related to the restitution coefficient.

    3. Numerical strategy

    The commercial CFD package Fluent, a powerful tool to solve physical flows with complex domains, is chosen as our simulation platform. It offers a robust Algebraic Multi-Grid (AMG) solver, optional pressure-velocity coupling algorithms and discretization schemes. The UDFs provided by Fluent allows one to add customized features into the console. A limitation of a normal UDF development of the DPM was showed by Wu[23]and a re-arrangement of the flow governing equations was issued to overcome this limitation. Here we use the similar equations re-arrangement with UDF implementation in our DEM-CFD simulation showed below.

    If the gas density is assumed as a constant or suffered a subtle change, the continuity equation Eq.(3) can be re-organized as

    The term on the right hand side of Eq.(18) represents a mass source due to the porosity variation in time and space caused by the solid phase.

    The momentum Eq.(4) is handled with a distinct similarity showed as follows:

    We can see that source term Eq.(21) of the re-arranged momentum equation include contributions from the variation of porosity, effects of additional viscous force due to non-uniform distribution of porosity, and contribution from the drag between two phases. The effect of viscous force is small compared with the other two parts and thus can be ignored.

    It can be seen that the governing equations of two-phase flow may be reduced to those of single-phase with adding both mass and momentum source terms related to the porosity distribution and variation. Therefore a straightforward UDF could be incorporated into the Fluent console.

    One may note that the source term Eq.(21) of the momentum equations should be decomposed into a linearized form to enhance the stability of solution and help to raise convergence rates as follows:

    The computational strategy used for our DEM-CFD model is displayed in Fig.1. This figure shows a flow chart of the different modules that constitute the model. The porosity, gradient of porosity, and drag coefficient should be prepared before the solution of the governing equations of the gas phase starts. With the computed gas flow field, a DEM module is performed to update the properties of each individual particle.

    Fig.1 Flow chart of improved DEM-CFD model computation

    4. Validation

    In order to show the applicability of our improved DEM-CFD model to the spouted beds with irregular boundaries, a common type of V-shape is considered here. We perform a two-dimensional simulation of the experiment conducted by Zhao[18]. The computed region is filled with a number of 894 unstructured elements. The gas velocity is significant between the central spout region and the annular dense region in a spouted bed. The Saffman lift force due to large gas velocity gradient should not be neglected and is calculated by the Mei empirical fit

    The Magnus lift force due to the velocity difference between the different sides of the particle may be also taken into account and is calculated as follows[26]:

    Table 1 Parameters used for the present simulation

    Initially, all particles with an equal diameter are randomly positioned in the domain and allowed to fall down only under gravity. A stable packing with a static height of 100 mm can be attained after sufficiently long time. The packing configuration is finally used as the initial input data for our simulation. The parameters chosen for the present simulation are provided in Table 1.

    Fig. 2 Time series of bed pressure drop

    The residual of the computation will decrease to an order of 10-4after 30 iterations in each flow time step. The convergence history demonstrates a good stability. Figure 2 shows the result of the bed pressure drop varying with time. Two distinct regions can be identified: the start-up (t<0.7s) and stable fluidization stages. Compared with the bed pressure drop at the stable stage, a much higher value is detected at the start-up region because the need to overcome the inter-particle locking and friction. Figure 3 is a plot of the particles distribution at the start-up stage. The particles are pushed to both laterals and a bubble forms at the center having a shape of the domain. When the lateral particles slide along the V-shape wall and back to the bottom of the bed, the stable fluidization stage follows. An oscillation cycle period of 130 ms-150 ms can be identified from the second stage in Fig.2, a little shorter than that of 150 ms-160 ms observed in the experiment[18].

    Fig. 3 Particles distribution at the start-up stage

    Typical flow pattern of particles at different time in the conical-base spouted bed are showed in Fig.4. Three distinct characterized regions, i.e., the spout, annulus and fountain flow regions, can be clearly identified. In a stable flow stage, a “neck” marked with dense particles can be found in the central spout area. The neck starts at the zone near the inlet, moves upwards with the incoming gas and finally disappears at the end of the spout. The particles in the neck region move with a highest speed compared to those in other regions. They appear as a group instead of individual particles. As the neck moves upwardg, additional particles from the annulus can be entrained and make the neck grow progressively denser. The spout becomes almost “choked” when they approach the end of the spout. Finally the choked particles will scatter in an axial direction like an explosion. The patterns of particles flow described above agree well with the experimental observations by Zhao[18].

    Figure 5(a) indicates a comparison of longitudinal distribution of particle vertical velocity on the spout midline to the experiment and the simulation by Zhao[18]. It can be seen that the particles entrained from the annulus near the inlet accelerate in a short time. The maximum particle vertical velocity evaluated in this study is 1.1 m/s, a bit higher than that in the experiment. Then particles decelerate gradually in the fountain zone. Our simulation evaluates a much higher particle vertical velocity in the fountain region and particles thus reach a larger maximum altitude of 180 mm, compared to 155 mm of the experimental observation. This may be due to the coarse evaluation of the real porosity with the 2-D to 3-D transformed correlation showed below

    Hence underestimation of the porosity will cause the drag over-predicted with the Gidspow empirical correlation. Furthermore, the trend of the particle vertical velocity curve of our simulation is quite similar to that of the simulation performed with a three-dimensional DPM method by Wu[23].

    A comparison of the lateral profile of particle vertical velocity in the spout region between the simulations and experiments at various bed levels is showed in Fig.5(b). The simulations agree well with the experiments at all bed heights.

    Fig. 4 Flow patterns of particles in conical-base spouted bed

    Fig.5 Distribution of particle vertical velocities in the spout

    Figure 6(b) outlines the experimental spout borders where vertical particle velocity is zero. The spout width of this simulation yielded from both the borders is larger than that of the experiments, as showed in Fig.6(a). The largest difference, located at the upper end of the spout, is approximately 15 mm. Figure 6(a) also shows the time-average particle velocity vectors. It can be seen that the particle velocity magnitude in the spout is quite large, about 9 times of that in the annulus, which also well agreeswith the experimental observation.

    Fig.6 Spout contour and time-averaged flow fields of particles in conical-base spouted bed

    5. Conclusion

    An efficient DEM-CFD model for spouted beds has been developed by a combination of the discrete element method and a set of re-organized governing equations for the gas phase. The flows of two phases are solved by the Fluent package with a UDF implementation under an unstructured mesh system. The effectiveness of the present model is demonstrated through a simulation of particle motion and gas flow pattern in a two-dimensional conical-based spouted bed. The numerical simulation shows that the computational procedure is of good stability and convergence. The results are compared with measurements reported in literature and also with other researchers’ simulation results. The characteristic particle flow patterns and spouted-bed behaviors, such as annulus, spout and fountain, are reproduced in our simulation. The present investigation predicts a similar oscillation cycle period to the measurement. Particle velocity profiles in the spout and annulus are found to agree with the experimental observations, but a larger value for those in the fountain region. The spout width identified by our simulation is a bit larger than that in the experiment.

    Acknowledgement

    The authors wish to thank Dr. Wu Chun-liang of Guangdong Ocean University for useful discussions.

    [1] HUILIN L., YONGLI S. and YANG L. et al. Numerical simulations of hydrodynamic behaviour in spouted beds[J].Chemical Engineering Research and Design,2001, 79(5): 593-599.

    [2] WANG Li-yang, ZHENG Zhi-chu and WU Ying-xiang et al. Numerical and experimental study on liquid-solid flow in a hydrocyclone[J].Journal of Hydrodynamics,2009, 21(3): 408-414.

    [3] WU Chun-liang, ZHAN Jie-min. Numerical prediction of particle mixing behavior in a bubbling fluidized bed[J].Journal of Hydrodynamics, Ser. B,2007, 19(3): 335-341.

    [4] XIE Ming-liang, ZHOU Huai-chun and ZHANG Yindi. Hydrodynamics stability of bickley jet with particle laden flow[J].Journal of Hydrodynamics,2009, 21(5): 608-613.

    [5] ZHANG Jin-feng, ZHANG Qing-he. Hydrodynamics of fractal flocs during settling[J].Journal of Hydrodynamics,2009, 21(3): 347-351.

    [6] DUARTE C. R., MURATA V. V. and BARROZO M. A. S. A study of the fluid dynamics of the spouted bed using CFD[J].Brazilian Journal of Chemical Engineering,2005, 22(2): 263-270.

    [7] GRYCZKA O., HEINRICH S. and DEEN N. G. et al. Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus[J].Chemical Engineering Science,2009, 64(14): 3352-3375.

    [8] WANG Z. G., BI H. T. and LIM C. J. Numerical simulations of hydrodynamic behaviors in conical spouted beds[J].China Particuology,2006, 4(3-4): 194-203.

    [9] WU Z. H., MUJUMDAR A. S. CFD modeling of the gas–particle flow behavior in spouted beds[J].Powder Technology,2008, 183(2): 260-272.

    [10] HUILIN L., YURONG H. and WENTIE L. et al. Computer simulations of gas–solid flow in spouted beds using kinetic–frictional stress model of granular flow[J].Chemical Engineering Science,2004, 59(4): 865-878.

    [11] SHUYAN W., XIANG L. and HUILIN L. et al. Numerical simulations of flow behavior of gas and particles in spouted beds using frictional-kinetic stresses model[J].Powder Technology,2009, 196(2): 184-193.

    [12] DU W., BAO X. and XU J. et al. Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations[J].Chemical Engineering Science,2006, 61(5): 1401-1420.

    [13] DU W., BAO X. and XU J. et al. Computational fluid dynamics (CFD) modeling of spouted bed: Influence of frictional stress, maximum packing limit and coefficient of restitution of particles[J].Chemical Engineering Science,2006, 61(14): 4558-4570.

    [14] LINK J. M., CUYPERS L. A. and DEEN N. G. et al. Flow regimes in a spout–fluid bed: A combined experimental and simulation study[J].Chemical Engineering Science,2005, 60(13): 3425-3442.

    [15] TAKEUCHI S., WANG S. and RHODES M. J. Discrete element study of particle circulation in a 3-D spouted bed[J].Chemical Engineering Science,2005, 60(5): 1267-1276.

    [16] TAKEUCHI S., WANG S. and RHODES M. Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system[J].Chemical Engineering Science,2004, 59(17): 3495-3504.

    [17] ZHAO X. L., LI S. Q. and LIU G. Q. et al. Flow patterns of solids in a two-dimensional spouted bed with draft plates: PIV measurement and DEM simulations[J].Powder Technology,2007, 183(1): 79-87.

    [18] ZHAO X. L., LI S. Q. and LIU G. Q. et al. DEM simulation of the particle dynamics in two-dimensional spouted beds[J].Powder Technology,2008, 184(2): 205-213.

    [19] KAWAGUCHI T., SAKAMOTO M. and TANAKA T. et al. Quasi-three-dimensional numerical simulation of spouted beds in cylinder[J].Powder Technology,2000, 109(1-3): 3-12.

    [20] LIMTRAKUL S., BOONSRIRAT A. and VATANATHAM T. DEM modeling and simulation of a catalytic gas–solid fluidized bed reactor: A spouted bed as a case study[J].Chemical Engineering Science,2004, 59(22-23): 5225-5231.

    [21] SWASDISEVI T., TANTHAPANICHAKOON W. and CHARINPANITKUL T. et al. Prediction of gas-particle dynamics and heat transfer in a two-dimensional spouted bed[J].Advanced Powder Technology,2005, 16(3): 275-293.

    [22] ZHONG W., XIONG Y. and YUAN Z. et al. DEM simulation of gas–solid flow behaviors in spout-fluid bed[J].Chemical Engineering Science,2006, 61(5): 1571-1584.

    [23] WU C. L., BERROUK A. S. and NANDAKUMAR K. Three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh[J].Chemical Engineering Journal,2009, 152(2-3): 514-529

    [24] WU C. L., ZHAN J. M. and LI Y. S. et al. Dense particulate flow model on unstructured mesh[J].Chemical Engineering Science,2006, 61(17): 5726-5741.

    [25] DEEN N. G., Van SINT ANNALAND M. and Van Der HOEF M. A. et al. Review of discrete particle modeling of fluidized beds[J].Chemical Engineering Science,2007, 62(1-2): 28-44.

    [26] MICHAELIDES E.Particles, bubbles and drops: Their motion, heat and mass transfer[M]. Singapore: World Scientific Publish Co. Inc., 2006.

    September 23, 2009, Revised March 30, 2010)

    * Biography: RONG Liang-wan (1980-), Male, Ph. D.

    ZHAN Jie-min,

    E-mail: stszjm@mail.sysu.edu.cn

    2010,22(3):351-359

    10.1016/S1001-6058(09)60064-0

    人妻少妇偷人精品九色| 国产色婷婷99| 麻豆乱淫一区二区| 免费观看a级毛片全部| 成人手机av| 一级爰片在线观看| 色婷婷久久久亚洲欧美| av又黄又爽大尺度在线免费看| 国产一区二区三区综合在线观看 | 搡女人真爽免费视频火全软件| 亚洲,欧美,日韩| 欧美 日韩 精品 国产| 亚洲精品乱码久久久久久按摩| 一级毛片aaaaaa免费看小| 黄色视频在线播放观看不卡| 又粗又硬又长又爽又黄的视频| 亚洲欧美精品自产自拍| 80岁老熟妇乱子伦牲交| 亚洲国产精品国产精品| 午夜福利影视在线免费观看| √禁漫天堂资源中文www| 免费人妻精品一区二区三区视频| 青春草视频在线免费观看| 亚洲精品第二区| 中文字幕最新亚洲高清| 边亲边吃奶的免费视频| 亚洲三级黄色毛片| 一本大道久久a久久精品| 桃花免费在线播放| 色网站视频免费| 国产欧美日韩一区二区三区在线 | 中文字幕免费在线视频6| 观看美女的网站| 午夜av观看不卡| 成人免费观看视频高清| 嘟嘟电影网在线观看| 午夜91福利影院| 桃花免费在线播放| a级毛片在线看网站| 亚洲在久久综合| 欧美丝袜亚洲另类| 久久午夜综合久久蜜桃| 日韩中字成人| 国产精品麻豆人妻色哟哟久久| 校园人妻丝袜中文字幕| 街头女战士在线观看网站| 国产在线视频一区二区| 久久久久久久久久久丰满| 国产在视频线精品| 美女国产视频在线观看| 成年人免费黄色播放视频| 18禁观看日本| 99久国产av精品国产电影| 色哟哟·www| 国产一区二区三区av在线| 99国产综合亚洲精品| 新久久久久国产一级毛片| 丝袜脚勾引网站| 久久久精品94久久精品| 极品人妻少妇av视频| 全区人妻精品视频| 国产淫语在线视频| 在线亚洲精品国产二区图片欧美 | 涩涩av久久男人的天堂| 女性被躁到高潮视频| 黄色怎么调成土黄色| 人人妻人人澡人人看| 国产有黄有色有爽视频| 国产亚洲av片在线观看秒播厂| 免费日韩欧美在线观看| 色视频在线一区二区三区| 国产精品偷伦视频观看了| 国产精品一区二区在线观看99| 一个人免费看片子| 亚洲欧美日韩另类电影网站| 91精品伊人久久大香线蕉| 国产亚洲欧美精品永久| 这个男人来自地球电影免费观看 | 午夜福利视频在线观看免费| 在现免费观看毛片| 激情五月婷婷亚洲| 制服诱惑二区| 天堂中文最新版在线下载| 80岁老熟妇乱子伦牲交| 欧美 日韩 精品 国产| 激情五月婷婷亚洲| 久久久国产精品麻豆| 亚洲欧美清纯卡通| 国产精品久久久久久精品电影小说| 国产淫语在线视频| 婷婷色麻豆天堂久久| 又黄又爽又刺激的免费视频.| 黄色视频在线播放观看不卡| 日本猛色少妇xxxxx猛交久久| freevideosex欧美| 国产成人精品福利久久| 中文字幕制服av| 免费观看的影片在线观看| 亚洲国产欧美在线一区| 国产一区二区三区av在线| 大陆偷拍与自拍| 高清视频免费观看一区二区| 丁香六月天网| 纯流量卡能插随身wifi吗| 最近2019中文字幕mv第一页| 狂野欧美激情性xxxx在线观看| 国产一区二区三区av在线| 亚洲成人av在线免费| 热99久久久久精品小说推荐| 亚洲人成网站在线播| 在线免费观看不下载黄p国产| 亚洲av电影在线观看一区二区三区| 少妇人妻久久综合中文| 国产成人精品无人区| 国产探花极品一区二区| 欧美亚洲日本最大视频资源| 丝袜脚勾引网站| 午夜老司机福利剧场| 黄色怎么调成土黄色| 一级a做视频免费观看| 亚洲av男天堂| 成人国产麻豆网| 欧美精品一区二区免费开放| 欧美亚洲 丝袜 人妻 在线| 婷婷色麻豆天堂久久| 国产精品 国内视频| 男的添女的下面高潮视频| 久久99一区二区三区| 精品国产露脸久久av麻豆| 中国美白少妇内射xxxbb| 国产av一区二区精品久久| 一级爰片在线观看| 黑人巨大精品欧美一区二区蜜桃 | 午夜福利影视在线免费观看| 嫩草影院入口| av国产精品久久久久影院| 少妇的逼好多水| 99热网站在线观看| 亚洲欧洲国产日韩| av免费观看日本| 街头女战士在线观看网站| 美女主播在线视频| av播播在线观看一区| 一级,二级,三级黄色视频| 国产有黄有色有爽视频| 亚洲成色77777| 少妇高潮的动态图| 大片免费播放器 马上看| 最近中文字幕高清免费大全6| √禁漫天堂资源中文www| 久久久久视频综合| 日本wwww免费看| 日韩伦理黄色片| 日本色播在线视频| 国产精品一国产av| 91午夜精品亚洲一区二区三区| 国产有黄有色有爽视频| .国产精品久久| 久久鲁丝午夜福利片| 少妇被粗大的猛进出69影院 | 亚洲欧洲日产国产| 免费不卡的大黄色大毛片视频在线观看| 午夜激情久久久久久久| 美女福利国产在线| 国产高清国产精品国产三级| 国产精品女同一区二区软件| 狂野欧美激情性xxxx在线观看| 久久久精品94久久精品| 国产成人免费观看mmmm| 亚洲国产精品专区欧美| 成人国产av品久久久| 男女高潮啪啪啪动态图| 国产一区亚洲一区在线观看| 国产成人91sexporn| 最新中文字幕久久久久| 一级a做视频免费观看| 色吧在线观看| 色吧在线观看| 国产男人的电影天堂91| 亚洲精品色激情综合| 久久久久视频综合| 亚洲av男天堂| 十分钟在线观看高清视频www| 最近最新中文字幕免费大全7| 精品久久蜜臀av无| 大码成人一级视频| 自拍欧美九色日韩亚洲蝌蚪91| 黑人高潮一二区| 丰满乱子伦码专区| 9色porny在线观看| 国产精品女同一区二区软件| 久久人人爽av亚洲精品天堂| 成人影院久久| 免费看光身美女| 精品少妇黑人巨大在线播放| 赤兔流量卡办理| 久久国产精品男人的天堂亚洲 | 国产精品国产三级国产专区5o| av不卡在线播放| 色婷婷久久久亚洲欧美| 一本久久精品| 免费观看的影片在线观看| 美女内射精品一级片tv| 国产黄片视频在线免费观看| 久久久久人妻精品一区果冻| 亚洲情色 制服丝袜| av在线播放精品| av在线播放精品| 热re99久久国产66热| 好男人视频免费观看在线| 日日爽夜夜爽网站| 国产综合精华液| 精品少妇久久久久久888优播| videossex国产| av在线播放精品| 成人18禁高潮啪啪吃奶动态图 | 黄色怎么调成土黄色| 亚洲情色 制服丝袜| 中文字幕最新亚洲高清| 国产精品免费大片| 一级片'在线观看视频| 七月丁香在线播放| 亚洲国产av影院在线观看| 少妇丰满av| 亚洲色图 男人天堂 中文字幕 | 男女无遮挡免费网站观看| 99久久人妻综合| 中文字幕制服av| 欧美亚洲日本最大视频资源| 免费黄色在线免费观看| 国产精品99久久99久久久不卡 | 有码 亚洲区| 成人国语在线视频| 七月丁香在线播放| 极品人妻少妇av视频| 大码成人一级视频| 天堂8中文在线网| 欧美日韩国产mv在线观看视频| 人妻人人澡人人爽人人| 欧美日韩av久久| 国产成人aa在线观看| 麻豆精品久久久久久蜜桃| 亚洲成人一二三区av| 另类精品久久| 欧美亚洲日本最大视频资源| 国产乱人偷精品视频| 丁香六月天网| 日本欧美视频一区| 亚洲精华国产精华液的使用体验| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人精品一,二区| 午夜影院在线不卡| 国产av一区二区精品久久| 国产成人一区二区在线| 精品酒店卫生间| 亚洲欧美精品自产自拍| 狂野欧美激情性xxxx在线观看| 99九九线精品视频在线观看视频| 国产成人免费无遮挡视频| 99九九在线精品视频| 99久国产av精品国产电影| 久久久精品区二区三区| 欧美日韩亚洲高清精品| 精品人妻在线不人妻| videosex国产| 日韩亚洲欧美综合| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 免费av中文字幕在线| 秋霞在线观看毛片| 欧美精品人与动牲交sv欧美| 亚洲四区av| 国产成人精品福利久久| 日韩成人av中文字幕在线观看| 免费少妇av软件| 精品国产乱码久久久久久小说| 老司机影院成人| .国产精品久久| 久久久久久久精品精品| 欧美变态另类bdsm刘玥| 国产男女内射视频| 亚洲三级黄色毛片| 国产男人的电影天堂91| 伊人久久国产一区二区| 视频区图区小说| 狂野欧美白嫩少妇大欣赏| 黄色一级大片看看| av又黄又爽大尺度在线免费看| 国产 精品1| 国产探花极品一区二区| 亚洲伊人久久精品综合| 亚洲美女搞黄在线观看| 最新中文字幕久久久久| 中文字幕制服av| 大香蕉久久成人网| 国产精品久久久久久精品电影小说| 久久国产精品大桥未久av| 久久青草综合色| 国产精品国产av在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美亚洲二区| 日韩精品有码人妻一区| 成人二区视频| 国产一区二区三区av在线| 国产精品99久久99久久久不卡 | 曰老女人黄片| 国产av精品麻豆| 亚洲精品av麻豆狂野| 蜜桃在线观看..| 国产成人精品婷婷| 国产免费又黄又爽又色| 一本—道久久a久久精品蜜桃钙片| 久久久久久久国产电影| av福利片在线| 亚洲国产欧美日韩在线播放| 成人手机av| 狂野欧美激情性bbbbbb| 日韩av不卡免费在线播放| 春色校园在线视频观看| 在线天堂最新版资源| 中文字幕av电影在线播放| 午夜免费男女啪啪视频观看| 男女国产视频网站| 一级毛片aaaaaa免费看小| 色吧在线观看| 乱码一卡2卡4卡精品| 日本wwww免费看| 91精品国产九色| 亚洲一区二区三区欧美精品| 在线免费观看不下载黄p国产| 人妻夜夜爽99麻豆av| av国产久精品久网站免费入址| 十八禁网站网址无遮挡| 天美传媒精品一区二区| 久久久久久久久久成人| 99九九线精品视频在线观看视频| 久久久精品免费免费高清| 国产欧美另类精品又又久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 亚洲国产av影院在线观看| 免费看av在线观看网站| 亚洲av国产av综合av卡| 老司机亚洲免费影院| 欧美最新免费一区二区三区| 国产免费视频播放在线视频| 午夜福利,免费看| 日韩大片免费观看网站| 亚洲图色成人| av福利片在线| 久久久久精品性色| 女人久久www免费人成看片| 黑人猛操日本美女一级片| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 亚洲欧美日韩另类电影网站| 中文天堂在线官网| 我要看黄色一级片免费的| 欧美日本中文国产一区发布| 亚洲国产精品一区三区| 国产精品不卡视频一区二区| 黑人猛操日本美女一级片| 国产在线一区二区三区精| 亚洲美女黄色视频免费看| 国产成人aa在线观看| 高清黄色对白视频在线免费看| 卡戴珊不雅视频在线播放| 国产不卡av网站在线观看| 中文精品一卡2卡3卡4更新| 乱人伦中国视频| 久久精品国产自在天天线| 三级国产精品片| 国产精品久久久久久久电影| 精品少妇内射三级| 国产精品一区二区在线观看99| 天美传媒精品一区二区| 亚洲精品一二三| 自拍欧美九色日韩亚洲蝌蚪91| 极品少妇高潮喷水抽搐| 最新中文字幕久久久久| 18禁动态无遮挡网站| 亚洲av国产av综合av卡| 亚洲欧美一区二区三区国产| 人成视频在线观看免费观看| 亚洲欧美中文字幕日韩二区| 人妻夜夜爽99麻豆av| 一区二区三区乱码不卡18| 看免费成人av毛片| 亚洲欧美日韩卡通动漫| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 欧美老熟妇乱子伦牲交| 丰满迷人的少妇在线观看| 亚洲精品一二三| 成人漫画全彩无遮挡| 人妻一区二区av| 欧美性感艳星| 欧美日本中文国产一区发布| 亚洲高清免费不卡视频| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 国产女主播在线喷水免费视频网站| av不卡在线播放| 午夜福利在线观看免费完整高清在| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 51国产日韩欧美| 亚洲精品乱码久久久久久按摩| 最近的中文字幕免费完整| 久久久久久久久久久久大奶| 少妇熟女欧美另类| 日韩中字成人| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 久久久久久久亚洲中文字幕| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 久久综合国产亚洲精品| 考比视频在线观看| 国产综合精华液| 国产成人freesex在线| av在线播放精品| 看十八女毛片水多多多| 丝袜美足系列| 亚洲欧美一区二区三区黑人 | 丰满少妇做爰视频| 欧美日韩一区二区视频在线观看视频在线| av女优亚洲男人天堂| 亚洲av中文av极速乱| 韩国av在线不卡| 国产精品成人在线| 亚洲精品国产av蜜桃| 一区二区av电影网| 日韩视频在线欧美| 亚洲精品国产色婷婷电影| 国产成人一区二区在线| 久久 成人 亚洲| 久久国产精品大桥未久av| 一级毛片我不卡| 男女免费视频国产| 一边摸一边做爽爽视频免费| 亚洲精品日韩av片在线观看| 精品人妻一区二区三区麻豆| 亚洲综合色网址| 久久久精品免费免费高清| 99九九线精品视频在线观看视频| 少妇高潮的动态图| 插阴视频在线观看视频| 成人毛片a级毛片在线播放| 免费黄色在线免费观看| av免费观看日本| 日日啪夜夜爽| 午夜激情久久久久久久| 日日啪夜夜爽| 男女边吃奶边做爰视频| 99re6热这里在线精品视频| 国产免费视频播放在线视频| 成年美女黄网站色视频大全免费 | 五月伊人婷婷丁香| av黄色大香蕉| 国产国拍精品亚洲av在线观看| 国产精品国产av在线观看| 精品少妇久久久久久888优播| 色94色欧美一区二区| 日韩欧美精品免费久久| 久久久久久久久久久久大奶| 91精品国产九色| 午夜免费观看性视频| 日韩制服骚丝袜av| videos熟女内射| 九色成人免费人妻av| 日韩成人伦理影院| 卡戴珊不雅视频在线播放| 国产精品久久久久久久电影| 春色校园在线视频观看| 日韩av在线免费看完整版不卡| 亚洲av综合色区一区| 国产精品秋霞免费鲁丝片| 夜夜爽夜夜爽视频| 亚洲av电影在线观看一区二区三区| 国产在线视频一区二区| 夜夜骑夜夜射夜夜干| 视频在线观看一区二区三区| 亚洲精品中文字幕在线视频| 五月伊人婷婷丁香| 国产一区有黄有色的免费视频| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 91久久精品国产一区二区成人| 狠狠婷婷综合久久久久久88av| 亚洲人与动物交配视频| 欧美人与性动交α欧美精品济南到 | 伊人久久精品亚洲午夜| 婷婷色综合www| 亚洲一区二区三区欧美精品| 99热这里只有精品一区| 2018国产大陆天天弄谢| 一个人看视频在线观看www免费| 精品久久久精品久久久| 精品人妻偷拍中文字幕| 中文字幕制服av| 啦啦啦在线观看免费高清www| 热99久久久久精品小说推荐| 午夜福利视频精品| 母亲3免费完整高清在线观看 | 国产综合精华液| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区国产| 3wmmmm亚洲av在线观看| 青春草视频在线免费观看| 黄片播放在线免费| 狠狠婷婷综合久久久久久88av| 亚洲五月色婷婷综合| 久久精品国产自在天天线| 国产成人精品一,二区| 国产综合精华液| 九九在线视频观看精品| 亚洲欧美一区二区三区国产| 看非洲黑人一级黄片| 亚洲第一av免费看| 精品少妇久久久久久888优播| 精品国产露脸久久av麻豆| 久久精品夜色国产| av福利片在线| 男人添女人高潮全过程视频| 亚洲色图综合在线观看| 亚洲第一区二区三区不卡| 国产乱来视频区| 亚洲av.av天堂| 少妇的逼水好多| 久久97久久精品| 高清黄色对白视频在线免费看| 婷婷成人精品国产| 又粗又硬又长又爽又黄的视频| 亚洲,欧美,日韩| 插阴视频在线观看视频| 中文欧美无线码| 日本91视频免费播放| 一级毛片电影观看| 久久久国产精品麻豆| 亚洲人与动物交配视频| 少妇人妻 视频| 秋霞伦理黄片| 91久久精品国产一区二区成人| av网站免费在线观看视频| 国产欧美日韩一区二区三区在线 | 欧美另类一区| 成人免费观看视频高清| 亚洲欧美日韩另类电影网站| 亚洲国产精品专区欧美| 少妇的逼水好多| 毛片一级片免费看久久久久| 亚洲av中文av极速乱| 日日啪夜夜爽| 搡老乐熟女国产| 全区人妻精品视频| 少妇 在线观看| 国产伦精品一区二区三区视频9| 青春草视频在线免费观看| 国产黄片视频在线免费观看| 午夜福利网站1000一区二区三区| 亚洲精品456在线播放app| 中文精品一卡2卡3卡4更新| 亚洲国产日韩一区二区| 欧美精品亚洲一区二区| 亚洲欧美成人综合另类久久久| 国产高清三级在线| 最近中文字幕高清免费大全6| 天天操日日干夜夜撸| 成年av动漫网址| 精品一区在线观看国产| 国产一区有黄有色的免费视频| 在线观看国产h片| 欧美最新免费一区二区三区| 韩国av在线不卡| 免费不卡的大黄色大毛片视频在线观看| 色5月婷婷丁香| 高清欧美精品videossex| 午夜av观看不卡| 成年女人在线观看亚洲视频| 91精品国产国语对白视频| 亚洲精品乱码久久久久久按摩| av在线app专区| 欧美日韩视频高清一区二区三区二| 免费观看在线日韩| 国产精品蜜桃在线观看| 丰满乱子伦码专区| 色网站视频免费| 热re99久久精品国产66热6| 大片电影免费在线观看免费| 精品酒店卫生间| 久久精品夜色国产| 亚洲精品乱久久久久久| 国产探花极品一区二区| 亚洲欧美中文字幕日韩二区| 亚洲怡红院男人天堂| 在线播放无遮挡| 春色校园在线视频观看| 99热国产这里只有精品6| 大又大粗又爽又黄少妇毛片口| 一二三四中文在线观看免费高清| 亚洲av欧美aⅴ国产| 高清在线视频一区二区三区| 天美传媒精品一区二区| 91久久精品电影网| 97在线人人人人妻| 久久精品久久精品一区二区三区| 美女大奶头黄色视频| 精品人妻一区二区三区麻豆| 色视频在线一区二区三区| 久久热精品热| 十八禁高潮呻吟视频| 观看美女的网站| 男女啪啪激烈高潮av片| 精品亚洲成a人片在线观看| 国产黄片视频在线免费观看|