• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BROADBAND ROTOR NOISE PREDICTION BASED ON A NEW FREQUENCY-DOMAIN FOUMULATION*

    2010-07-02 01:37:59XIEJianboZHOUQidouFANGBin
    關(guān)鍵詞:納瓦拉酒款南澳

    XIE Jian-bo, ZHOU Qi-dou, FANG Bin

    Department of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China, E-mail: xie_jb@126.com

    BROADBAND ROTOR NOISE PREDICTION BASED ON A NEW FREQUENCY-DOMAIN FOUMULATION*

    XIE Jian-bo, ZHOU Qi-dou, FANG Bin

    Department of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China, E-mail: xie_jb@126.com

    This article studies the broadband noise of a rotor in upstream turbulence. A numerical approach is proposed, based on frequency domain, for predicting rotor broadband noise which requires the aerodynamic sources to be integrated over the actual blade surface rather than over the mean-chord surface. The prediction of the radiated rotor broadband noise due to turbulence is made. This method is validated through a comparison between numerical predictions and measured data, with a reasonable agreement. Noise level directivity shows that the main lobe is located along the rotor axis, while the minimum noise occurs in the direction vertical to the rotor axis.

    acoustics, broadband noise, rotor, frequency-domain formulation

    1. Introduction

    The noise generated by inflow disturbances can result in the radiation of both broadband and discrete tones depending upon of the structure of the turbulence entering the rotor[1]. If the turbulent eddy is long enough to be cut by more than one blade, discrete tones would be generated at the blade passing frequency and higher harmonics[2]. If the eddies are small compared with the dimension of blades, an induced unsteady blade loading would radiate broadband noise to the far field.

    Following the acoustic analogy, the classical approach in aero-acoustics is to represent the acoustic sources as an equivalent distribution of acoustic monopoles, dipoles and quadrupoles[3,4]. The strength of these sources is usually determined either experimentally or analytically. In propeller or rotor problems, the source area of integration is mostly taken to be on the projection disk of the blade mean-chord surface[5-8]. Without due consideration of the actual propeller blade surfaces, significant errorsmay be incurred in this approximation.

    The objective of the present study is to develop a frequency-domain numerical method for predicting broadband noise of rotors in upstream turbulence. With this method, the source integration is performed on the actual blade surface rather than on the projected disk or blade mean-chord surface. Numerical predictions of the broadband noise of a rotor are compared with existing experimental data.

    2. Theory of airfoil broadband noise

    An airfoil with small thickness, chord of 2b and span of 2d is placed in a turbulent incident flow, and the convective velocity is U. Figure 1 shows the geometrical characteristics of the airfoil as well as the calculation reference frame and the observer position. The observation point is located atx =(x1, x2,x3), and the source point is located at y =(y1, y2,y3). The surface pressure fluctuating field is expressed according to the incident turbulent field. Zhou numerically predicted the radiated broadband noise[9], with the following basic formulation

    whereSpprepresents the far field acoustic power spectral density,ρ0is the density of the ambient flows,K1=ω/Uis the wave-number in chordwise direction,K2is the wave-number in spanwise direction,Hprepresents the transfer function between the surface pressure and the radiated sound, andφ33(K1,K2)is the two-dimensional spectrum of the isotropic Von-Karman model.

    Fig.1 Schematic diagram of an airfoil and the reference frame

    Though the theory is for the prediction of airfoil broadband noise in turbulent flows, it can be extend to rotating blades with some simplifications.

    Assuming that the acoustic wavelength is sufficiently small in comparison with the semispand, a simplified expression of Eq.(1) is obtained as

    whereS33(K1) is the one wave-number spectrum of Von-Karman model, which is discussed in detail in Section 3, andHpis the transfer function

    whereg(y1,K1) is the aero-acoustic transfer function between turbulence disturbances and surface pressure, as suggested in Ref.[10]

    I(x,y) in Eq.(3) is the product of unit vector and the derivatives of Green function

    wherenis the normal unit vector pointing inwards from the blade surface, andGω(x,y) is the Fourier transform of Green function[11], which takes the form

    whereE=R+M(y1?x1),μ=k0/β2, andk0=ω/c0is the acoustic wave-number related to the observation frequencyω.

    3. Turbulence model

    Integrating Eq.(10) over spanwise wave-numberK2, the one wave-number spectrum of Von-Karman model can be obtained as

    4. Broadband noise prediction based on frequency-domain formulation

    For a rotor withBblades operating in the turbulent field, we consider a rotating blade segment located at radial distancer0and azimuthal angle?, as shown in Fig.2. The observer is supposed to be in the (X,Y) plane in the positionP(θ,r), whereris the distance between the observation and the rotor center. A local reference frame(x′,y′,z′) is defined wherex′ is in the chordwise direction,y′ in the spanwise direction, andrerepresents the distance between the observer and the source.

    Fig.2 Schematic diagram of a rotor and the local reference frame

    Supposing that the frequency of the source emission in the reference frame fixed at the rotor blade is0ω, and the observed frequency isω, the Doppler factor related to the two frequencies is[15,16]

    whereMrrepresents the tangential Mach number at radial distancer0.

    Since the blade segment rotates in a circular motion and the instantaneous spectrum changes with rotational angle?, it is necessary to perform integration with respect to azimuthal angle?over a circle in applying airfoil broadband noise theory to a rotating blade segment. Taking into account of the Doppler frequency shift, the spectrum due to that particular blade segment is therefore given by

    Substituting the airfoil broadband noise prediction expression Eq.(2) into Eq.(13), and replacing convective velocityUin Eq.(2) with relative velocityat that particular radial distancer0, one obtains

    However, the turbulence intensityand the turbulence length scaleΛuin Von-Karman model of the one wave-number spectrumS33(K1) in Eq.(11) vary with the rotor radius. So the turbulence modelS33(K1) should be included within the area integration. Replacing the area integration with the azimuthal integration, and summing over all blade segments together, the final expression for the broadband noise produced in the far field byBblades takes the form

    whereK1=ω0/is the wave-number in the chordwise direction, and dS(y) represents the aerodynamic sources to be integrated over the actual blade surface.

    5. Comparison between numerical results and measured data

    Fedala and Kouidri experimentally measured the broadband noise of a fan rotor in upstream turbulence[17]. The axial fan is composed of six cambered rotors and a duct-type housing without guide vanes. The section profile of the test rotor is that of NACA 4509, and the other main parameters of the rotor are listed in Table 1.

    Table 1 Main parameters of the rotor

    Fig.3 Radial variation of axial mean velocity

    The experiment was conducted in an anechoic wind tunnel, and the far-field noise level is measured by microphone arrays 2 m away from the rotor center. Hot-wire sensors were employed for measuring the fluctuations of turbulence. The radial variations of axial velocity, turbulence intensityand the turbulence length scaleΛuare shown in Figs.3, 4 and 5, respectively.

    Fig.4 Radial variation of turbulence intensity

    Fig.5 Radial variation of turbulence integral length

    A numerical scheme is developed for the efficient computation of the radiated broadband noise. The rotor blade surface is meshed into triangle elements with a maximum dimension of 8-10 times the minimum acoustic wavelength. Figure 6 shows a pressure-side mesh used to perform the numerical integration required in Eq.(15). The transfer functionHp, therefore, can be expressed as whereNrepresents the total number of elements, and the subscripterefers to theeth element on the blade surface.

    Substituting the axial velocity, turbulence intensityand turbulence integral length scaleinto the rotor broadband noise prediction formula Eq.(15), the far-field radiated noise spectrum and the acoustic level directivity can be computed.

    Fig.6 Mesh for numerical calculation of the rotor, on pressure side

    The comparison between the predicted noise spectrum and the measured one is presented in Fig.7. A comparatively good agreement is seen in the frequency band of 100 Hz to 6000 Hz, with the maximum differences being only 4 dB - 5 dB. For frequencies under 1000 Hz, the predictions are 3 dB -4 dB greater than the measured values. While in the middle frequency band of 1000 Hz to 4000 Hz, the differences are no more than 2 dB approximately. Throughout all frequency bands, the predicted sound pressure level shows the same variation pattern as the measured data. While for frequencies above 6000 Hz, the predictions are much larger than the measured values, which indicates that the turbulence interaction noise is not dominant for high frequencies, so the proposed broadband noise prediction is not valid for high frequencies.

    Fig.7 Comparison between predicted broadband noise spectrum and measured one

    A well-defined axis-symmetric free field acoustic level directivity is shown in Fig.8. (The axis of 0o-180orepresents the rotor axis and the 0odirection is the downstream direction.) An interesting feature of the broadband noise directivity is that the main radiation lobe is located along the rotor axis, while the minimum noise occurs in the direction vertical to the rotor axis.

    Fig.8 Predicted rotor noise directivity

    6. Conclusions

    The broadband rotor noise due to inflow turbulence is predicted based on the airfoil broadband noise theory by applying Doppler frequency shift and integrating over the rotational plane. With the model, as an extension of the airfoil broadband noise theory, the source integration is performed on the actual blade surface.

    The proposed rotor broadband noise prediction model gives results that agree reasonably well with the measured data, especially in low and middle frequency bands. The acoustic level directivity shows that the main lobe is located along the rotor axis, while the minimum noise occurs in the direction vertical to the rotor axis.

    [1] MOSALLEM M. M. Numerical and experimental investigation of beveled trailing edge flow fields[J].Journal of Hydrodynamics,2008, 20(3): 273-279.

    [2] COLONIUS T., LELE S. K. Computational aeroacoustics: Progress on nonlinear problems of sound generation[J].Progress in Aerospace Sciences,2004, 40(14): 345-416.

    [3] ZHU Xi-qing, TANG Deng-hai and SUN Hong-xing et al. Study of low-frequency noise induced by marine propeller[J].Journal of Hydrodynamics, Ser. A,2000, 15(1): 74-81(in Chinese).

    [4] SEOL H., SUH J. C. and LEE S. Development of hybrid method for the prediction of underwater propeller noise[J].Journal of Sound and Vibration,2005, 288(1-2): 345-360.

    酒款亮點(diǎn):這款葡萄酒就叫Let's Drink Cabernet Sauvignon,專(zhuān)門(mén)為喜慶暢飲場(chǎng)合而定制,來(lái)自南澳庫(kù)納瓦拉產(chǎn)區(qū),未經(jīng)過(guò)太多橡木桶陳年,散發(fā)出成熟甜美的黑色李子、黑莓漿果的香氣以香料的氣息,果香充沛,口感柔順,單寧細(xì)膩,適合暢飲及制作圣誕紅酒。

    [5] WOJNO J. P., MUELLER T. J. and BLAKE W. K. Turbulence ingestion noise, Part 1: Experimental characterization of grid-generated turbulence[J].AIAA Journal,2002, 40(1): 16-25.

    [6] WOJNO J. P., MUELLER T. J. and BLAKE W. K. Turbulence ingestion noise, Part 2: Rotor aeroacoustic response to grid-generated turbulence[J].AIAA Journal,2002, 40(1): 26-32.

    [7] HANSON D. B. Broadband noise source studies for a fan with a coupled rotor/stator[C].9th AIAA/CEASAeroaoustics Conference and Exhibit.Hilton Head, South Carolina, USA, 2003.

    [8] POLACSEK C., DESBOIS-LAVERGNE F. Fan interaction noise reduction using a wake generator: Experiments and computational aeroacoustics[J].Journal of Sound and Vibration,2003, 265(4): 725-743.

    [9] ZHOU Qi-dou. Broadband noise prediction of an airfoil or hydrofoil based on a frequency-domain formulation[J].Journal of Hydrodynamics, Ser. A,2003, 18(3): 253-260(in Chinese).

    [10] FARASSAT F. Acoustic radiation from rotating blades-the Kirchhoff method in aeroacoustics[J].Journal of Sound and Vibration,2001, 239(4): 785-800.

    [12] AHMED H., TANAKA N. and TAMAI N. Distributed water balance with river dynamic-diffusive flow routing model[J].Journal of Hydrodynamics,2009, 21(4): 564-572.

    [13] TANG Ke-fan, FRANKE Joerg. Numerical simulation of noise induced by flow around cylinder using the hybrid method with the solutions of NS equation and FW-H integration[J].Chinese Journal of Hydrodynamics,2009, 24(2): 190-199(in Chinese).

    [14] CASPER J., FARASSAT F. Broadband noise predictions based on a new aeroacoustic formulation[C].40th Aerospace Sciences Meeting and Exhibit.Reno, Nevada, USA, 2002.

    [15] FAHY F.Foundations of engineering acoustics[M]. San Diego, California, USA: Academic Press, 2001.

    [16] BUCKINGHAM M. J., GIDDENS E. J. and SIMONET F. Propeller noise from a light aircraft for low-frequency measurements of the speed of sound in a marine sediment[J].Journal of Computational Acoustics,2002, 10(4): 445-464.

    [17] FEDALA D., KOUIDRI S. and REY R. Incident turbulence interaction noise from an axial fan[C].12th AIAA/CEAS Aeroacoustics Conference.Cambridge, Massachusetts, USA, 2006.

    October 29, 2009, Revised March 7, 2010)

    * Biography: XIE Jian-bo (1978-), Male, Ph. D. Candidate

    2010,22(3):387-392

    10.1016/S1001-6058(09)60069-X

    猜你喜歡
    納瓦拉酒款南澳
    2022年度第十四屆金樽獎(jiǎng)終選結(jié)果揭曉
    葡萄酒(2022年12期)2023-01-11 02:38:21
    沙龍貝爾發(fā)布2022年特別酒款Brut Rosé 桃紅香檳創(chuàng)作工筆畫(huà)《虎嗅薔薇圖》
    智族GQ(2022年2期)2022-03-16 03:14:19
    VDP德國(guó)頂尖酒莊聯(lián)盟—鷹標(biāo)
    葡萄酒(2021年8期)2021-10-07 12:12:06
    VDP德國(guó)頂尖酒莊聯(lián)盟—鷹標(biāo)
    葡萄酒(2020年8期)2020-09-08 00:23:37
    量產(chǎn)即賽車(chē)
    越玩越野(2019年4期)2019-09-10 07:22:44
    納瓦拉入市,皮卡的春天來(lái)了嗎?
    納瓦拉推升鄭州日產(chǎn)新高度
    南澳的驕傲
    空中之家(2017年11期)2017-11-28 05:28:17
    難記的名字
    三月三(2017年6期)2017-07-01 18:27:51
    海島尋蹤 南澳海防遺址調(diào)查記
    大眾考古(2015年7期)2015-06-26 08:41:02
    51国产日韩欧美| 国产亚洲欧美精品永久| 国产一区二区在线观看日韩| 国产 一区精品| 免费播放大片免费观看视频在线观看| 午夜av观看不卡| 精品国产乱码久久久久久小说| 在线观看免费日韩欧美大片| 中文天堂在线官网| 国产av码专区亚洲av| 亚洲成色77777| 久久女婷五月综合色啪小说| 精品熟女少妇av免费看| 亚洲伊人色综图| 国产成人a∨麻豆精品| 欧美精品av麻豆av| 国产成人精品婷婷| 一级毛片电影观看| 一级a做视频免费观看| 国产免费现黄频在线看| 成人亚洲欧美一区二区av| 亚洲精品视频女| 久久久久精品久久久久真实原创| 中国三级夫妇交换| 色哟哟·www| 久久99热这里只频精品6学生| av国产久精品久网站免费入址| 日韩一区二区三区影片| 国产日韩欧美在线精品| 久久鲁丝午夜福利片| 亚洲精品aⅴ在线观看| 国产熟女午夜一区二区三区| 亚洲国产精品专区欧美| 国产精品女同一区二区软件| 欧美国产精品va在线观看不卡| 在线观看www视频免费| 亚洲国产欧美日韩在线播放| 亚洲欧美色中文字幕在线| 久久久久久久久久成人| 99精国产麻豆久久婷婷| 欧美xxⅹ黑人| 这个男人来自地球电影免费观看 | 少妇的逼好多水| 黑人高潮一二区| 免费久久久久久久精品成人欧美视频 | 欧美97在线视频| 亚洲精品美女久久久久99蜜臀 | 一级片免费观看大全| 日韩一本色道免费dvd| 欧美日韩综合久久久久久| 高清黄色对白视频在线免费看| 波野结衣二区三区在线| 天天操日日干夜夜撸| 91国产中文字幕| 国产一区二区在线观看av| 黄片无遮挡物在线观看| 男人操女人黄网站| 亚洲综合色惰| 2018国产大陆天天弄谢| www.熟女人妻精品国产 | 男女无遮挡免费网站观看| 赤兔流量卡办理| 九草在线视频观看| 亚洲av电影在线进入| 国产女主播在线喷水免费视频网站| 男女边摸边吃奶| 观看av在线不卡| 久久久久视频综合| 欧美精品av麻豆av| 一二三四中文在线观看免费高清| 色婷婷久久久亚洲欧美| 国产淫语在线视频| 成人毛片60女人毛片免费| 亚洲av福利一区| 99久国产av精品国产电影| 免费黄频网站在线观看国产| 边亲边吃奶的免费视频| 制服人妻中文乱码| 韩国高清视频一区二区三区| 国产精品.久久久| 日韩精品有码人妻一区| 免费人成在线观看视频色| 日本黄大片高清| 精品午夜福利在线看| 久久影院123| 亚洲精品日本国产第一区| videos熟女内射| 精品国产露脸久久av麻豆| 免费高清在线观看视频在线观看| 国产成人精品婷婷| 美国免费a级毛片| 熟女人妻精品中文字幕| 国产精品人妻久久久久久| 婷婷色麻豆天堂久久| 亚洲欧洲精品一区二区精品久久久 | 视频在线观看一区二区三区| 视频中文字幕在线观看| 韩国精品一区二区三区 | 亚洲人与动物交配视频| 中国美白少妇内射xxxbb| 1024视频免费在线观看| 久久午夜综合久久蜜桃| 性色av一级| 精品少妇黑人巨大在线播放| 精品国产一区二区久久| www日本在线高清视频| 青春草视频在线免费观看| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 日本-黄色视频高清免费观看| 少妇的丰满在线观看| 午夜91福利影院| 免费不卡的大黄色大毛片视频在线观看| 亚洲三级黄色毛片| 天天影视国产精品| 免费人成在线观看视频色| 人妻 亚洲 视频| 成人免费观看视频高清| 一级片免费观看大全| 又大又黄又爽视频免费| 久久久国产一区二区| 美女xxoo啪啪120秒动态图| av卡一久久| 国产精品99久久99久久久不卡 | 国产极品粉嫩免费观看在线| 国产亚洲欧美精品永久| 精品少妇内射三级| 啦啦啦啦在线视频资源| h视频一区二区三区| 伦精品一区二区三区| 两性夫妻黄色片 | 日韩在线高清观看一区二区三区| 如日韩欧美国产精品一区二区三区| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 肉色欧美久久久久久久蜜桃| 欧美日韩视频高清一区二区三区二| 中文字幕免费在线视频6| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 丰满饥渴人妻一区二区三| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 999精品在线视频| 久久久久久久久久久免费av| 各种免费的搞黄视频| 欧美日韩av久久| 人人妻人人爽人人添夜夜欢视频| 哪个播放器可以免费观看大片| 久久久国产一区二区| 黑人猛操日本美女一级片| 国产精品 国内视频| 99香蕉大伊视频| 亚洲精品色激情综合| 亚洲高清免费不卡视频| 日韩 亚洲 欧美在线| 免费少妇av软件| 久久av网站| 免费高清在线观看视频在线观看| 啦啦啦在线观看免费高清www| 国产免费一区二区三区四区乱码| 久久人人97超碰香蕉20202| 99国产精品免费福利视频| 这个男人来自地球电影免费观看 | h视频一区二区三区| 在线天堂最新版资源| 欧美日韩视频精品一区| 亚洲情色 制服丝袜| 日韩 亚洲 欧美在线| 日本91视频免费播放| 成人亚洲欧美一区二区av| 日韩精品有码人妻一区| 人人妻人人添人人爽欧美一区卜| 黄色视频在线播放观看不卡| 巨乳人妻的诱惑在线观看| 久久人妻熟女aⅴ| 亚洲综合色网址| 免费观看无遮挡的男女| 亚洲国产欧美日韩在线播放| 捣出白浆h1v1| 免费观看a级毛片全部| 久久久久久久精品精品| 亚洲五月色婷婷综合| 赤兔流量卡办理| 母亲3免费完整高清在线观看 | 亚洲在久久综合| 高清黄色对白视频在线免费看| 久久久久久伊人网av| 99九九在线精品视频| 久久久久久久国产电影| 国产一区二区三区综合在线观看 | 美女视频免费永久观看网站| 午夜视频国产福利| 亚洲第一区二区三区不卡| 国产精品无大码| 晚上一个人看的免费电影| 国产亚洲av片在线观看秒播厂| 久久精品国产亚洲av涩爱| 这个男人来自地球电影免费观看 | 亚洲,欧美,日韩| 亚洲av日韩在线播放| 日韩精品有码人妻一区| 男女国产视频网站| 亚洲精品成人av观看孕妇| 国产亚洲精品第一综合不卡 | 视频中文字幕在线观看| 精品视频人人做人人爽| 搡女人真爽免费视频火全软件| 99久国产av精品国产电影| 精品少妇黑人巨大在线播放| 欧美另类一区| tube8黄色片| 国产黄色免费在线视频| 欧美国产精品va在线观看不卡| 99re6热这里在线精品视频| 亚洲av男天堂| 青春草国产在线视频| 亚洲成色77777| 中文精品一卡2卡3卡4更新| 999精品在线视频| 男女免费视频国产| 免费观看性生交大片5| 久久久久久久亚洲中文字幕| 精品国产一区二区久久| 美女视频免费永久观看网站| 丝袜人妻中文字幕| 一级毛片我不卡| 国产精品人妻久久久久久| 亚洲欧洲国产日韩| a级毛色黄片| 成人亚洲欧美一区二区av| 一级片'在线观看视频| 五月天丁香电影| av女优亚洲男人天堂| 久久影院123| 亚洲,一卡二卡三卡| 性色av一级| 99国产精品免费福利视频| 午夜av观看不卡| 久久午夜综合久久蜜桃| 久久99热6这里只有精品| 人人妻人人爽人人添夜夜欢视频| 亚洲天堂av无毛| 校园人妻丝袜中文字幕| 中文字幕免费在线视频6| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 午夜91福利影院| tube8黄色片| 中文天堂在线官网| 搡老乐熟女国产| 久久久精品区二区三区| 91精品三级在线观看| 成人国产麻豆网| 亚洲欧美清纯卡通| 久久久国产欧美日韩av| 只有这里有精品99| 少妇 在线观看| 免费高清在线观看日韩| 看免费av毛片| 蜜桃在线观看..| 一本色道久久久久久精品综合| 久久久精品区二区三区| 永久免费av网站大全| 啦啦啦视频在线资源免费观看| 考比视频在线观看| 九色成人免费人妻av| 自线自在国产av| 在线观看免费日韩欧美大片| 欧美日韩av久久| 国产高清不卡午夜福利| 黑人欧美特级aaaaaa片| 国产精品人妻久久久久久| 免费不卡的大黄色大毛片视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品成人在线| 国产片特级美女逼逼视频| 成人免费观看视频高清| 久久热在线av| 国产av一区二区精品久久| 99热网站在线观看| 亚洲精品一区蜜桃| 99热国产这里只有精品6| 亚洲精品第二区| 亚洲欧美一区二区三区黑人 | 久久久久精品性色| 肉色欧美久久久久久久蜜桃| 精品久久久精品久久久| 国产男女超爽视频在线观看| 高清不卡的av网站| 精品少妇黑人巨大在线播放| 青青草视频在线视频观看| 午夜免费观看性视频| av免费在线看不卡| 老熟女久久久| 中文欧美无线码| 亚洲国产色片| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 97超碰精品成人国产| 大码成人一级视频| 久久人人97超碰香蕉20202| 日本av免费视频播放| 熟女人妻精品中文字幕| 母亲3免费完整高清在线观看 | 精品久久久久久电影网| 亚洲婷婷狠狠爱综合网| 国产乱人偷精品视频| 人体艺术视频欧美日本| 一级a做视频免费观看| 青春草国产在线视频| 90打野战视频偷拍视频| av免费在线看不卡| 免费黄色在线免费观看| 女性生殖器流出的白浆| 久久精品人人爽人人爽视色| 免费观看av网站的网址| 精品久久国产蜜桃| 蜜桃国产av成人99| 久久久久久久久久久免费av| 国产男女内射视频| 国产精品久久久久久久久免| 日韩,欧美,国产一区二区三区| 69精品国产乱码久久久| 一本久久精品| 国产又爽黄色视频| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 久久久久久人人人人人| 久久久久久久久久人人人人人人| 啦啦啦在线观看免费高清www| 亚洲av综合色区一区| 精品人妻在线不人妻| 亚洲精品自拍成人| 色视频在线一区二区三区| 精品亚洲成a人片在线观看| 欧美精品一区二区大全| 黑人欧美特级aaaaaa片| 高清在线视频一区二区三区| 亚洲精品乱码久久久久久按摩| 啦啦啦中文免费视频观看日本| 亚洲精品色激情综合| 久久久久视频综合| 久久久精品区二区三区| 女性生殖器流出的白浆| 一边亲一边摸免费视频| 三上悠亚av全集在线观看| 男女免费视频国产| 国产高清国产精品国产三级| 精品亚洲乱码少妇综合久久| 满18在线观看网站| 91久久精品国产一区二区三区| 亚洲精品中文字幕在线视频| 在线天堂最新版资源| xxxhd国产人妻xxx| 国产色爽女视频免费观看| 成人毛片a级毛片在线播放| 少妇人妻 视频| 两个人看的免费小视频| 韩国高清视频一区二区三区| 久久亚洲国产成人精品v| 亚洲精品自拍成人| 国产欧美另类精品又又久久亚洲欧美| 一级毛片我不卡| 亚洲国产精品国产精品| 亚洲久久久国产精品| 22中文网久久字幕| 国产 一区精品| 搡老乐熟女国产| 热re99久久精品国产66热6| 色5月婷婷丁香| 日韩人妻精品一区2区三区| 黑人高潮一二区| 人人妻人人添人人爽欧美一区卜| 欧美性感艳星| 亚洲欧美日韩卡通动漫| 免费日韩欧美在线观看| 国产乱人偷精品视频| 伦理电影大哥的女人| 亚洲美女黄色视频免费看| 免费在线观看黄色视频的| 丰满乱子伦码专区| 在线 av 中文字幕| 国产在线一区二区三区精| 波野结衣二区三区在线| 中文字幕人妻熟女乱码| 一区二区三区四区激情视频| 国产亚洲一区二区精品| 国产淫语在线视频| a级毛片在线看网站| 精品少妇内射三级| 亚洲精品久久成人aⅴ小说| 国产麻豆69| 麻豆乱淫一区二区| 精品熟女少妇av免费看| 天堂8中文在线网| 91成人精品电影| 边亲边吃奶的免费视频| 中文字幕av电影在线播放| 两个人免费观看高清视频| av免费在线看不卡| 亚洲av免费高清在线观看| 久久久久久久亚洲中文字幕| 只有这里有精品99| 亚洲综合精品二区| 欧美人与善性xxx| 在线观看三级黄色| 女人被躁到高潮嗷嗷叫费观| 亚洲一码二码三码区别大吗| 日韩成人av中文字幕在线观看| 国产乱人偷精品视频| 中文欧美无线码| 99热6这里只有精品| 亚洲国产精品一区二区三区在线| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三区视频在线| 免费大片黄手机在线观看| 有码 亚洲区| 国产爽快片一区二区三区| 国产熟女欧美一区二区| av一本久久久久| 天堂俺去俺来也www色官网| 亚洲国产精品999| 日本午夜av视频| 91在线精品国自产拍蜜月| 免费看av在线观看网站| 亚洲,欧美,日韩| 欧美bdsm另类| 午夜老司机福利剧场| 免费黄频网站在线观看国产| 欧美精品一区二区大全| 免费观看无遮挡的男女| 两个人免费观看高清视频| 午夜日本视频在线| 校园人妻丝袜中文字幕| 韩国精品一区二区三区 | 中文字幕人妻熟女乱码| 久久午夜福利片| 乱码一卡2卡4卡精品| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久| 韩国av在线不卡| 日韩,欧美,国产一区二区三区| 亚洲欧洲国产日韩| 老女人水多毛片| 欧美精品一区二区免费开放| 国产精品久久久久久精品电影小说| 午夜福利,免费看| 日韩精品有码人妻一区| 最近手机中文字幕大全| 亚洲欧美色中文字幕在线| 日韩av不卡免费在线播放| 美女xxoo啪啪120秒动态图| 熟妇人妻不卡中文字幕| 成人亚洲欧美一区二区av| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 欧美人与善性xxx| www.色视频.com| a级毛片黄视频| 中国美白少妇内射xxxbb| 国产一区二区在线观看日韩| 最近手机中文字幕大全| 午夜免费观看性视频| 欧美精品一区二区免费开放| 9191精品国产免费久久| 亚洲久久久国产精品| 欧美日韩视频精品一区| videossex国产| 久久这里有精品视频免费| 国产 一区精品| 最近手机中文字幕大全| 18+在线观看网站| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| 亚洲精品一二三| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 国产毛片在线视频| 色婷婷av一区二区三区视频| 黄色视频在线播放观看不卡| 日韩,欧美,国产一区二区三区| 一本色道久久久久久精品综合| 国产日韩欧美视频二区| 欧美最新免费一区二区三区| 国产亚洲欧美精品永久| 亚洲精品456在线播放app| 中文字幕人妻丝袜制服| 制服人妻中文乱码| 亚洲少妇的诱惑av| 亚洲精品乱码久久久久久按摩| 卡戴珊不雅视频在线播放| 久久国产精品男人的天堂亚洲 | 又黄又粗又硬又大视频| 久久这里有精品视频免费| 欧美bdsm另类| 午夜激情av网站| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 妹子高潮喷水视频| 欧美xxⅹ黑人| 国精品久久久久久国模美| 男女无遮挡免费网站观看| 26uuu在线亚洲综合色| 国产 精品1| 免费av不卡在线播放| 欧美精品av麻豆av| 高清在线视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 一本久久精品| 亚洲成av片中文字幕在线观看 | 看十八女毛片水多多多| 午夜久久久在线观看| 18禁动态无遮挡网站| a级毛片在线看网站| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 精品国产一区二区久久| 国产日韩欧美视频二区| 日本免费在线观看一区| 黄片播放在线免费| 青春草视频在线免费观看| 一区在线观看完整版| 久久久久网色| 人人妻人人澡人人爽人人夜夜| av天堂久久9| tube8黄色片| 国产极品粉嫩免费观看在线| 99热6这里只有精品| 久久人妻熟女aⅴ| 最近中文字幕高清免费大全6| h视频一区二区三区| 亚洲av.av天堂| 如何舔出高潮| 2022亚洲国产成人精品| 亚洲综合精品二区| 少妇高潮的动态图| 国产亚洲最大av| 久久国产精品男人的天堂亚洲 | 国产乱来视频区| 午夜福利网站1000一区二区三区| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频| 九色成人免费人妻av| 涩涩av久久男人的天堂| 哪个播放器可以免费观看大片| 最近的中文字幕免费完整| 欧美最新免费一区二区三区| 在线观看美女被高潮喷水网站| h视频一区二区三区| 爱豆传媒免费全集在线观看| 欧美国产精品va在线观看不卡| 免费av不卡在线播放| 久久97久久精品| 高清视频免费观看一区二区| 高清av免费在线| 国产乱人偷精品视频| 欧美日韩视频精品一区| 少妇熟女欧美另类| 亚洲av欧美aⅴ国产| 国产精品久久久久成人av| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 亚洲三级黄色毛片| 一级毛片 在线播放| 自线自在国产av| 最黄视频免费看| 激情视频va一区二区三区| 亚洲一区二区三区欧美精品| 亚洲欧美中文字幕日韩二区| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 亚洲国产日韩一区二区| 青青草视频在线视频观看| 两个人免费观看高清视频| 亚洲综合色网址| 国产日韩欧美在线精品| 色吧在线观看| 乱人伦中国视频| 国产国语露脸激情在线看| 热re99久久精品国产66热6| 2022亚洲国产成人精品| 97精品久久久久久久久久精品| 熟女电影av网| 亚洲内射少妇av| 久久精品国产a三级三级三级| 欧美日韩精品成人综合77777| 超碰97精品在线观看| 中文欧美无线码| 欧美丝袜亚洲另类| 汤姆久久久久久久影院中文字幕| 少妇人妻精品综合一区二区| 天天操日日干夜夜撸| 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 精品国产国语对白av| 夫妻性生交免费视频一级片| 在线观看免费高清a一片| 日韩熟女老妇一区二区性免费视频| 黄色毛片三级朝国网站| 看免费成人av毛片| 久久青草综合色| 女人久久www免费人成看片| 亚洲色图综合在线观看| 人妻一区二区av| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 在线观看美女被高潮喷水网站| 伦精品一区二区三区| 最近中文字幕高清免费大全6| 看免费成人av毛片| 毛片一级片免费看久久久久|