• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FLOWS THROUGH ENERGY DISSIPATERS WITH SUDDEN REDUCTION AND SUDDEN ENLARGEMENT FORMS*

    2010-07-02 01:37:59WUJianhuaAIWanzheng

    WU Jian-hua, AI Wan-zheng

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: jhwu@hhu.edu.cn

    FLOWS THROUGH ENERGY DISSIPATERS WITH SUDDEN REDUCTION AND SUDDEN ENLARGEMENT FORMS*

    WU Jian-hua, AI Wan-zheng

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: jhwu@hhu.edu.cn

    The energy dissipation of flood discharges has been one of important problems that affect directly the safety of hydropower projects. The energy dissipater with sudden reduction and sudden enlargement forms, used widely in large-scale projects, has been a kind of effective structure for energy dissipation. The concept of critical thickness was defined, which is related to both the geometric parameters and the hydraulic parameters of the energy dissipater, and the factors affecting the critical thickness, were analzsed by means of dimensional analysis. The empirical expression about the critical thickness was obtained and could be used as the criterion to distinguish the flows through the energy dissipater, i.e., the plug flow and the orifice plate flow. The error analysis showed that the critical thickness calculated by the expression has the errors of smaller than 10% in the estimation of the flows for the energy dissipater mentioned above.

    critical thickness, energy dissipater, orifice plate, plug, reduction ratio, sudden reduction, sudden enlargement

    1. Introduction

    Both the plug and the orifice plate, as the two types of energy dissipaters with sudden reduction and sudden enlargement forms, have been successfully used in large-scale hydropower projects. For the Mica dam in Canada the flow velocity of the flood discharge tunnel was decreased from 52 m to 35 m at the head of 175 m, due to the use of the plug energy dissipaters, which were the two plugs with the lengths of 49 m and 37 m[1, 2]. In the Xiaolangdi hydropower project in China the three orifice plates in the flood discharge tunnel got the energy dissipation ratio of 44% and controlled effectively the flow velocity through the gate to lower than 35 m/s under the condition of the head of 145 m[3,4].

    Many researches investigated the energydissipaters with sudden reduction and sudden enlargement forms. The interest has been focused on the effects of the geometric parameters on hydraulic characteristics, such as energy dissipation ratio, and cavitation performance and so on. The contraction ratio (β), defined as the ratio of the orifice diameter (d ) of the energy dissipater and the diameter (D) of flood discharge tunnel, is an important index affecting all the hydraulic characteristics. Bullen et al.[5], Wang and Yue[6], Chai et al.[7], Fossa and Guglielmini[8], He and Zhao[9]deemed that the energy dissipation ratio increases with the decrease of the contraction ratio. The energy dissipation ratio increases with decreasing contraction ratio. Meanwhile, the contraction ratio influences directly the cavitation performance, and the incipient cavitation number decreases with the increase of contraction ratio according to the results from Ball et al.[10], Huang and Liu[11], Wu et al.[3], Zhang and Cai[12], and Tian et al.[13].

    The other geometric parameters, such as the thickness (T), the shape, and the edge radius, havethe effects on the energy dissipation ratio, or/and cavitation performance. The sharp-edged form has larger energy dissipation ratio[14]compared with the square-edged and sloping-approach forms and the orifice plate with ring, but causes the increase of the incipient cavitation number[3]at the same contraction ratio. Cai and Zhang[15]showed that the energy dissipation ratio decreases with the increase of the thickness of the energy dissipater.

    The thickness (T) of the energy dissipater brings about the great changes of the flow regime through it. When this thickness is large enough the flow becomes the tube flow in it, while it is the orifice flow for the thinner energy dissipater. They are usually called as plug energy dissipater and orifice plate one respectively in order to investigate their hydraulic characteristics[16-18]. As a matter of fact, those names, only based on the geometry of the energy dissipaters, are not very reasonable for certain range of thickness, and the flows through the energy dissipaters with sudden reductioin and sudden enlargement forms are closely related not only to the geometric parameters but also the hydraulic parameters. It is possible that the tube flow occurs when the flow velocity is low and then changes into the orifice flow with the increase of the velocity for a given thickness. The use of the names plug flow and orifice plate flow, and the confirmation of the flow regime through them, or the presentation of the criterion of the critical status for the flow regime development, are of significance.

    The objectives of the present work, therefore, are to define the critical thickness distinguishing the plug and orifice plate flows through the energy dissipaters, to analyze the factors affecting this thickness, and to establish an empirical expression as a criterion to determine the flows through the energy dissipater mentioned above.

    2. Definition of critical thickness

    For the given geometry of energy dissipater with sudden reduction and sudden enlargement forms, there are two kinds of the flows on the basis of their flow regimes when they pass through the energy dissipaters as shown in Fig.1. They could be called as orifice plate flow and plug flow respectively. For the former, the flow reduces when it enters into the orifice and there is a vortex area of ring form to separate the flow and the whole orifice surface, as shown in Fig.1(a). And for the latter the flow also reduces, but it passes along the orifice surface before leaving this orifice, see Fig.1(b). So the flow regimes depend on not only the geometric parameters, such as the contracion ratio (β), given byβ=d/D, and the ratio of the energy dissipater thickness to the tunnel diameter (α), byα=T/D, but also the hydraulic parameters, such as the velocity of the flow (u), the Reynolds number (Re) and so on. Thus, there is a critical status between the orifice plate flow and the plug flow, or in other words, a critical thickness (αc) for a given contraction ratio and certain conditions of the flow, in which the flow meets just the outlet edge of the orifice when it passes through the energy dissipater. It is the plug flow if the energy dissipater thickness is larger than the critical thickness, whereas it is the orifice plate flow when the thickness is smaller than the critical thickness.

    Fig.1 Flows through energy dissipater with sudden reduction and sudden enlargement forms

    As was stated above, the critical thickness (Tc) is parameters, including the contraction ratio (β=d/D), the viscosity of fluid (μ), the density of fluid (ρ), and the flow velocity (u). It is a function of the parameters mentioned above, and could be expressed[19]as

    3. Analysis of factors affecting critical thickness

    an index, or a criterion, to distinguish the flows through the energy dissipaters with sudden reduction and sudden enlargement forms. This thickness, of course, is related closely to geometric and hydraulic

    Based on the independent parameters ofD,uandρ, its dimensionless form is

    which implies that the critical thickness (cα) of theenergy dissipater is only the function ofβandRe.

    4. Numerical simulation

    4.1Governing equations

    The RNGk?εmodel was used to calculate the hydraulic parameters of the flows through the energy dissipaters. For the steady and incompressible flows, the governing equations of this model can be expressed as[20]

    Continuity equation:

    Momentum equation:

    whereuiis the velocity components in thexidirections,ρis the density of water,pis the pressure,νis the kinematic viscosity of water,νtis the eddy viscosity and can be given byν=C(k2/ε), in whichkis the turbulence kinetic energy,εis the dissipation rate ofkandCμ=0.085. The other parameters are

    4.2Boundary conditions

    In simulation, the boundary conditions are treated as follows: in the inflow boundary the turbulence kinetic energykinand the turbulent dissipation rateεincan be defined as respectively:

    4.3Calculation phases

    The calculation phases include: (1)β=0.40, 0.50, 0.60, 0.70 and 0.80, (2)α=0.40-1.30, and (3)D=5.00m. The purposes of the present work are: (1) for the given thickness (α) and the contraction ratio (β) of the energy dissipater, to determine Reynolds number (Re) at the occurrence of the critical status of the flow change from the plug flow to the orifice plate flow, (2) to establish the relationship between the critical thickness (αc) and the Reynolds number (Re) of the flow for the different values of the contraction ratio (β), and (3) to present an empirical expression for determining the flows through the energy dissipater.

    5. Results and discussions

    5.1Flow regime control

    Fig.2 Flow regime developments from plug flow to orifice plate flow

    Figure 2 is the case of the flow regime development through the energy dissipater with sudden reduction and sudden enlargement, in which the contraction ratioβ=0.50 and the dimensionless thicknessα=0.60. It could be seen that the flow regimes depend on not only its geometric parameters but also the hydraulic parameters through the energy dissipater. For the given energy dissipater, the flow regimes develop from the plug flow to orifice plate flow when the Reynolds number (Re) increases gradually. At smallRethe plug flow appears and the flow entering into the orifice meets the surface of the orifice before it leaves this orifice (see Figs.2(a) and 2(b)). The flow becomes the orifice plate flow whenReis large enough and there is a vortex area of the ring form between the orifice surface and the flow entering into the orifice, so that the flow leaves the orifice directly not to meet the orifice surface (see Figs.2(d) and 2(e)). In the process of the flow regime development, for certain cases, there is the critical flow distinguishing those two flows mentioned above, i.e., the plug and orifice plate flows. The flow shown in Fig.2(c), obviously, is just this kind of the critical flow, and there exists a vortex area which has almost the same length as the orifice surface, or we can say, the length of the vortex area equals the thickness of the energy dissipater (T) approximately. For this energy dissipater withβof 0.50 andαof 0.60, the critical thickness (cα) occurs whenRe=2.63× 107. We can get the critical thickness (α)

    cfor different Reynolds numbers (Re) and reduction ratios (β) by means of same procedure.

    Fig.3 Variations of critical thickness (cα) with the Reynolds number (Re) at the different reduction ratios (β)

    5.2Characteristics of critical thicknesses

    Figure 3 is the relationship of the critical thickness (cα) of the energy dissipater with sudden reduction and sudden enlargement forms and the Reynolds number (Re) at the different reduction ratios (β). The lines of the critical thickness divide the aera into two parts, i.e., the left or upper part of the lines belongs to the plug flow for each contraction ratios (β), while the right or lower part is the orifice plate flow. It could be seen that the critical thickness (cα) approximately linearly varies with the increase of the Reynolds number (Re) for each contraction ratio (β) of the energy dissipaters. Furthermore, the slopes of the lines decrease with the increase of reduction ratio, that is to say, the critical thickness decreases with the increase of the contraction ratio at the same Reynolds number (Re). Meanwhile, it could be seen that the differences of the slopes are relatively small at small contraction ratios, such asβof 0.40, 0.50 and 0.60, while the big changes of the slopes take place atβof 0.70, and 0.80 (see Fig.3). Animportant phenomenon should be noted that only the orifice plate flow occurs when the thickness (α) of the energy dissipater is smaller than 0.37 for any contraction ratio (β).

    This figure could be used as the criterion of distinguishing the flows through the energy dissipaters with sudden reduction and sudden enlargement forms. Each line expresses a kind of the critical status of the flow regime development from the plug flow into the orifice plate flow for each contraction ratio.

    The empirical expression for all the contraction ratio (β) could be obtained on the basis of Fig.3:

    It belongs to the plug flow whenα>αc, while the flow is the orifice plate one whenα<αc. Naturally, it is the critical status of the flow at the critical thickness, i.e.,α=αc. This expression is valid forβ=0.40-0.80andα=0.37-1.30.

    Let the relative errorErbetween the calculated critical thickness (αcal) by Eq.(8) and the results (αnu) of numerical simulations from Fig.3 as:

    Fig.4 Comparisons of results from Eq.(8) with data from Fig.3

    The results of the error analysis are shown in Fig.4. From this figure the maximum error of Eq.(8) is obviously smaller than 10% for eachβ. Therefore, it is effective to distinguish flows through the energy dissipater with sudden reduction and sudden enlargement forms by means of Eq.(8).

    6. Conclusions

    The concept of critical thickness is useful in the investigation of the flows through the energy dissipater with sudden reduction and sudden enlargement forms. The critical thickness is related to not only the geometric parameters but also the hydraulic parameters for the energy dissipaters mentioned above.

    The empirical expression has been obtained herein about the critical thickness, reduction ratio and Reynolds number. This expression could be used as the criterion to distinguish the flows through the energy dissipater, i.e., the plug flow and the orifice plate flow. The critical thickness calculated by Eq.(8) has its error smaller than of 10%.

    [1] RUSSELL S O., BALL J. W. Sudden- enlargement energy dissipater for Mica dam[J].Journal of the Hydraulics Division, ASCE,1967, 93(4): 41-56.

    [2] XIANG Tong, CAI Jun-mei. Study and practice of interior energy dissipater for flood discharge tunnels[J].Journal of Water Conservancy and Hydropower Technology,1999, 30(12): 69-71(in Chinese).

    [3] WU Jian-hua, CHAI Gong-chun and XIANG Tong. Hydraulic characteristics and optimization of orifice plate discharge tunnel of the Xiaolangdi hydropower project[J].Journal of Hydraulic Engineering,1995, (Suppl.): 101-109(in Chinese).

    [4] LIN Xiu-shan, SHEN Feng-shang. Orifice plate energy dissipation in Xiaolangdi hydropower project[J].Journal of Water Conservancy and Hydropower Technology,2000, 31(1): 52-54(in Chinese).

    [5] BULLEN P. R., CHEESEMAN D. J. and HUSSAIN L. A. et al. The determination of pipe contraction pressure loss coefficients for incompressible turbulent flow[J].Journal of Heat and Fluid Flow,1987, 8(2): 111-118.

    [6] WANG De-chang, YUE Pei-jiu. An experimental study on energy dissipation of orifice plate in the tube[J].Advances in Hydrodynamics,1987, 2(3): 41-50(in Chinese).

    [7] CHAI Gong-chun, WU Jian-hua and WANG He-sheng et al. Cavitation and energy dissipation of the bottom tunnel with orifice plates in the Xiaolangdi dam[C].Proceedings of International Symposium on Cavitation and Erosion in Hydraulic Structures and Machinery.Nanjing, China, 1992, 83-90.

    [8] FOSSA M., GUGLIELMINI G. Pressure drop and void fraction profiles during horizontal flow through thin andthick orifices[J].Experimental Thermal and Fluid Science,2002, 26(5): 513-523.

    [9] HE Ning, ZHAO Zhen-xing. Numerical research on orifice energy dissipation[J].Chinese Journal of Hydrodynamics,2009, 24(3): 358-363(in Chinese).

    [10] BALL J. W., TULLIS J. P. Predicting cavitation in sudden enlargements[J].Journal of the Hydraulics Division, ASCE,1975, 101(7): 857-870.

    [11] HUANG Jian-bo, LIU Bao-qing. Numerical model for predicting incipient cavitation number in a flow[J].Journal of Dalian University of Technology,1993, 33(Suppl.): 50-55(in Chinese).

    [12] ZHANG Zi-ji, CAI Jun-mei. Compromise orifice geometry to minimize pressure drop[J].Journal of Hydraulic Engineering, ASCE,1999, 125(11): 1150-1153.

    [13] TIAN Zhong, XU Wei-Lin and WANG Wei et al. Hydraulic characteristics of plug energy dissipater in flood discharge tunnel[J].Journal of Hydrodynamics,2009, 21(6): 799-806.

    [14] ZHAO Hui-qin. Discussion on multi-orifice plate energy dissipation coefficient[J].Journal of Water Conservancy and Hydropower Technology,1993, (6): 45-50(in Chinese).

    [15] CAI Jun-mei, ZHANG Zi-ji. Effects of orifice plate energy dissipaters on energy dissipation of a flood discharge tunnel[J].Journal of Hydroelectric Engineering,1994, 4(3): 48-56(in Chinese).

    [16] LIU Shan-jun, YANG Yong-quan and XU Wei-lin et al. Hydraulic characteristics of throat-type energy dissipater in discharge tunnel[J].Journal of Hydraulic Engineering,2002, (7): 42-46,52(in Chinese).

    [17] XIA Qing-fu, NI Han-gen. Numerical simulation of plug energy dissipater[J].Journal of Hydraulic Engineering,2003, (8): 37-42(in Chinese).

    [18] TIAN Zhong, XU Wei-lin and LIU Shan-jun et al. Numerical simulation of composite plug energy dissipater[J].Advances in Science and Technology of Water Resources,2005, 25(3): 8-10(in Chinese).

    [19] VICTOR L., STREETER E. and BENJAMIN W. K. et al.Fluid mechanics[M]. Ninth Edition,Bejing: Tsinghua University Press, 2003, 224-258.

    [20] YANG Yong-quan, ZHAO Hai-heng. Numerical simulation of turbulent flows passing through an orifice energy dissipater within a flood discharge tunnel[J].Journal of Hydrodynamics, Ser. B,1992, 4(3): 27-33.

    March 23, 2010, Revised June 7, 2010)

    * Project supported by the Ministry of Science and Technology of China (Grant No. 2008BAB19B04).

    Biography:WU Jian-hua (1958-), Male, Ph. D., Professor

    2010,22(3):360-365

    10.1016/S1001-6058(09)60065-2

    亚洲精品第二区| 丰满迷人的少妇在线观看| 亚洲国产欧美在线一区| 亚洲国产av新网站| 最新的欧美精品一区二区| 午夜福利在线观看免费完整高清在| 成人亚洲精品一区在线观看| 国产精品99久久久久久久久| 国产在线免费精品| 亚洲精品美女久久av网站| 欧美老熟妇乱子伦牲交| 欧美变态另类bdsm刘玥| 亚洲精华国产精华液的使用体验| 黄色配什么色好看| 免费人妻精品一区二区三区视频| 男女边吃奶边做爰视频| 97精品久久久久久久久久精品| 中文字幕久久专区| 高清午夜精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产成人a∨麻豆精品| 蜜桃国产av成人99| 亚洲国产日韩一区二区| 少妇被粗大猛烈的视频| 亚洲欧美日韩卡通动漫| 久久精品国产a三级三级三级| 岛国毛片在线播放| 欧美bdsm另类| 毛片一级片免费看久久久久| 亚洲精品国产av蜜桃| 欧美激情国产日韩精品一区| 免费人妻精品一区二区三区视频| 国产黄片视频在线免费观看| 亚洲精品乱码久久久v下载方式| 色5月婷婷丁香| 伊人久久精品亚洲午夜| 亚洲国产日韩一区二区| 成年人免费黄色播放视频| 欧美日韩综合久久久久久| 插逼视频在线观看| 国产免费一级a男人的天堂| 国产精品国产三级专区第一集| 欧美精品一区二区免费开放| 久久精品久久久久久噜噜老黄| 亚洲av男天堂| 色哟哟·www| 天美传媒精品一区二区| 在线观看免费高清a一片| 精品久久久精品久久久| 成年人午夜在线观看视频| 国产一级毛片在线| 一本一本综合久久| 最近最新中文字幕免费大全7| 黑人猛操日本美女一级片| 婷婷色综合www| 三上悠亚av全集在线观看| 麻豆成人av视频| 久久免费观看电影| 免费人妻精品一区二区三区视频| 色哟哟·www| 久久国产亚洲av麻豆专区| 国产精品一区www在线观看| 十八禁高潮呻吟视频| 人妻 亚洲 视频| 黄色一级大片看看| 日本免费在线观看一区| 欧美亚洲 丝袜 人妻 在线| 国产国语露脸激情在线看| 一边亲一边摸免费视频| 国产男女内射视频| 激情五月婷婷亚洲| 亚洲高清免费不卡视频| 男人爽女人下面视频在线观看| 婷婷色av中文字幕| 亚洲国产毛片av蜜桃av| 亚洲成色77777| 日本wwww免费看| 黄色怎么调成土黄色| 国产69精品久久久久777片| 亚洲精品一二三| 欧美日韩成人在线一区二区| 久久青草综合色| 中文字幕亚洲精品专区| 熟女电影av网| 一级毛片电影观看| 在线亚洲精品国产二区图片欧美 | 99久久中文字幕三级久久日本| 精品卡一卡二卡四卡免费| 精品人妻一区二区三区麻豆| av网站免费在线观看视频| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 在线播放无遮挡| 大香蕉久久成人网| av卡一久久| 嘟嘟电影网在线观看| 亚洲国产日韩一区二区| 国产成人91sexporn| 国产免费一区二区三区四区乱码| 欧美精品高潮呻吟av久久| 中文字幕人妻丝袜制服| 日韩中文字幕视频在线看片| 热99国产精品久久久久久7| 又黄又爽又刺激的免费视频.| 一级毛片黄色毛片免费观看视频| 2018国产大陆天天弄谢| a 毛片基地| 亚洲丝袜综合中文字幕| 91国产中文字幕| 亚洲av电影在线观看一区二区三区| 秋霞在线观看毛片| 欧美日本中文国产一区发布| av免费在线看不卡| 黄色视频在线播放观看不卡| 免费看光身美女| 成人国产麻豆网| 精品卡一卡二卡四卡免费| 久久久久久久久久久丰满| 一级毛片黄色毛片免费观看视频| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品电影小说| 日韩亚洲欧美综合| 在线天堂最新版资源| 欧美日韩综合久久久久久| 尾随美女入室| 日本-黄色视频高清免费观看| 欧美精品一区二区免费开放| 男女边吃奶边做爰视频| 嫩草影院入口| 熟女人妻精品中文字幕| 高清毛片免费看| 国产成人午夜福利电影在线观看| 大陆偷拍与自拍| 汤姆久久久久久久影院中文字幕| 国产成人免费观看mmmm| 99九九线精品视频在线观看视频| 99热这里只有精品一区| 亚洲欧美一区二区三区黑人 | 国产永久视频网站| 精品少妇内射三级| 人妻 亚洲 视频| 男人操女人黄网站| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 精品久久久久久电影网| 在线免费观看不下载黄p国产| 国产午夜精品久久久久久一区二区三区| 男女高潮啪啪啪动态图| 亚洲精品一区蜜桃| 男女边摸边吃奶| 久久久久久久精品精品| 十八禁高潮呻吟视频| 伊人亚洲综合成人网| 成人18禁高潮啪啪吃奶动态图 | 国产日韩一区二区三区精品不卡 | 久久久午夜欧美精品| 日本av手机在线免费观看| 亚洲图色成人| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 精品久久久噜噜| 久久久午夜欧美精品| 国产成人免费无遮挡视频| 中文字幕人妻熟人妻熟丝袜美| 天天操日日干夜夜撸| 日韩成人av中文字幕在线观看| 亚洲不卡免费看| 午夜福利在线观看免费完整高清在| 精品一区在线观看国产| 晚上一个人看的免费电影| 国产有黄有色有爽视频| 欧美日韩视频高清一区二区三区二| 狠狠精品人妻久久久久久综合| 日本黄大片高清| 一级二级三级毛片免费看| 内地一区二区视频在线| 亚洲av国产av综合av卡| 国产在视频线精品| 精品少妇黑人巨大在线播放| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影小说| 国产亚洲精品第一综合不卡 | av在线app专区| 久久久久久久久久久免费av| 蜜臀久久99精品久久宅男| 免费不卡的大黄色大毛片视频在线观看| 综合色丁香网| 熟女人妻精品中文字幕| 亚洲欧美色中文字幕在线| 国产一区二区三区综合在线观看 | 亚洲色图 男人天堂 中文字幕 | 少妇人妻久久综合中文| 黑人欧美特级aaaaaa片| 午夜激情福利司机影院| 美女中出高潮动态图| 成年美女黄网站色视频大全免费 | 秋霞在线观看毛片| 午夜免费观看性视频| 在线天堂最新版资源| 五月伊人婷婷丁香| 91久久精品国产一区二区三区| 免费观看的影片在线观看| 18禁观看日本| 亚洲人成网站在线观看播放| 大陆偷拍与自拍| 国产一区二区在线观看日韩| 亚洲精品国产色婷婷电影| videossex国产| 美女视频免费永久观看网站| 久久久久久久久久成人| 色吧在线观看| 青春草国产在线视频| 夫妻性生交免费视频一级片| 人人澡人人妻人| 日日啪夜夜爽| 最新的欧美精品一区二区| 99九九在线精品视频| 日韩欧美一区视频在线观看| 国产成人免费观看mmmm| 婷婷色av中文字幕| 亚洲精品日韩在线中文字幕| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 亚洲精品乱久久久久久| 亚洲图色成人| 最黄视频免费看| 久久久久精品性色| 国产av精品麻豆| 成人影院久久| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| 国产精品国产三级国产专区5o| 插逼视频在线观看| 91精品伊人久久大香线蕉| 欧美成人午夜免费资源| 国产免费福利视频在线观看| 好男人视频免费观看在线| 亚洲精品中文字幕在线视频| 欧美变态另类bdsm刘玥| 飞空精品影院首页| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 交换朋友夫妻互换小说| 国产一区亚洲一区在线观看| 日韩欧美精品免费久久| 国产深夜福利视频在线观看| 黄色一级大片看看| 一级毛片 在线播放| av电影中文网址| 中文字幕人妻熟人妻熟丝袜美| 一级毛片黄色毛片免费观看视频| 成人国产麻豆网| 毛片一级片免费看久久久久| 欧美成人精品欧美一级黄| 久久精品国产亚洲av涩爱| 国产极品天堂在线| 国产综合精华液| 中文字幕制服av| 成人亚洲欧美一区二区av| 成人手机av| 久久影院123| a 毛片基地| 中国美白少妇内射xxxbb| 91久久精品电影网| 青青草视频在线视频观看| 夜夜爽夜夜爽视频| 永久网站在线| 少妇的逼好多水| 久久韩国三级中文字幕| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 美女主播在线视频| 精品少妇久久久久久888优播| 性色av一级| 尾随美女入室| 26uuu在线亚洲综合色| 亚洲欧洲精品一区二区精品久久久 | 99国产综合亚洲精品| 亚州av有码| 亚洲欧美日韩另类电影网站| 精品一品国产午夜福利视频| 街头女战士在线观看网站| 国产精品一区二区在线观看99| 免费不卡的大黄色大毛片视频在线观看| 少妇人妻精品综合一区二区| 大香蕉久久网| 亚洲国产av影院在线观看| 久久 成人 亚洲| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 97精品久久久久久久久久精品| 99国产精品免费福利视频| 婷婷色综合大香蕉| 久久国内精品自在自线图片| 亚洲精品美女久久av网站| 精品国产一区二区久久| 丝袜脚勾引网站| 国产毛片在线视频| 色吧在线观看| 国产乱来视频区| av视频免费观看在线观看| 欧美精品一区二区大全| 一级a做视频免费观看| 久久精品夜色国产| 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区 | 熟女av电影| 国产精品秋霞免费鲁丝片| 久久精品夜色国产| 91午夜精品亚洲一区二区三区| 色婷婷久久久亚洲欧美| 日本黄大片高清| 午夜91福利影院| 国产成人精品福利久久| 国精品久久久久久国模美| 麻豆成人av视频| 搡老乐熟女国产| 亚洲丝袜综合中文字幕| √禁漫天堂资源中文www| 亚洲无线观看免费| 伊人亚洲综合成人网| 91在线精品国自产拍蜜月| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 国产成人免费无遮挡视频| 在线观看免费视频网站a站| 哪个播放器可以免费观看大片| 国内精品宾馆在线| 国产精品麻豆人妻色哟哟久久| 亚洲在久久综合| 母亲3免费完整高清在线观看 | 特大巨黑吊av在线直播| 国产高清不卡午夜福利| 国产成人精品婷婷| 欧美日韩av久久| 精品人妻熟女毛片av久久网站| 草草在线视频免费看| 亚洲av免费高清在线观看| 亚洲久久久国产精品| 国产亚洲欧美精品永久| 国产精品麻豆人妻色哟哟久久| 久久久久久久久大av| 熟妇人妻不卡中文字幕| 最新中文字幕久久久久| 精品99又大又爽又粗少妇毛片| 如日韩欧美国产精品一区二区三区 | 秋霞伦理黄片| 亚洲欧洲日产国产| 另类亚洲欧美激情| 欧美性感艳星| 亚洲国产日韩一区二区| 卡戴珊不雅视频在线播放| 91精品三级在线观看| 黄片播放在线免费| 人妻制服诱惑在线中文字幕| 91精品伊人久久大香线蕉| 性高湖久久久久久久久免费观看| 亚洲婷婷狠狠爱综合网| 夜夜看夜夜爽夜夜摸| 亚洲精品国产av成人精品| 色网站视频免费| 能在线免费看毛片的网站| 岛国毛片在线播放| 一区二区三区免费毛片| 精品国产一区二区三区久久久樱花| 一区二区三区免费毛片| 免费观看在线日韩| 男人爽女人下面视频在线观看| 国产成人精品无人区| 女性被躁到高潮视频| 久久人妻熟女aⅴ| 亚洲av免费高清在线观看| 天堂中文最新版在线下载| 国产亚洲精品久久久com| 亚洲欧美精品自产自拍| 久久久久精品性色| 亚洲精品久久久久久婷婷小说| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久久久按摩| 在线免费观看不下载黄p国产| 亚洲精品aⅴ在线观看| 天堂8中文在线网| 妹子高潮喷水视频| 欧美激情极品国产一区二区三区 | 亚州av有码| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 精品久久久久久久久av| 飞空精品影院首页| 天天操日日干夜夜撸| 国产一区亚洲一区在线观看| 亚洲成人一二三区av| 在线看a的网站| 一区二区三区四区激情视频| 久久狼人影院| 人人妻人人澡人人看| 人妻系列 视频| 欧美三级亚洲精品| 国产亚洲精品久久久com| 满18在线观看网站| 日韩 亚洲 欧美在线| 中文天堂在线官网| 99热这里只有是精品在线观看| 国产午夜精品久久久久久一区二区三区| 青春草国产在线视频| 日本av免费视频播放| 女的被弄到高潮叫床怎么办| 色婷婷av一区二区三区视频| av黄色大香蕉| 亚州av有码| 日韩电影二区| 日韩强制内射视频| 精品少妇黑人巨大在线播放| 美女内射精品一级片tv| 色94色欧美一区二区| 国语对白做爰xxxⅹ性视频网站| 精品熟女少妇av免费看| 国产黄色视频一区二区在线观看| 日本与韩国留学比较| 国产一级毛片在线| 国产成人91sexporn| 纯流量卡能插随身wifi吗| 交换朋友夫妻互换小说| 午夜91福利影院| 国产精品99久久久久久久久| 哪个播放器可以免费观看大片| 天美传媒精品一区二区| 欧美一级a爱片免费观看看| 一区二区三区精品91| 啦啦啦中文免费视频观看日本| a级毛片免费高清观看在线播放| 午夜精品国产一区二区电影| 只有这里有精品99| 久久久久精品性色| 国产有黄有色有爽视频| 少妇猛男粗大的猛烈进出视频| 一级毛片aaaaaa免费看小| 少妇丰满av| av在线app专区| 自拍欧美九色日韩亚洲蝌蚪91| 能在线免费看毛片的网站| 免费观看av网站的网址| 欧美日韩av久久| 欧美亚洲 丝袜 人妻 在线| 久热久热在线精品观看| 色吧在线观看| 国产精品国产av在线观看| 黄色怎么调成土黄色| 亚洲成色77777| 国内精品宾馆在线| 免费高清在线观看视频在线观看| 亚洲av不卡在线观看| 国产一区二区在线观看av| 精品久久久噜噜| 九色成人免费人妻av| 国产成人精品一,二区| 人体艺术视频欧美日本| 久久免费观看电影| 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| 人人澡人人妻人| 另类亚洲欧美激情| 777米奇影视久久| av在线app专区| 草草在线视频免费看| 国产精品蜜桃在线观看| 免费人妻精品一区二区三区视频| a级毛片黄视频| 黑丝袜美女国产一区| 毛片一级片免费看久久久久| 一个人看视频在线观看www免费| 丰满迷人的少妇在线观看| 秋霞伦理黄片| √禁漫天堂资源中文www| 久久久a久久爽久久v久久| 亚洲国产精品专区欧美| 婷婷成人精品国产| 日韩av在线免费看完整版不卡| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 在线观看免费高清a一片| 国产精品一区二区三区四区免费观看| 黄色怎么调成土黄色| 久久久久久久久久成人| 2018国产大陆天天弄谢| 久久精品熟女亚洲av麻豆精品| 成人国产av品久久久| 久久人人爽人人爽人人片va| 久久99热6这里只有精品| 亚洲一区二区三区欧美精品| 中文乱码字字幕精品一区二区三区| 美女脱内裤让男人舔精品视频| 国模一区二区三区四区视频| 看十八女毛片水多多多| av国产精品久久久久影院| 精品酒店卫生间| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 久久久久久久久久久免费av| xxxhd国产人妻xxx| 18+在线观看网站| 精品久久久久久久久av| 美女中出高潮动态图| 中文精品一卡2卡3卡4更新| 一级爰片在线观看| 高清av免费在线| 在线观看免费视频网站a站| 精品久久国产蜜桃| 日韩一区二区视频免费看| 国产成人精品婷婷| 欧美97在线视频| 国产男人的电影天堂91| 少妇精品久久久久久久| 九九久久精品国产亚洲av麻豆| 亚洲人成网站在线播| 一区在线观看完整版| 婷婷色av中文字幕| 欧美精品一区二区免费开放| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区 | 日韩亚洲欧美综合| 免费观看在线日韩| 国产精品熟女久久久久浪| 亚洲国产精品一区二区三区在线| 最近手机中文字幕大全| 午夜福利在线观看免费完整高清在| 国产亚洲精品久久久com| 日本黄大片高清| 51国产日韩欧美| 国产黄频视频在线观看| 国产视频内射| 欧美日韩成人在线一区二区| 99热这里只有是精品在线观看| 欧美日韩视频精品一区| 亚洲国产欧美日韩在线播放| 日本午夜av视频| 国产乱人偷精品视频| 中文精品一卡2卡3卡4更新| h视频一区二区三区| 中文字幕最新亚洲高清| 国产在线免费精品| 一区二区三区乱码不卡18| 国产精品久久久久久久电影| 一本久久精品| 国产精品一区二区三区四区免费观看| 黄色毛片三级朝国网站| 人人妻人人澡人人爽人人夜夜| 国产亚洲精品久久久com| 91久久精品电影网| 午夜激情福利司机影院| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网| 国产 一区精品| 亚洲美女搞黄在线观看| 亚洲伊人久久精品综合| 国产爽快片一区二区三区| 国产熟女午夜一区二区三区 | 汤姆久久久久久久影院中文字幕| 国产欧美日韩一区二区三区在线 | 欧美日韩亚洲高清精品| 搡女人真爽免费视频火全软件| 午夜福利视频在线观看免费| 2018国产大陆天天弄谢| 国产不卡av网站在线观看| 国产高清有码在线观看视频| 国产精品.久久久| 国产成人av激情在线播放 | 亚洲国产精品专区欧美| 亚洲av在线观看美女高潮| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 亚洲av电影在线观看一区二区三区| 伦精品一区二区三区| 亚洲精品国产色婷婷电影| 十八禁网站网址无遮挡| 亚洲高清免费不卡视频| 国产女主播在线喷水免费视频网站| 建设人人有责人人尽责人人享有的| 日韩精品有码人妻一区| 国产一区有黄有色的免费视频| 丰满乱子伦码专区| 久久久久国产网址| 久久国内精品自在自线图片| 这个男人来自地球电影免费观看 | 全区人妻精品视频| 最近的中文字幕免费完整| 3wmmmm亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 免费久久久久久久精品成人欧美视频 | 丰满少妇做爰视频| 人成视频在线观看免费观看| 国产精品久久久久久精品古装| 免费观看a级毛片全部| 丝袜喷水一区| 2018国产大陆天天弄谢| 十八禁网站网址无遮挡| 婷婷色综合www| 日韩一本色道免费dvd| 狠狠精品人妻久久久久久综合| 精品午夜福利在线看| 熟女av电影| 女性生殖器流出的白浆| xxxhd国产人妻xxx| 免费观看av网站的网址| 九色亚洲精品在线播放| 看非洲黑人一级黄片| 高清在线视频一区二区三区| 欧美少妇被猛烈插入视频| 国产在线视频一区二区| 亚洲四区av| 欧美日韩视频精品一区| 久久久a久久爽久久v久久| 制服人妻中文乱码|