• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPERIMENT ON THE CHARACTERISTICS OF 3-D VORTEX RING BEHIND A FLEXIBLE OSCILLATING CAUDAL FIN*

    2010-07-02 01:37:55WANGZhidong
    水動力學研究與進展 B輯 2010年3期

    WANG Zhi-dong

    School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China, E-mail: cywzd@sohu.com

    LAO Yi-jia

    Technology Research Economy Development Institute, Beijing 10081, China

    LI Li-jun, CONG Wen-chao

    School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

    EXPERIMENT ON THE CHARACTERISTICS OF 3-D VORTEX RING BEHIND A FLEXIBLE OSCILLATING CAUDAL FIN*

    WANG Zhi-dong

    School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China, E-mail: cywzd@sohu.com

    LAO Yi-jia

    Technology Research Economy Development Institute, Beijing 10081, China

    LI Li-jun, CONG Wen-chao

    School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

    A test for the wake vortex of a flexible oscillating caudal fin is carried out with Digital Particle Image Velocimetry (DPIV), and the variation of vortex distance and the vorticity in the range of oscillating frequency from 0.704 Hz to 1.17 Hz are analyzed. It is found that with the increase of the oscillating frequency, the vortex distance decreases and the peak of the vorticity increases, When the Strouhal number is smaller than 0.49, a larger thrust component is obtained. The distribution of the velocity circulation and the vortex distance in the different spanwise section of the caudal fin are given, and then the dimension of the vortex ring is determined. The radius of the vortex ring is 79.3 mm and the average velocity circulation is 28152.9 mm2/s at the oscillating frequency of 0.835 Hz. The model of 3-D vortex ring chain of flexible oscillating caudal fin is constructed based on the information of wake vortex field. Finally, an effective analysis method is provided for establishing the relationship of oscillating parameters for the caudal fin and the wake structure and the intrinsic mechanism of efficient fish swimming is investigated.

    Digital Particle Image Velocimetry (DPIV), flexible caudal fin, flow field, vortex ring

    1. Introduction

    Now experiments on the structure of flow field of an oscillating fin become a hot topic in studying bionic propulsive mechanism. The quantitative analysis on the structure of vorticity field with the Digital Particle Image Velocimetry (DPIV) is very important in revealing the inherent mechanism of fishswimming with high propulsive efficiency[1].

    The Particle Image Velocimetry (PIV) has been used to measure the flow field, and the flow visualization has been employed to determine the time-average velocity and locate the wake vortex position and find its structure[2,3]. From the measurement of the vorticity field of pitching and heaving motion of rigid and flexible foil, it was found that the kinetic parameters had great effects on the structure of wake field[4-8]. The different structures of vortical field of oscillating fin was examined with the increase of flexibility of the fin[9], and the radius ofvortex ring and the distance of vortex pair were found to be dependent on the swimming speed and the chord length of the fin[10]. In order to investigate the locomotion mechanism of fish, many researchers have carried out the experiments of the total flow field of fish, including the structure morphology of wake vortex of scombrid at horizontal and vertical section[11], the flow separation on the fish surface, the developing and shedding process of leading edge vortex and wake vortex of eel swimming[12], the vortex structure and its strength of the pectoral fin of crucian carp and sunfish with low- and high-velocity swimming[13], the vortical field structure at upper and lower margin of pectoral fin of bluegill and stickleback[14], the velocity and vortical field due to C-start of crucian carp and yellow catfish[15,16]. It was shown that the locomotion and the deformation of fish body and caudal fin have the positive effect on the structure of flow field and maneuvering of fish. Owing to the difficulty in testing the swimming parameters of live fish, the effect of caudal fin oscillating parameters on the characteristics of field structure was rarely presented in previous work.

    By adjusting the deformation, oscillating amplitude and frequency of caudal fin, fish can realize the optimal control of surrounding water and forms special wake vortex field, thus resulting in the maximum thrust and highest efficiency. An experiment on the wake vortex in different sections of flexible oscillating caudal fin with DPIV is carried out, and the effects of oscillating position and frequency of caudal fin on the vortex strength and vortex distance are analyzed. Based on the quantitative analysis of the geometric characteristics of vortical field, the model of 3-D vortex ring chain is constructed. A reliable means of research and analysis are provided for establishing the relationship of caudal oscillating parameters and wake field structure.

    Fig.1 Model of caudal fin and experimental equipments

    2. Experiment

    The experiment was carried out in a cyclic water tank at Jiangsu University of Science and Technology. Its section size is 300 mm×400 mm. The irradiation mode of DPIV uses laser irradiating. Tracer particles are made of Al2O3.The pixel size of CCD camera is 2048×2048. Working sequence is controlled by synchronizer. The experimental equipments are shown in Fig.1, and experimental parameters are presented in Table 1.

    Table 1 Parameters of oscillating caudal fin

    Fig. 2 Sections of caudal fin

    The shape of the caudal fin is based on the measurement of the actual carp. The material of flexible caudal fin is rubber. The distance between upper edge of caudal fin and free surface is 85 mm. On account of symmetry of the caudal fin alongthe spanwise direction, three sections were selected for test, which are dorsal tip of caudal fin (4-4), spanwise midpoint (0-0) and midpoint of dorsal lobe (2-2), and they are shown in Fig.2. In each plane, three oscillating positions were selected to study their flow field, which are the equilibrium position, the left 13.5oabout the equilibrium position (see Fig.3) and the right 13.5oabout the equilibrium position (see Fig.4). The shooting of the position of the oscillating angle of caudal fin was controlled in real time by a PLC module and optical electric axial angle encoder, the arrows in the figures showing the direction of caudal fin oscillating.

    Fig.3 Oscillating angle 13.5oleft about the equilibrium position

    Fig.4 Oscillating angle 13.5oright about the equilibrium position

    3. Results and discussion

    3.1Flow field characteristics at different oscillating positions and sections of the fin

    Because the caudal fin is asymmetrical in the spanwise direction, the characteristic of velocity field caused by oscillating motion of caudal fin is different in the 0-0 plane, 2-2 plane and 4-4 plane. Table 2 and Fig.5 present the average velocity in the flow field in these three planes at different oscillating positions and frequencies. Under the same oscillating frequency and position, the velocity away from the 0-0 plane exhibits the trend of declination. The results indicate that the average velocity of flow field is in inverse proportion to the oscillating frequency. That is, the increase of oscillating frequency causes the decrease of average velocity. In addition, the velocity gradient at the different oscillating positions has great difference, and there is little change of velocity along the spanwise direction when the oscillating angle of caudal fin is on the left 13.5oabout the equilibrium position.

    Fig.5 Average velocity at middle and left 13.5oposition at frequencies 0.835 Hz and 1.03 Hz

    Fig.6 Vorticity field around a caudal fin in different sections

    Fig.7 Vorticity field of caudal fin at different oscillating frequencies

    Along the spanwise direction, the characteristics of vorticity field at different sections also exhibit significant difference. Figure 6 presents the vorticity field with the oscillating position of 13.5oleft and frequency 0.835 Hz in different sections of fin. The distance of the vortex pair is shortened away from 0-0 plane, meanwhile, a pair of inverse vortices appear in the 4-4 plane. The vortices are considered as affiliated ones which never shed downstream, and the flow field could be considered as in the free stream condition.

    Table 2 Average velocity of the flow field

    3.2Effect of oscillating frequency on vortex distance and vorticity

    The oscillating frequency of caudal fin has an important impact on the formation, development and shedding of vortices, vorticity strength and vortex spacing and so on. The measured results in the spanwise midpoint plane (0-0 plane) and caudal fin oscillating for the 13.5oleft from the equilibrium position, including the velocity field and vorticity field are shown in Fig.7. Oscillating frequency ranges from 0.704 Hz to 1.17 Hz. Based on the data fetch with the DPIV, the calculation of vorticity is determined by self-designed function. The vorticity is indicated as

    whereX(i,j) andY(i,j) are the position of the node, andU(i,j) andV(i,j) are the velocity components at the nodes.

    It is seen from Fig.8 that the oscillating frequency of caudal fin has significant impact on the vortex distance and peak of vorticity. In the graph,Lrepresents the vortex interval. Under the different oscillating frequencies, the vortex distance is determined by calculating their center coordinate. Figure 8 presents the variation of vortex distance. The vortex distance decreases with the increase of oscillating frequency, and exhibits approximately the inverse linear relationship. On the one hand, the decrease of vortex distance increases the jet velocity and thrust, on the other hand it accelerates the shedding speed of wake vortices, and the energy of vortex can not be fully used by caudal fin. Finally, high oscillating frequencies often can not often acquire high propelling efficiency. Table 3 shows the vorticity at four oscillating frequencies. The peak of vorticity rises with the increase of oscillating frequency.

    Fig.8 Relationship between oscillating frequency and vortex distance

    Table 3 Peak of vorticity at different oscillating frequencies

    3.3Characteristic of the vorticity field at different Strouhal numbers

    The Strouhal number (St=fH/v) is related to flow velocity, oscillating frequency and wake vortex width. In order to discuss the effect of the Strouhal number on the structure of the flow field, the flow field was measured forr the thirty-five cases, in which the oscillating amplitude is 20o, corresponding to the wake vortex width 0.9114 m, the oscillating frequency is respectively taken as 0.75 Hz, 0.835 Hz, 0.91 Hz, 1.05 Hz and 1.17 Hz and the velocity 0.154 m/s, 0.176 m/s, 0.195 m/s, 0.215 m/s, 0.233 m/s, 0.254 m/s and 0.272m/s.Figure 9 presents the vorticity distribution of oscillating caudal fin atSt=0.35, 0.39, 0.43, 0.47, 0.54, 0.6. As is shown in Fig.9, the Strouhal number has a significant influence on the vorticity strength, location and spacing of the wake vortices. Figure 10 presents the curve of the center distance of vortex pair changing withSt. In the graph,Lrepresents thecenter distance of vortex pairs. Figure 11 gives the curve of the angle between connection line of vortex pair and the flow direction. In the graph,βrepresents the angle between connetction line of vortex pair and the flow direction. With the increase ofSt, the center distance of vortex pair is decreased and the formation of vortex pairs speed up. When the Strouhal number is smaller than 0.49, the angle between connection line of vortex pair and the flow direction is greater than 50o. Namely as the angle between jet velocity and flow velocity is smaller, the thrust component is larger.

    Fig.9 Vorticity field at different Strouhal numbers

    Fig.10 Variation of vortex pair interval

    Fig.11 Variation of included angle beween flow direction and line linking vortex pair centers

    Fig.12 Vorticity field in 0-0 plane

    3.4Model of 3-D vortex ring chain of flexible oscillating caudal fin

    3.4.1 Relation between the position of oscillating fin and characteristic of wake vortex

    Figure 12 shows the vorticity field in the 0-0 plane at the different positions with the frequency 0.835 Hz, and the direction of vortex pairs in Fig.12(b) is opposite to that of Fig.12(a), in addition, the vorticity in both conditions keeps the same. The negative vortex in Fig.12(a) is the starting vortex which is rolled up on the lee sides of caudal fin oscillating from right side to left side, and the positive vortex in Fig.9 is shed from the cross side of caudal fin oscillating to the middle side.

    3.4.2 Velocity circulation and geometrical properties of vortex ring

    In order to describe the geometrical properties of 3-D vortex ring of the caudal fin, the shape and the size of vortex must be determined. According to the Stokes theorem, the ring affected by the vortex can be determined by calculating the radial distribution of velocity circulation. When the velocity circulation reaches the maximum, the radius corresponding to the peak value is the vortex radius. The velocity circulation is defined as

    The selection of calculation path is shown in Fig.13.

    Figures 14 and 15 show the radial distribution of the velocity circulation in the vorticity field in the 0-0 plane with the oscillating frequency 0.835 Hz and at the position of left 13.5o. The peaks of velocity circulation of the red vortex and the blue vortex are 21652 mm2/s and 34653 mm2/s respectively, and their radii are both 30 mm accordingly. So the influence radius in this condition is 30 mm.

    According to the analysis in Section 3.1, in the different sections of the caudal fin, the vortex distance is gradually decreasing away from the center plane. In the different sections of fin, the flow field keeps the shape of vortex pair, and the value of velocity circulation is almost identical, while the relative position and distance of vortex pairs vary. The model of 3-D vortex ring is constructed through linking vortices with the radius of 30 mm in different planes along the spanwise direction. As the oscillating frequency is 0.835 Hz, the vortex distance is 158.6 mm and the radius is 30 mm. Hence corresponding to the 3-D vortex ring, its internal and external diameters are 128.6 mm and 188.6 mm respectively. The shape of the vortex ring is assumed as a circle.

    Fig.13 Calculation path of velocity circulation

    Fig.14 Velocity circulation of negative vortex

    With the evolution of the vortex, vortex rings will continue to move toward the downstream, so vortex ring chain is formed. Figures 16 and 17 present the relationship of the geometry of vortex chain, the vorticity and oscillating position, and the zigzag chain is composed by a series of vortex pairs. Obviously, the central vortex ring creates a jet, and the velocity component of the jet flow along the advancingdirection produces the thrust of the oscillating caudal fin. Because the spanwise length of caudal fin is 175 mm, the diameter of 3-D vortex ring and the span length of the caudal fin almost keep the same, and the shape of the vortex ring is near a circle.

    Fig.15 Velocity circulation of positive vortex

    Fig.16 Top view of vortex chain

    Fig.17 Side view of vortex chain

    Especially, the 3-D vortex rings provide not only the horizontal thrust and lateral oscillating force, but also the small vertical components, namely the lift. It indicates that the 3-D vortex ring is not perpendicular to the plane strictly, but must have a little oblique angle. The oblique angle of vortex ring could be determined according to the coordinates of vortex centers. The oblique angle of vortex ring is 9.85oat the oscillating frequency 0.835 Hz, This conclusion is proved by the experimental results of Lau[4].

    4.Conclusions

    The experiments with the DPIV have been carried out to study the characteristics of the flow field of flexible oscillating caudal fin. The average velocity of flow field from the different film planes is presented for different oscillating positions and frequencies. It is found that the vortex flow fields exhibit significant difference in properties in different sections along the spanwise direction of caudal fin. Through the analysis of the vorticity field of the spanwise in the midpoint plane of the caudal fin with the oscillating positions of 13.5oleft, the effects of oscillating frequency of caudal fin on the vortex distance and vorticity magnitude have been investigated,

    In order to describe the geometrical properties of 3-D vortex ring of the caudal fin, the radius affected by the vortex is determined by calculating the radial distribution of the velocity circulation. According to the results of the vortex distance, the geometry size and the vertical oblique angle of 3-D vortex ring are presented, and then the model of 3-D vortex ring chain of flow field of oscillating caudal fin is constructed. The model gives the quantitative relationship of the oscillating parameter and the wake vortex structure of the caudal fin, and it elucidates the wake field properties produced by the oscillating caudal fin of actual fish swimming. Therefore, it provides the research foundation for establishing the analysis model of oscillating parameters, the flow field structure and the thrust of caudal fin.

    [1] TONG Bing-gang, LU Xi-yun. A review on biomechanics of animal flight and swimming[J].Advances in Mechanics.2004, 34(1): 1-8(in Chinese).

    [2] Daichin, ZHAO Li-li. PIV measurement of wake flow of an airfoil near free surface and the POD analysis[J].ChineseJournal of Hydrodynamics,2008, 23(2): 196-203(in Chinese).

    [3] LI Hai-feng, CHEN Hong-xun. Experimental and numerical investigation of free surface vortex[J].Journal of Hydrodynamics,2008, 20(4): 485-491.

    [4] LAU T. C. W., KELSO R. M. and HASSAN E. R. Flow visualization of a pitching and heaving hydrofoil[C].The 15th Australasian Fluid Mechanics Conference.Sydney, Australia: The University of Sydney, 2004, 13-17.

    [5] HOVER F. S., TRIANTAFYLLOU M. S. Effect of angle of attack profiles in flapping foil propulsion[J].Journal of Fluids and Structures,2004, 19(1): 37-47.

    [6] SCHOUVEILER L., HOVER F. S. and TRIANTAFYLLOU M. S. Performance of flapping foil propulsion[J].Journal of Fluids and Structures,2005, 20(7): 949-959.

    [7] WANG Zhao, SONG Hong-jun and YIN Xie-zhen. The visualization of vortex field of unsteady motion for2D foil-heaving motion[J].Experiments and Measurements in Fluid Mechanics,2004, 18(2): 71-76(in Chinese).

    [8] LIU Zhen, HYUN Beom-soo and KIM Moo-rong et al. Experimental and numerical study for hydrodynamic characteristics of an oscillating hydrofoil[J].Journal of Hydrodynamics,2008,20(3): 280-287.

    [9] HEATHCOTE S., MARTIN D. and GURSUL I. Flexible flapping wing propulsion at zero free stream velocity[C].The 33rd AIAA Fluid Dynamics Conference and Exhibit.Orlando, Florida, USA, 2003, 23-26.

    [10] NAUEN J. C., LAUDER G. V. Hydrodynamics of caudal fin locomotion by chub mackerel, scomber japonicus (scombridae)[J].The Journal Experimental Biology,2002, 205: 1709-1724.

    [11] MULLER U. K., SMIT J. and STAMHUIS E. J. How the body contributes to the wake in undulatory fish swimming: Flow fields of a swimming eel (anguilla )[J].Journal of Experimental Biology.2001, 204: 2751-2762.

    [12] YANG Yi-hong, YIN Xie-zhen and LU Xi-yan. Flow visualization over a 2-D traveling wave wall[J].Journal of Experiments in Fluid Mechanic,2005, 19(2): 84-90(in Chinese).

    [13] DRUCKER E. G., LAUDER G. V. Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quatified using digital particle image velocimetry[J].Journal of Experimental Biology,1999, 202: 2393-2412

    [14] JEFFREY A. W. Dynamics of pectoral fin rowing in a fish with an extreme rowing stroke: The threespine stickleback (gasterosteus aculeatus)[J].Journal of Experimental Biology,2004, 207: 1925-1939.

    [15] JING Jun, LI Sheng and LU Xi-yan et al. The kinematic analysis of C-start in crucian carp (carassius auratus) [J].Journal of Experimental Mechanics,2004, 19(3): 276-282(in Chinese).

    [16] JING Jun, YIN Xie-zhen and LU Xi-yun. Observation and hydrodynamic analysis on fast-start of yellow catfish (pelteobagrus fulvidraco)[J].Progress in Natural Science,2005, 15(1): 34-40.

    November 3, 2009, Revised January 22, 2010)

    * Project supported by the National Natural Science Foundation of China (Grant No. 50879031), the Key laboratory of Jiangsu Province (Grant No. CT0701).

    Biography:WANG Zhi-dong (1967-),Male, Ph. D., Professor

    2010,22(3):393-401

    10.1016/S1001-6058(09)60070-6

    亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片 | 不卡一级毛片| 黄色女人牲交| 午夜福利在线观看吧| 性欧美人与动物交配| 黄色毛片三级朝国网站| 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月| 99精国产麻豆久久婷婷| 热99re8久久精品国产| 亚洲在线自拍视频| 老汉色∧v一级毛片| 男人舔女人下体高潮全视频| 一夜夜www| 国产欧美日韩一区二区精品| 一级毛片女人18水好多| 亚洲成人久久性| 亚洲精品一二三| 亚洲七黄色美女视频| 在线观看日韩欧美| 我的亚洲天堂| 久久久久久免费高清国产稀缺| 国产免费av片在线观看野外av| 高清黄色对白视频在线免费看| 精品国产一区二区久久| 亚洲午夜理论影院| 亚洲成人精品中文字幕电影 | 国产aⅴ精品一区二区三区波| 又黄又爽又免费观看的视频| 国产一区在线观看成人免费| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看| 无限看片的www在线观看| 日韩欧美国产一区二区入口| 亚洲性夜色夜夜综合| 国产精品美女特级片免费视频播放器 | 亚洲男人的天堂狠狠| 又黄又粗又硬又大视频| 欧美在线黄色| 电影成人av| 精品久久久久久成人av| 国产精品98久久久久久宅男小说| 在线观看一区二区三区| 亚洲精品中文字幕一二三四区| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| 久久人人97超碰香蕉20202| 啦啦啦 在线观看视频| 久久香蕉激情| 日日夜夜操网爽| 亚洲国产欧美日韩在线播放| 久久久久久久午夜电影 | 丁香欧美五月| 免费人成视频x8x8入口观看| 美女扒开内裤让男人捅视频| 777久久人妻少妇嫩草av网站| 精品一区二区三卡| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 国产精品国产高清国产av| 精品一区二区三卡| 高清毛片免费观看视频网站 | av欧美777| 满18在线观看网站| 国产精品一区二区在线不卡| 日韩中文字幕欧美一区二区| 亚洲中文av在线| 在线观看免费午夜福利视频| 国产亚洲精品综合一区在线观看 | √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 欧美黑人精品巨大| 久久性视频一级片| 中文字幕av电影在线播放| 国产成人欧美| 女生性感内裤真人,穿戴方法视频| 一级作爱视频免费观看| netflix在线观看网站| 国产精品影院久久| 亚洲国产精品一区二区三区在线| 国产激情久久老熟女| 亚洲av五月六月丁香网| 精品一品国产午夜福利视频| www.999成人在线观看| 亚洲性夜色夜夜综合| 中亚洲国语对白在线视频| 丝袜人妻中文字幕| 久99久视频精品免费| 国产亚洲欧美98| 亚洲国产中文字幕在线视频| 亚洲在线自拍视频| 国产成+人综合+亚洲专区| 欧美成人午夜精品| 久久久久亚洲av毛片大全| 精品一区二区三卡| 日本黄色日本黄色录像| 日韩欧美免费精品| 免费看十八禁软件| 桃色一区二区三区在线观看| 久久人人爽av亚洲精品天堂| 国产精品乱码一区二三区的特点 | 日本a在线网址| 亚洲第一欧美日韩一区二区三区| 亚洲精品成人av观看孕妇| 亚洲av美国av| 性少妇av在线| 国产精品1区2区在线观看.| 少妇被粗大的猛进出69影院| 两性夫妻黄色片| 日韩大尺度精品在线看网址 | av在线天堂中文字幕 | 乱人伦中国视频| 亚洲自偷自拍图片 自拍| 大型黄色视频在线免费观看| 免费搜索国产男女视频| 日韩大尺度精品在线看网址 | 极品教师在线免费播放| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| 天堂√8在线中文| 国产成人av教育| av电影中文网址| 午夜福利欧美成人| 亚洲人成电影观看| 99精品在免费线老司机午夜| 日韩欧美国产一区二区入口| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| 99国产极品粉嫩在线观看| 91av网站免费观看| 国产精品一区二区免费欧美| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久精品吃奶| 成人18禁高潮啪啪吃奶动态图| 999久久久精品免费观看国产| 亚洲av日韩精品久久久久久密| 夜夜夜夜夜久久久久| 亚洲av五月六月丁香网| 亚洲av日韩精品久久久久久密| 久久久国产成人精品二区 | 国产av又大| 一级毛片高清免费大全| 少妇被粗大的猛进出69影院| 国产熟女午夜一区二区三区| 亚洲av片天天在线观看| 午夜a级毛片| 91国产中文字幕| 中文字幕av电影在线播放| 久久国产乱子伦精品免费另类| 久久久久久久精品吃奶| 9色porny在线观看| 色在线成人网| 真人一进一出gif抽搐免费| 中文字幕高清在线视频| 男女做爰动态图高潮gif福利片 | 欧美中文综合在线视频| 18禁观看日本| 久久久久久久久久久久大奶| 99精品在免费线老司机午夜| 一区二区日韩欧美中文字幕| 美女 人体艺术 gogo| 日韩精品中文字幕看吧| 色综合站精品国产| 久久伊人香网站| 午夜视频精品福利| 国内久久婷婷六月综合欲色啪| 久久婷婷成人综合色麻豆| 国产一区二区三区在线臀色熟女 | 欧美老熟妇乱子伦牲交| 欧美成人性av电影在线观看| 国产精品亚洲一级av第二区| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月| 国产野战对白在线观看| 亚洲精品粉嫩美女一区| 国内毛片毛片毛片毛片毛片| 99riav亚洲国产免费| 欧美另类亚洲清纯唯美| 怎么达到女性高潮| 老司机靠b影院| 精品久久久久久久毛片微露脸| 中文字幕另类日韩欧美亚洲嫩草| 真人一进一出gif抽搐免费| 高清在线国产一区| 色老头精品视频在线观看| 午夜a级毛片| 欧美乱妇无乱码| 在线播放国产精品三级| 国产精品1区2区在线观看.| 黄片小视频在线播放| 成年人黄色毛片网站| 一级片'在线观看视频| 欧美日韩国产mv在线观看视频| 亚洲国产精品999在线| 免费高清在线观看日韩| 国产色视频综合| 欧美最黄视频在线播放免费 | 午夜免费观看网址| 丝袜人妻中文字幕| 亚洲精品国产色婷婷电影| 在线观看66精品国产| av视频免费观看在线观看| 欧美成人性av电影在线观看| 精品国产一区二区久久| 性少妇av在线| 变态另类成人亚洲欧美熟女 | 国产精品二区激情视频| 一边摸一边抽搐一进一小说| 老司机午夜福利在线观看视频| 丁香六月欧美| 亚洲专区中文字幕在线| 啦啦啦 在线观看视频| 中文欧美无线码| 精品欧美一区二区三区在线| 99国产精品99久久久久| 亚洲成人精品中文字幕电影 | 正在播放国产对白刺激| 中文亚洲av片在线观看爽| 久久中文看片网| 欧美日韩视频精品一区| 9191精品国产免费久久| 国产又爽黄色视频| 欧美激情高清一区二区三区| 很黄的视频免费| 欧美激情久久久久久爽电影 | 亚洲男人天堂网一区| 日韩高清综合在线| 操美女的视频在线观看| 人妻丰满熟妇av一区二区三区| 亚洲欧美精品综合一区二区三区| 国产三级在线视频| 国产av精品麻豆| 久久久精品国产亚洲av高清涩受| 9色porny在线观看| 免费在线观看影片大全网站| 亚洲精品美女久久久久99蜜臀| 久久精品成人免费网站| 国产精品久久电影中文字幕| 亚洲国产精品合色在线| 国产xxxxx性猛交| 午夜亚洲福利在线播放| 国产精品香港三级国产av潘金莲| 视频区图区小说| 午夜激情av网站| 亚洲人成77777在线视频| 黄色丝袜av网址大全| av天堂在线播放| 男人的好看免费观看在线视频 | 18美女黄网站色大片免费观看| 黑人操中国人逼视频| 美女高潮喷水抽搐中文字幕| 色尼玛亚洲综合影院| 乱人伦中国视频| 久久性视频一级片| 色老头精品视频在线观看| 国产一区二区三区综合在线观看| 两人在一起打扑克的视频| 免费看十八禁软件| 一夜夜www| 国产亚洲欧美98| 久久国产精品影院| 欧美成人性av电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美老熟妇乱子伦牲交| 多毛熟女@视频| 国产三级在线视频| 免费在线观看亚洲国产| 亚洲 国产 在线| 在线观看免费日韩欧美大片| 一级黄色大片毛片| 亚洲国产精品一区二区三区在线| 国产伦一二天堂av在线观看| 淫秽高清视频在线观看| 免费一级毛片在线播放高清视频 | 嫩草影院精品99| 丰满迷人的少妇在线观看| 国产真人三级小视频在线观看| 中文字幕人妻熟女乱码| 身体一侧抽搐| 午夜精品在线福利| 亚洲熟女毛片儿| 亚洲精品中文字幕一二三四区| 美女福利国产在线| 久久香蕉国产精品| 亚洲精品久久午夜乱码| 91精品三级在线观看| 高清在线国产一区| 国产av一区二区精品久久| 少妇的丰满在线观看| 嫩草影视91久久| 久久九九热精品免费| 成年版毛片免费区| 精品福利永久在线观看| 欧美激情久久久久久爽电影 | 亚洲第一欧美日韩一区二区三区| 久久久国产欧美日韩av| 久久久久久亚洲精品国产蜜桃av| 日韩欧美国产一区二区入口| 久久久精品国产亚洲av高清涩受| 国产成人欧美| 国产熟女午夜一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲精品中文字幕一二三四区| 精品高清国产在线一区| 国产午夜精品久久久久久| 久久人妻av系列| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 少妇被粗大的猛进出69影院| www.熟女人妻精品国产| 免费av毛片视频| 婷婷丁香在线五月| 成人三级黄色视频| 精品欧美一区二区三区在线| 天天影视国产精品| 老司机福利观看| 国产男靠女视频免费网站| 国产精品偷伦视频观看了| 可以在线观看毛片的网站| 热re99久久精品国产66热6| 午夜激情av网站| 女性生殖器流出的白浆| 黑人猛操日本美女一级片| 伊人久久大香线蕉亚洲五| 亚洲av第一区精品v没综合| 怎么达到女性高潮| 99re在线观看精品视频| 国产欧美日韩综合在线一区二区| 国产精品亚洲一级av第二区| 国产精品爽爽va在线观看网站 | 热99国产精品久久久久久7| 黄片小视频在线播放| 多毛熟女@视频| 男人舔女人下体高潮全视频| 亚洲男人的天堂狠狠| 日本欧美视频一区| av网站在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 性欧美人与动物交配| 免费看a级黄色片| 操出白浆在线播放| 亚洲专区中文字幕在线| 精品一区二区三区四区五区乱码| 99国产极品粉嫩在线观看| 国产国语露脸激情在线看| 国产欧美日韩一区二区三区在线| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| e午夜精品久久久久久久| 欧美+亚洲+日韩+国产| 国产极品粉嫩免费观看在线| 欧美+亚洲+日韩+国产| 99热国产这里只有精品6| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 999久久久精品免费观看国产| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 十八禁人妻一区二区| 久久国产精品影院| 在线观看午夜福利视频| 国产视频一区二区在线看| 18美女黄网站色大片免费观看| 国产精品98久久久久久宅男小说| 丝袜人妻中文字幕| 不卡一级毛片| 久久香蕉激情| 国产深夜福利视频在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费av在线播放| 最新在线观看一区二区三区| 久久国产精品男人的天堂亚洲| 成人国语在线视频| 国产精品久久久av美女十八| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久久久,| 狂野欧美激情性xxxx| 欧美av亚洲av综合av国产av| 亚洲avbb在线观看| 精品国产美女av久久久久小说| 日本三级黄在线观看| 少妇被粗大的猛进出69影院| 91老司机精品| 五月开心婷婷网| 丁香六月欧美| 久久中文字幕人妻熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 黄片播放在线免费| 亚洲久久久国产精品| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看| 国产亚洲精品一区二区www| 丝袜美腿诱惑在线| 亚洲va日本ⅴa欧美va伊人久久| 日日干狠狠操夜夜爽| 女性被躁到高潮视频| 日日干狠狠操夜夜爽| 亚洲av五月六月丁香网| 嫁个100分男人电影在线观看| 国产99白浆流出| 久久午夜亚洲精品久久| ponron亚洲| 国产麻豆69| 日本五十路高清| 国产单亲对白刺激| 精品一品国产午夜福利视频| 久久热在线av| 国产一区二区在线av高清观看| 精品高清国产在线一区| 中文字幕人妻丝袜制服| 成年版毛片免费区| 在线观看免费日韩欧美大片| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 波多野结衣av一区二区av| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 免费搜索国产男女视频| 热re99久久精品国产66热6| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av在哪里看| 欧美中文日本在线观看视频| 日韩精品免费视频一区二区三区| 制服人妻中文乱码| 国产一区二区激情短视频| 中文字幕高清在线视频| 18禁美女被吸乳视频| 岛国在线观看网站| 中国美女看黄片| 亚洲精品国产区一区二| 无人区码免费观看不卡| 免费少妇av软件| 国内久久婷婷六月综合欲色啪| 99热只有精品国产| 亚洲中文日韩欧美视频| 黄频高清免费视频| 亚洲精品成人av观看孕妇| 男人操女人黄网站| 最好的美女福利视频网| 午夜成年电影在线免费观看| 亚洲精品美女久久久久99蜜臀| 亚洲中文av在线| 色综合婷婷激情| 日韩欧美免费精品| 一二三四在线观看免费中文在| 久久精品亚洲av国产电影网| 精品电影一区二区在线| 欧美黄色淫秽网站| 久久亚洲精品不卡| 一级毛片女人18水好多| 欧美激情高清一区二区三区| 麻豆成人av在线观看| 国产色视频综合| 日韩精品青青久久久久久| 精品久久蜜臀av无| 国产精品国产av在线观看| 国产精品一区二区免费欧美| 久久久精品欧美日韩精品| 色婷婷久久久亚洲欧美| 久久性视频一级片| 人人妻,人人澡人人爽秒播| 婷婷丁香在线五月| 岛国视频午夜一区免费看| 在线观看免费高清a一片| 黄频高清免费视频| 黄网站色视频无遮挡免费观看| 免费在线观看黄色视频的| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| 19禁男女啪啪无遮挡网站| 香蕉久久夜色| 亚洲五月天丁香| 国产99白浆流出| 日本撒尿小便嘘嘘汇集6| 日韩精品免费视频一区二区三区| 高潮久久久久久久久久久不卡| 大陆偷拍与自拍| 国产精品98久久久久久宅男小说| 99精品久久久久人妻精品| 无遮挡黄片免费观看| 国产片内射在线| 国产三级黄色录像| a级毛片黄视频| 午夜精品在线福利| 久久久国产欧美日韩av| 欧美大码av| 久久精品人人爽人人爽视色| 欧美激情久久久久久爽电影 | 久久精品国产99精品国产亚洲性色 | 亚洲av成人不卡在线观看播放网| 99久久综合精品五月天人人| 18禁国产床啪视频网站| 男男h啪啪无遮挡| 久久久久久久精品吃奶| 12—13女人毛片做爰片一| 国产亚洲欧美98| 少妇被粗大的猛进出69影院| 99国产精品99久久久久| 母亲3免费完整高清在线观看| 999久久久精品免费观看国产| 操美女的视频在线观看| 国产一卡二卡三卡精品| 午夜日韩欧美国产| 麻豆av在线久日| 嫩草影视91久久| www.精华液| 国产午夜精品久久久久久| 免费日韩欧美在线观看| 青草久久国产| 国产三级在线视频| 最新美女视频免费是黄的| 午夜福利在线免费观看网站| 9热在线视频观看99| 99香蕉大伊视频| 亚洲国产精品sss在线观看 | 国产精品久久久人人做人人爽| 久久 成人 亚洲| 精品福利永久在线观看| 亚洲专区中文字幕在线| √禁漫天堂资源中文www| 亚洲中文av在线| 9热在线视频观看99| 在线观看免费午夜福利视频| 日韩精品免费视频一区二区三区| 日日夜夜操网爽| 大型av网站在线播放| 妹子高潮喷水视频| 亚洲第一欧美日韩一区二区三区| 亚洲精品美女久久久久99蜜臀| 免费在线观看视频国产中文字幕亚洲| 高清毛片免费观看视频网站 | 国产欧美日韩综合在线一区二区| 在线观看免费视频网站a站| 丁香六月欧美| 日韩人妻精品一区2区三区| 老熟妇仑乱视频hdxx| 美女扒开内裤让男人捅视频| 成人免费观看视频高清| 欧美日韩av久久| 视频区图区小说| 两个人免费观看高清视频| 成人精品一区二区免费| 中国美女看黄片| 精品人妻1区二区| 91大片在线观看| 日韩欧美免费精品| 色哟哟哟哟哟哟| 成人三级做爰电影| 亚洲熟妇熟女久久| 国产乱人伦免费视频| 日韩有码中文字幕| 一区福利在线观看| 在线国产一区二区在线| 麻豆av在线久日| 免费看a级黄色片| 9色porny在线观看| 亚洲七黄色美女视频| 一进一出抽搐gif免费好疼 | 久久香蕉国产精品| 一二三四在线观看免费中文在| 极品人妻少妇av视频| 亚洲第一青青草原| 国产精品乱码一区二三区的特点 | 一区二区三区国产精品乱码| 免费看十八禁软件| 亚洲成人精品中文字幕电影 | 久久精品国产清高在天天线| 美国免费a级毛片| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品999在线| 精品国内亚洲2022精品成人| 电影成人av| 亚洲少妇的诱惑av| 国产日韩一区二区三区精品不卡| 一夜夜www| 欧美一区二区精品小视频在线| 午夜成年电影在线免费观看| 天天添夜夜摸| 超碰97精品在线观看| 校园春色视频在线观看| 五月开心婷婷网| 国产精品亚洲一级av第二区| 中文字幕色久视频| 黄色视频不卡| 在线观看免费视频日本深夜| 欧美丝袜亚洲另类 | 久99久视频精品免费| 日韩欧美一区二区三区在线观看| 9191精品国产免费久久| 成年人黄色毛片网站| 精品一品国产午夜福利视频| netflix在线观看网站| 成年人黄色毛片网站| av欧美777| 精品久久久精品久久久| 久久久国产成人免费| 国产蜜桃级精品一区二区三区| 午夜福利影视在线免费观看| 国产熟女午夜一区二区三区| av视频免费观看在线观看| 亚洲专区字幕在线| 免费在线观看黄色视频的| 1024香蕉在线观看| 在线十欧美十亚洲十日本专区| 在线观看免费午夜福利视频| 久久精品国产清高在天天线| 在线十欧美十亚洲十日本专区| 国产成人一区二区三区免费视频网站| 在线免费观看的www视频| 欧美性长视频在线观看| 国产极品粉嫩免费观看在线| 在线免费观看的www视频| 激情在线观看视频在线高清| e午夜精品久久久久久久|