• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NEW WAKE OSCILLATOR MODEL FOR PREDICTING VORTEX INDUCED VIBRATION OF A CIRCULAR CYLINDER*

    2010-07-02 01:37:56XUWanhai

    XU Wan-hai

    Key Laboratory of Port and Ocean Engineering, Tianjin University, Tianjin 300072, China,

    E-mail: wanhaixu@hotmail.com

    WU Ying-xiang, ZENG Xiao-hui, ZHONG Xing-fu

    Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

    YU Jian-xing

    Key Laboratory of Port and Ocean Engineering, Tianjin University, Tianjin 300072, China

    A NEW WAKE OSCILLATOR MODEL FOR PREDICTING VORTEX INDUCED VIBRATION OF A CIRCULAR CYLINDER*

    XU Wan-hai

    Key Laboratory of Port and Ocean Engineering, Tianjin University, Tianjin 300072, China,

    E-mail: wanhaixu@hotmail.com

    WU Ying-xiang, ZENG Xiao-hui, ZHONG Xing-fu

    Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

    YU Jian-xing

    Key Laboratory of Port and Ocean Engineering, Tianjin University, Tianjin 300072, China

    This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator model results. Good agreement with experimental results is found.

    vortex induced vibration, wake oscillator model, circular cylinder, van der Pol equation

    1. Introduction

    Vortex-Induced Vibration (VIV) is caused by the vortex shedding behind bluff bodies and may lead to degradation of structural performance or possibly even structural failure. It is a particularly important issue for offshore structures such as pipes, risers and mooring lines, therefore, it must be considered in engineering designs. Recent reviews on the VIVs can be found in Ref.[1-3].

    Several ways were adopted to predict the dynamic behavior of structures experiencing vortex induced vibration in the literature. One VIV prediction method consists of solving the Navier-Stokes equations by the Direct Numerical Simulation (DNS) for the fluid around the circular cylinder and to compute the hydrodynamic loads on it[4,5], however, this approach is made difficult by the fact that Reynolds numbers in most industrial applications cannot be well estimated. A well-known alternative is to use phenomenological models based on wake oscillators. Combined with accessible analytical considerations, they help reveal the underlying physical nature. This explains several recent improvements in this approach. The original kernel in the form of van der Pol or Rayleigh equation was reinterpreted by Skop and Balasubramanian[6], Skopand Luo[7], Krenk and Nielsen[8]and Plaschko[9]. More recently, Facchinetti et al.[10]presented an excellent review on the dynamics of wake oscillator models for 2-D vortex-induced vibrations. Three different types of coupling effects (displacement, velocity and acceleration) of the cylinder movement on the lift fluctuation were considered. It is found that by the displacement and velocity couplings only, one fails to predict the lift phase observed in experiments of vortex shedding from cylinders that were forced to oscillate. By the displacement coupling alone, the lift magnification at lock-in and almost all important features of vortex induced vibrations at low values of the Skop Griffin parameterSGcan not be predicted, while by the velocity coupling alone, the range of lock-in for low values ofSGcan not be determined. On the other hand, the acceleration coupling may be used to qualitatively model the features of VIV considered. The same authors[11]extended the model to predict VIV and Vortex Induced Waves (VIW) for cables and successfully predicted the experimental response behavior of a towed cable. Mathelin and De Langre[12]extended Facchinetti’s results to predict VIV of cables subjected to sheared flows. Violette et al.[13]predicted the vortex-induced vibrations of long structures using a wake oscillator model developed by Facchinetti et al.[10], and compared the predicted results with DNS and experimental results. Lin et al.[14]modified the fluid damping used in the structure-wake oscillators proposed by Facchinetti et al.[10], into a nonlinear fluid damping in the form of the square-velocity in the response analysis of vortex induced vibrations.

    The wake oscillator model presented by Facchinetti et al.[10]can qualitatively reproduce some aspects of VIV for rigid cylinders elastically supported, but fails to describe quantitatively the cylinder oscillation amplitude, also no relations were obtained between the model parameters in the model, which would vary considerably from experiment to experiment. This study aims to overcome these shortcomings, by modifying Facchinetti’s model and applying a new approach to estimate the empirical parameters in the wake oscillator model.

    This article is divided in five sections. Brief descriptions of the structural and wake oscillator model are given in the next section. In section 3, the empirical parameters are estimated from experimental data based on a forced wake oscillator for the vortex shedding behind a structure whose movement is imposed. Then, the comparations of the present model results are made with the experimental data and Facchinetti’s model results in Section 4. Finally, in the last section, conclusions are drawn based on the obtained results.

    Fig.1 Model of coupled structure and wake oscillators for 2-D vortex-induced vibrations

    2. Model description

    Consider the elastically supported rigid circular cylinder shown schematically in Fig.1. The coupling wake and structure oscillators are described by[10]:

    where the dot represents the derivative with respect to dimensionlesst,yis the dimensionless in-plane cross-flow displacement of the structure, and the dimensionless wake variableq(Fig.1) may be associated to the fluctuating lift coefficient on the structure,Aandεare the empirical parameters,ξandδare the structure reduced damping and angular frequency, respectively,γis a stall parameter[6,7],μis mass ratio,Mis essentially a mass parameter for the effect of the wake on the structure. The above parameters are related by the following expressions:

    whereCL0is the reference lift coefficient of a fixed structure subjected to vortex,Dis the diameter of the circular cylinder,Uis the free stream velocity of the uniform flow,Stis the Strouhal number,ΩsandfΩare the vortex shedding angular frequency and the structure angular frequency, respectively,Uris the reduced velocity,CDis the drag coefficient of the structure,mis the structural mass, including the fluid-added mass, andρis the fluid density.

    3. The determination of empirical parameters

    All parameters presented above are estimated in this section, assumingSt=0.2,CL0=0.3 in the sub-critical range, 300

    Fig.2 Lock-in bands in the (ω,y0) plane for synchronization of vortex shedding with transverse cylinder vibration. Experimental data

    Considering an harmonic motion with dimensionless amplitudey0and angular frequencyω, namelyy=y0cos(ωt), the actionfof the structure on the fluid wake oscillator can be expressed as:

    A reduced velocity is defined based on the forcing frequency asUr=1/(ωSt)[10]. With the hypothesis of harmonicity and frequency synchronization, the response is sought in the formq=q0cos(ωt?ψ), whereq0andψare timeindependent amplitude and phase, respectively. Substituting them into the wake oscillator, Eq.(1), and considering only the main harmonic contribution of the nonlinearities, with some elementary algebraic operations, one obtains the amplitude of the transfer function o f the wake oscillator, with the same form as shown inRef.[10]:

    The free wake oscillator responseq0=2 is supposed to prevail on the forced response, which defines a lock-out state, as a boundary defined by polynomial (4) in the (ω,y0) plane. The lock-in domain is shown in Fig.2, the parameterAmay now be chosen by matching the model response (4) to experimental data on the lock-in extension in the literature, which can be expressed as:

    For a given set of model parameters, the amplitude of the cylinder vibration is a function of the structural damping factor, the mass ratio, as well as the ratio of the nominal vortex shedding frequency to the natural frequency of the cylinder structure.

    However, the maximum structure displacement amplitude at the lock-in is typically expressed in the literature as a function of a single combined mass-damping parameter, namely the Skop-Griffin parameterS(=2π3St2μξ). Recently, Sarpkaya[1]

    Gdevised a new and relatively simple curve-fitting given by

    for a rigid cylinder, as is plotted in Fig.3.

    Facchinetti et al.[10]defined a reference resonance state by lettingω=δ=1 atUr=1/St, the maximum structure displacement amplitude is obtained and can be written as:

    The direct substitution of Eqs.(5) and (6) into Eq.(7) gives the empirical parameterε. In fact,εdepends on the material properties of the structure, instead of being a universal constant.

    Fig.3 Experimental measurements of the modally normalized maximum amplitude versus the Skop-Griffin parameterSGand the proposed curve-fitting: Eq.(6) (Sarpkaya[1])

    4. Numerical results and discussion

    In this section, firstly, comparisons of the calculations based on the present wake oscillator model, experiments by Khalak and Williamson[15]and the precious wake oscillator model by Facchinetti et al.[10]are made. The circular cylinder is subjected to an incident uniform flow, and supported by a spring and a damper. The same mass and damper coefficients used in Khalak and Williamson[15]were used in the present numerical investigation. They are:ξ=5.42× 10?3andμ=2.4 with the reduced velocity varying from 1 to 16

    Figure 4 shows the amplitude of the oscillation as a function of the reduced velocity obtained in the present work and other numerical, experimental data. It can be seen that the present model can be used to capture the initial, upper and lower branches reported in Khalak and Williamson[15]. The numerical results obtained for the upper branch are quite close to the experimental data. However, those obtained by Facchinetti’s model[10]obviously deviate from the experimental data. The vibration frequency is plotted in Fig.5. The new wake oscillator model results seem to agree fairly well with the experimental data at low values of the reduced velocity, but underestimate the vibration frequency at high values of the reduced velocity.

    Fig.4 The oscillation amplitude of the elastically supported rigid circular cylinder as a function of reduced velocity

    Fig.5 The oscillation frequency of the elastically supported rigid circular cylinder as a function of reduced velocity

    A striking phenomenon was found by Govardhan and Williamson[16]who studied the transverse VIV of a cylinder of low mass and low damping with no structural restoring force. The mass ratioμwas 0.52, which is less than the“critical mass ratio” (0.542 as obtained by a group of free excited vibration tests), with the reduced dampingξ=0.0052. Present wake oscillator model and the previous model by Facchinetti et al.[10]are both able to describe the phenomenon of the persistent lock-in, as is illustrated in Fig.6, where the structural oscillation amplitudey0is plotted as a function of the reduced velocityUr. It appears that, our model results agree better with experimental data, while the predicted results by Facchinetti’s model are lower than experimental results. The evolution of frequency is plotted in Fig.7, where the results of the present wake oscillator model and Facchinetti’s model results are both consistent with experimental data.

    Fig.7 The oscillation frequency of the elastically supported rigid circular cylinder as a function of reduced velocity. ξ=5.2× 10?3and μ=0.52

    From the case studies described above, it can be seen that the new wake oscillator model can predict the rigid cylinder VIV qualitatively and quantitatively.

    5. Conclusions

    A new wake oscillator model is presented for the vortex induced vibration of an elastically supported cylinder. It is different from the wake oscillator model proposed Facchinetti et al.[10], with a set of relations postulated between the empirical parameters and the mass ratio and damping parameters that govern the oscillatory response. These relations are used to calculate empirical parameters which were assumed constants by Facchinetti et al..

    The model was successfully used to predict quantitatively the resonant response amplitude and frequency for elastically supported cylinder. The predicted results are compared to the experimental data and Facchinetti’s model results, with a good agreement with experimental data. The model has overcome some shortcomings in Facchinetti’s model. These results show the applicability and usefulness of the present model for predicting vortex induced vibration of engineering structures.

    Finally, as a challenging task, it is desirable to extend the present model to elastic structural elements such as risers, cables, etc..

    [1] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J].Journal of Fluids and Structures,2004, 19(4): 389-447.

    [2] GABBAI R. D., BENAROYA H. An overview of modeling and experiments of vortex -induced vibration of circular cylinders[J].Journal of Sound and Vibration,2005, 282: 575-616.

    [3] Williamson C. H. K., GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J].Journal of Wind engineering and industrial Aerodynamics,2008, 96(6-7): 713-735.

    [4] NEWMAND J., KARNIADAKISG E. A direct numerical simulation study of flow past a freely vibrating cable[J].Journal of Fluid Mechanics,l997, 344: 95-136.

    [5] SHA Yong, WANG Yong-xue. Vortex induced vibrations of finned cylinders[J].Journal of Hydrodynamics,2008, 20(2): 195-201.

    [6] SKOP R. A., BALASUBRAMANIAN S. A new twist on an old model for vortex-excited vibrations[J].Journal of Fluids and Structures,1997, 11(4): 395-412.

    [7] SKOP R. A., LUO G. An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows[J].Journal of Fluids and Structures,2001,15(6): 867-884.

    [8] KRENK S., NIELSEN S. R. K. Energy balanced double oscillator model for vortex-induced vibrations[J].ASCE Journal of Engineering Mechanics,1999, 125(3): 263-271.

    [9] PLASCHKO P. Global chaos in flow-induced oscillations of cylinders[J].Journal of Fluids and Structures,2000, 14(6): 883-893.

    [10] FACCHINETTI M. L., DE LANGRE E. and BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J].Journal of Fluids and Structures,2004,19(2): 123-140.

    [11] FACCHINETTI M. L, DE LANGRE E. and BIOLLEY F. Vortex-induced travelling waves along a cable[J].European Journal of Mechanics B/Fluids,2004, 23(1): 199-208.

    [12] MATHELIN L., DE LANGRE E. Vortex-induced vibrations and waves under shear flow with a wake oscillator model[J].European Journal of Mechanics B/Fluids,2005, 24(4): 478-490.

    [13] VIOLETTE R., DE LANGRE E. and SZYDLOWSKI J.Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments[J].Computers and Structures,2007, 85(11-14): 1134-1141.

    [14] LIN Li-ming, LING Guo-can and WU Ying-xiang et al. Nonlinear fluid damping in structure-wake oscillators in modeling vortex-induced vibrations[J].Journal of Hydrodynamics,2009, 21(1): 1-11.

    [15] KHALAK A., WILLIAMSON C. H. K. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder[J].Journal of Wind Engineering and Industrial Aerodynamics,1997, 69-71: 341-350.

    [16] GOVARDHAN R., WILLIAMSON C. H. K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J].Journal of Fluid Mechanics,2000, 420: 85-130.

    October 30, 2009, Revised January 5, 2010)

    * Project supported by the National High Technology Research and Development Program of China (863 Program, Grant No. 2006AA09Z350), the National Natural Science Foundation of China (Grant No.10702073) and the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-L02).

    Biography:XU Wan-hai (1981-), Male, Ph. D.

    2010,22(3):381-386

    10.1016/S1001-6058(09)60068-8

    视频区图区小说| 成年人午夜在线观看视频| 999精品在线视频| 美女中出高潮动态图| 性高湖久久久久久久久免费观看| 亚洲人成电影观看| 男女国产视频网站| 亚洲熟女毛片儿| 亚洲国产看品久久| a级毛片在线看网站| 各种免费的搞黄视频| 国产成人精品久久二区二区免费| 午夜精品国产一区二区电影| 国产精品二区激情视频| 别揉我奶头~嗯~啊~动态视频 | 久久ye,这里只有精品| 亚洲一区中文字幕在线| 日韩欧美一区视频在线观看| 欧美激情高清一区二区三区| 亚洲av男天堂| 国产精品偷伦视频观看了| 97人妻天天添夜夜摸| 一本综合久久免费| 91九色精品人成在线观看| 99国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 中文字幕av电影在线播放| 一级毛片女人18水好多 | 国产在线一区二区三区精| 精品人妻一区二区三区麻豆| 国产精品麻豆人妻色哟哟久久| 考比视频在线观看| 18禁国产床啪视频网站| 日韩熟女老妇一区二区性免费视频| 九草在线视频观看| 男女床上黄色一级片免费看| 久久精品国产亚洲av涩爱| 19禁男女啪啪无遮挡网站| 国产成人精品在线电影| 欧美黄色淫秽网站| 午夜91福利影院| 99久久人妻综合| 视频区欧美日本亚洲| 久久精品久久久久久噜噜老黄| 久久青草综合色| 悠悠久久av| 精品少妇黑人巨大在线播放| 大香蕉久久成人网| 中文字幕av电影在线播放| 丝袜在线中文字幕| 国产男女超爽视频在线观看| 色婷婷av一区二区三区视频| 人妻人人澡人人爽人人| av欧美777| 满18在线观看网站| 男女高潮啪啪啪动态图| 在线观看www视频免费| 欧美黄色片欧美黄色片| 久久性视频一级片| 91精品伊人久久大香线蕉| 国产爽快片一区二区三区| 国产在线免费精品| 各种免费的搞黄视频| 欧美人与性动交α欧美软件| 男女无遮挡免费网站观看| 欧美精品人与动牲交sv欧美| 亚洲精品国产色婷婷电影| 久久人人爽人人片av| 国产欧美日韩一区二区三 | 日本色播在线视频| 色播在线永久视频| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久久5区| 日韩中文字幕视频在线看片| 热99国产精品久久久久久7| 亚洲欧美色中文字幕在线| 精品免费久久久久久久清纯 | 亚洲av美国av| 成年人黄色毛片网站| 人人澡人人妻人| 国产无遮挡羞羞视频在线观看| 亚洲精品美女久久久久99蜜臀 | 免费黄频网站在线观看国产| 满18在线观看网站| 制服人妻中文乱码| 久久久久久久国产电影| 女人久久www免费人成看片| 视频区图区小说| 亚洲欧美一区二区三区久久| 国产又爽黄色视频| 国产精品 国内视频| 国产片内射在线| 午夜两性在线视频| 啦啦啦 在线观看视频| 欧美日韩福利视频一区二区| 91九色精品人成在线观看| 国产精品麻豆人妻色哟哟久久| 国产成人精品无人区| 亚洲欧洲日产国产| 欧美成人精品欧美一级黄| 19禁男女啪啪无遮挡网站| 国产成人一区二区三区免费视频网站 | 亚洲国产av影院在线观看| av国产久精品久网站免费入址| 男女午夜视频在线观看| 天天操日日干夜夜撸| 欧美另类一区| 天天躁夜夜躁狠狠躁躁| 国产免费福利视频在线观看| 久久ye,这里只有精品| 婷婷色av中文字幕| 性色av乱码一区二区三区2| 久久久久国产一级毛片高清牌| 亚洲国产精品成人久久小说| 人人妻人人爽人人添夜夜欢视频| 久久这里只有精品19| 午夜福利影视在线免费观看| 午夜免费观看性视频| 免费高清在线观看视频在线观看| 真人做人爱边吃奶动态| 午夜影院在线不卡| 日韩av不卡免费在线播放| 在线观看国产h片| 欧美亚洲日本最大视频资源| 最近中文字幕2019免费版| 国产一区亚洲一区在线观看| 欧美精品亚洲一区二区| 国产三级黄色录像| 十分钟在线观看高清视频www| 美女国产高潮福利片在线看| 亚洲,欧美,日韩| 又大又黄又爽视频免费| 亚洲欧美中文字幕日韩二区| 男女床上黄色一级片免费看| 午夜老司机福利片| 亚洲欧美精品综合一区二区三区| 人妻一区二区av| 午夜av观看不卡| 国产成人a∨麻豆精品| videos熟女内射| av网站免费在线观看视频| 亚洲情色 制服丝袜| 在线亚洲精品国产二区图片欧美| 狠狠婷婷综合久久久久久88av| 亚洲国产中文字幕在线视频| 亚洲国产欧美日韩在线播放| 欧美激情 高清一区二区三区| 18在线观看网站| 啦啦啦在线免费观看视频4| 亚洲精品一区蜜桃| 欧美日韩成人在线一区二区| av国产久精品久网站免费入址| 男人添女人高潮全过程视频| 亚洲熟女精品中文字幕| 在现免费观看毛片| 19禁男女啪啪无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 黄色视频在线播放观看不卡| 五月开心婷婷网| 可以免费在线观看a视频的电影网站| 侵犯人妻中文字幕一二三四区| www.av在线官网国产| 各种免费的搞黄视频| 亚洲五月色婷婷综合| 在线天堂中文资源库| 最新在线观看一区二区三区 | 少妇裸体淫交视频免费看高清 | 午夜久久久在线观看| 建设人人有责人人尽责人人享有的| 老汉色av国产亚洲站长工具| 女人精品久久久久毛片| 婷婷成人精品国产| 老司机影院毛片| 亚洲人成电影免费在线| 国产成人精品久久久久久| 国产老妇伦熟女老妇高清| 一边摸一边抽搐一进一出视频| 亚洲专区中文字幕在线| 国产一卡二卡三卡精品| 国产免费福利视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲三区欧美一区| 狠狠婷婷综合久久久久久88av| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 久久人妻福利社区极品人妻图片 | 波多野结衣av一区二区av| 久久久久久久久久久久大奶| 国精品久久久久久国模美| 国产亚洲av片在线观看秒播厂| 99国产精品一区二区蜜桃av | 亚洲七黄色美女视频| 亚洲欧洲精品一区二区精品久久久| 18禁观看日本| 日韩av不卡免费在线播放| 国产1区2区3区精品| 国产成人系列免费观看| 中文字幕人妻熟女乱码| 久久久久国产精品人妻一区二区| 女性生殖器流出的白浆| 制服人妻中文乱码| 国产免费又黄又爽又色| 久久精品久久久久久噜噜老黄| 亚洲午夜精品一区,二区,三区| 欧美黑人欧美精品刺激| 久久久精品94久久精品| 男女午夜视频在线观看| 国产熟女午夜一区二区三区| 黄色视频在线播放观看不卡| 人人妻人人澡人人爽人人夜夜| 美女扒开内裤让男人捅视频| 亚洲国产精品国产精品| 久久精品成人免费网站| 亚洲国产最新在线播放| 成人午夜精彩视频在线观看| 人人妻人人澡人人看| 亚洲一区中文字幕在线| 成人免费观看视频高清| av天堂久久9| 国产亚洲av片在线观看秒播厂| 国产精品成人在线| 在线 av 中文字幕| 成人亚洲精品一区在线观看| 青春草亚洲视频在线观看| 老熟女久久久| 国产精品偷伦视频观看了| 高清欧美精品videossex| 亚洲国产精品999| 99热网站在线观看| 好男人电影高清在线观看| 伊人亚洲综合成人网| 亚洲成人手机| a级片在线免费高清观看视频| 免费不卡黄色视频| 午夜精品国产一区二区电影| 婷婷色麻豆天堂久久| 一区二区三区乱码不卡18| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 这个男人来自地球电影免费观看| 一级毛片我不卡| 久久精品国产亚洲av涩爱| 色综合欧美亚洲国产小说| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 在线av久久热| 午夜视频精品福利| 叶爱在线成人免费视频播放| 2018国产大陆天天弄谢| 天天躁夜夜躁狠狠躁躁| 欧美人与性动交α欧美精品济南到| 免费日韩欧美在线观看| 成年人免费黄色播放视频| 国产成人啪精品午夜网站| 老熟女久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 97精品久久久久久久久久精品| 成在线人永久免费视频| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 一本—道久久a久久精品蜜桃钙片| 每晚都被弄得嗷嗷叫到高潮| 最新的欧美精品一区二区| 美国免费a级毛片| 十八禁网站网址无遮挡| 丰满人妻熟妇乱又伦精品不卡| av天堂在线播放| 亚洲色图 男人天堂 中文字幕| 欧美国产精品va在线观看不卡| 岛国毛片在线播放| 精品一区二区三区av网在线观看 | 亚洲欧美中文字幕日韩二区| 久久人妻福利社区极品人妻图片 | 亚洲七黄色美女视频| 啦啦啦视频在线资源免费观看| 国产精品久久久人人做人人爽| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 国产亚洲精品久久久久5区| 国产成人免费无遮挡视频| kizo精华| 男女边吃奶边做爰视频| h视频一区二区三区| bbb黄色大片| 久久精品久久久久久久性| 纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 黑丝袜美女国产一区| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三 | 欧美日韩亚洲高清精品| 久久99精品国语久久久| 黄网站色视频无遮挡免费观看| 人成视频在线观看免费观看| 午夜福利影视在线免费观看| 99国产综合亚洲精品| 高潮久久久久久久久久久不卡| 考比视频在线观看| 国产精品三级大全| 午夜免费观看性视频| 成人国语在线视频| 精品人妻一区二区三区麻豆| 美女主播在线视频| 热re99久久精品国产66热6| 永久免费av网站大全| 亚洲欧美清纯卡通| 丝袜美腿诱惑在线| 亚洲国产最新在线播放| 精品久久久久久久毛片微露脸 | 亚洲一区中文字幕在线| 欧美xxⅹ黑人| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线| 两性夫妻黄色片| 亚洲欧美精品综合一区二区三区| 男的添女的下面高潮视频| 99久久99久久久精品蜜桃| 亚洲精品美女久久av网站| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看| 免费久久久久久久精品成人欧美视频| 精品国产一区二区三区四区第35| 2018国产大陆天天弄谢| 日韩电影二区| 国产精品 欧美亚洲| 国产精品久久久av美女十八| 久久久久视频综合| 在线观看人妻少妇| 可以免费在线观看a视频的电影网站| 亚洲图色成人| 亚洲av男天堂| 亚洲成人免费av在线播放| 视频区图区小说| 中文字幕亚洲精品专区| 日本午夜av视频| 欧美亚洲日本最大视频资源| 亚洲熟女精品中文字幕| 久久久久久人人人人人| 日韩伦理黄色片| 婷婷色av中文字幕| 观看av在线不卡| 亚洲精品在线美女| 国产精品一国产av| 免费在线观看影片大全网站 | 亚洲精品第二区| 交换朋友夫妻互换小说| 久久久久网色| av网站免费在线观看视频| 中文乱码字字幕精品一区二区三区| 你懂的网址亚洲精品在线观看| 好男人视频免费观看在线| 99国产精品免费福利视频| 中国国产av一级| 熟女av电影| 国产视频首页在线观看| 国产91精品成人一区二区三区 | 啦啦啦在线观看免费高清www| 丁香六月天网| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 中文字幕色久视频| 精品一区二区三卡| 夫妻午夜视频| 热99久久久久精品小说推荐| 丰满迷人的少妇在线观看| 亚洲成人国产一区在线观看 | 亚洲成色77777| 高清不卡的av网站| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| 成在线人永久免费视频| av不卡在线播放| 久久中文字幕一级| 欧美性长视频在线观看| 永久免费av网站大全| 成年人午夜在线观看视频| 99国产精品一区二区蜜桃av | 别揉我奶头~嗯~啊~动态视频 | 日韩熟女老妇一区二区性免费视频| 国产99久久九九免费精品| 91精品三级在线观看| 我的亚洲天堂| 成人亚洲精品一区在线观看| 欧美乱码精品一区二区三区| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 欧美在线一区亚洲| 亚洲五月色婷婷综合| 国产黄频视频在线观看| 欧美成人精品欧美一级黄| 日本一区二区免费在线视频| 国产在线一区二区三区精| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久| xxx大片免费视频| av欧美777| 国产精品欧美亚洲77777| 午夜免费男女啪啪视频观看| 久久午夜综合久久蜜桃| 国产欧美亚洲国产| 精品国产国语对白av| 国产精品av久久久久免费| 欧美日韩国产mv在线观看视频| 少妇裸体淫交视频免费看高清 | 中文字幕亚洲精品专区| 亚洲av成人精品一二三区| 亚洲少妇的诱惑av| xxx大片免费视频| 国产主播在线观看一区二区 | 亚洲av日韩精品久久久久久密 | 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 一级毛片黄色毛片免费观看视频| a级毛片黄视频| 这个男人来自地球电影免费观看| 在线 av 中文字幕| 母亲3免费完整高清在线观看| 久久人人爽人人片av| 91国产中文字幕| 婷婷成人精品国产| 性少妇av在线| 国产一区有黄有色的免费视频| 中文精品一卡2卡3卡4更新| 午夜福利乱码中文字幕| 人人澡人人妻人| 女性生殖器流出的白浆| 夜夜骑夜夜射夜夜干| 99国产精品一区二区蜜桃av | 国产一区二区在线观看av| 老熟女久久久| 国产亚洲欧美精品永久| 午夜福利,免费看| 免费在线观看日本一区| 欧美日韩综合久久久久久| 日韩免费高清中文字幕av| 亚洲欧美精品自产自拍| 少妇 在线观看| 91国产中文字幕| 伊人久久大香线蕉亚洲五| e午夜精品久久久久久久| 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡| 黄色视频不卡| 一本综合久久免费| 免费看十八禁软件| 少妇粗大呻吟视频| 桃花免费在线播放| av欧美777| 黄片播放在线免费| 女人久久www免费人成看片| 欧美人与性动交α欧美软件| 久久天躁狠狠躁夜夜2o2o | 久久国产精品大桥未久av| 2021少妇久久久久久久久久久| 日韩av在线免费看完整版不卡| 亚洲av综合色区一区| bbb黄色大片| 在线观看一区二区三区激情| 多毛熟女@视频| 99国产精品免费福利视频| 少妇猛男粗大的猛烈进出视频| 99国产综合亚洲精品| 黄色视频在线播放观看不卡| 欧美精品一区二区免费开放| 极品少妇高潮喷水抽搐| 亚洲精品国产一区二区精华液| 人妻一区二区av| 男男h啪啪无遮挡| 高清黄色对白视频在线免费看| 午夜激情av网站| 亚洲美女黄色视频免费看| 18禁观看日本| 国产男人的电影天堂91| 亚洲久久久国产精品| 亚洲av片天天在线观看| 国产男女超爽视频在线观看| 久久 成人 亚洲| 亚洲国产日韩一区二区| 天堂8中文在线网| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 久久99热这里只频精品6学生| 五月开心婷婷网| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃国产av成人99| 久久免费观看电影| 一级黄片播放器| 大型av网站在线播放| 不卡av一区二区三区| 美女脱内裤让男人舔精品视频| 脱女人内裤的视频| 免费少妇av软件| 91麻豆av在线| 一区二区日韩欧美中文字幕| 久久久久精品国产欧美久久久 | 天天躁夜夜躁狠狠躁躁| 91国产中文字幕| 日韩中文字幕欧美一区二区 | 国产精品国产三级国产专区5o| av网站免费在线观看视频| 久久久久网色| 亚洲七黄色美女视频| 日本欧美国产在线视频| 国产av精品麻豆| 王馨瑶露胸无遮挡在线观看| 亚洲av电影在线进入| 中文字幕av电影在线播放| 国产精品九九99| 青青草视频在线视频观看| 免费看不卡的av| 成人18禁高潮啪啪吃奶动态图| 国产午夜精品一二区理论片| 伦理电影免费视频| 午夜福利一区二区在线看| 国产人伦9x9x在线观看| 免费看不卡的av| 亚洲国产精品一区三区| 亚洲国产精品999| 精品一区二区三区av网在线观看 | 一边摸一边做爽爽视频免费| 精品国产乱码久久久久久小说| 巨乳人妻的诱惑在线观看| 黄色怎么调成土黄色| 免费观看人在逋| 久久久精品区二区三区| 国产成人免费观看mmmm| 免费在线观看完整版高清| 久久精品国产综合久久久| 这个男人来自地球电影免费观看| 老熟女久久久| 久久午夜综合久久蜜桃| 国产av精品麻豆| 黄网站色视频无遮挡免费观看| 国产成人一区二区三区免费视频网站 | 色网站视频免费| 国产黄色视频一区二区在线观看| 日本一区二区免费在线视频| 80岁老熟妇乱子伦牲交| 99九九在线精品视频| 亚洲精品自拍成人| 涩涩av久久男人的天堂| 久久影院123| 你懂的网址亚洲精品在线观看| 啦啦啦啦在线视频资源| 极品人妻少妇av视频| 熟女av电影| 精品久久久精品久久久| 制服诱惑二区| 国产精品香港三级国产av潘金莲 | 亚洲国产精品一区二区三区在线| 欧美 日韩 精品 国产| 国产男人的电影天堂91| 女人久久www免费人成看片| 国产黄色视频一区二区在线观看| 午夜老司机福利片| 亚洲精品一二三| 天天躁日日躁夜夜躁夜夜| 国产色视频综合| 国产一区有黄有色的免费视频| 久久99热这里只频精品6学生| 在线看a的网站| 午夜精品国产一区二区电影| 男女边吃奶边做爰视频| 色网站视频免费| 亚洲中文字幕日韩| 亚洲国产欧美在线一区| 捣出白浆h1v1| 亚洲欧美中文字幕日韩二区| 国产国语露脸激情在线看| 热99久久久久精品小说推荐| 咕卡用的链子| 一区在线观看完整版| 欧美黑人精品巨大| 大片免费播放器 马上看| 亚洲五月婷婷丁香| tube8黄色片| 校园人妻丝袜中文字幕| 高清黄色对白视频在线免费看| 久久人人97超碰香蕉20202| 搡老乐熟女国产| 欧美激情高清一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产中文字幕在线视频| 黑丝袜美女国产一区| 亚洲av综合色区一区| 色综合欧美亚洲国产小说| 午夜福利免费观看在线| 激情视频va一区二区三区| 女人精品久久久久毛片| 欧美日本中文国产一区发布| 少妇 在线观看| 成人国产av品久久久| 狠狠精品人妻久久久久久综合| 国产精品欧美亚洲77777| 美女脱内裤让男人舔精品视频| 国产一级毛片在线| 日本猛色少妇xxxxx猛交久久| 成在线人永久免费视频| 老司机靠b影院| www.精华液| 精品国产乱码久久久久久男人| 国产高清视频在线播放一区 | 亚洲熟女毛片儿| 日韩中文字幕视频在线看片| 19禁男女啪啪无遮挡网站| 一边摸一边做爽爽视频免费| 一本色道久久久久久精品综合| 国产三级黄色录像| 一级黄片播放器| 色综合欧美亚洲国产小说|