• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL STUDY OF WALL WETTABILITIES AND TOPOGRAPHY ON DRAG REDUCTION EFFECT IN MICRO-CHANNEL FLOW BY LATTICE BOLTZMANN METHOD*

    2010-07-02 01:37:57ZHANGRenliangDIQinfengWANGXinliangGUChunyuan

    ZHANG Ren-liang, DI Qin-feng, WANG Xin-liang, GU Chun-yuan

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University,Shanghai 200072, China Shanghai Key Laboratory of Mechanics in Energy and Environment Engineering, Shanghai 200072, China, E-mail: zhrleo@gmail.com

    NUMERICAL STUDY OF WALL WETTABILITIES AND TOPOGRAPHY ON DRAG REDUCTION EFFECT IN MICRO-CHANNEL FLOW BY LATTICE BOLTZMANN METHOD*

    ZHANG Ren-liang, DI Qin-feng, WANG Xin-liang, GU Chun-yuan

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University,Shanghai 200072, China Shanghai Key Laboratory of Mechanics in Energy and Environment Engineering, Shanghai 200072, China, E-mail: zhrleo@gmail.com

    The dynamics of two-phase flows with a constant driving force inside a micro-channel is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this article. Flow regimes under different wall wettabilities and over smooth and grooved geometric surfaces are investigated. It is found that flow behaviors are strongly affected by the wall wettability and topography. Our results show that the LBM is efficient and accurate, and has very good application prospect in the study of drag reduction of microscopic seepage of reservoir.

    contact angle, wettability, miro-channel, multiphase-flow, Lattice Boltzmann Model (LBM)

    1. Introduction

    Water injection is the main means of improving oil recovery in low permeability oilfields, but in water flooding development, it mainly behaves with high injection pressure, low injection rate and so on. In order to exploit low permeability reservoir more efficiently, two methods have been used. One is thereservoir reconstruction method, such as acidification, hydraulic fracturing, which reduce drag by amplifying pore size, but the existing problem is that the reservoir may be contaminated if the method is in failure. The other is the surface modification method, which contains drag reductions by surfactant and by hydrophobic nanoparticles (HNPs). The latter is a new drag reduction technology to improve oil recovery in low permeability oilfields in reservoir micro-channels, which can decrease injection pressure and enhance water injection volume. The HNPs are adsorbed by the wall and then a strong- or super-hydrophobic layer is formed, which could lead to a slip boundary condition and decrease drag on the fluid. This mechanism has been modified via lab tests and simulation method by Di et al.[1], but the effects of wall wettabilities and topography on micro-channel flow should be intensively studied.

    Droplet motion is a key element of a wide variety of phenomena encountered in technical applications,such as impact of droplet[2,3], which is used to investigate painting, injection in combustors, ink-jet printing[4]and cooling the hot surface[5], the spreading of mesoscale droplets on homogeneous and heterogeneous surfaces[6], which is used to investigate wetting properties of underlying substrate, and droplet formation[7], which is used to investigate interaction between immiscible fluids. Simulation of the evolution of fluid interface is a challenging problem for both the Lattice Boltzmann Method (LBM) and other conventional CFD techniques, because any phase interface boundary is mesoscopic by nature.

    Numerical methods can be very instrumental in enhancing understanding of fluid behavior, the LBM is a promising tool to simulate the incompressible viscous flows[8]. Unlike the traditional CFD, the LBM is based on microscopic models and mesoscopic kinetic equations. The LBM recovers the Navier-Stokes equations in the incompressible flow limit. The LBM can be considered as a mesoscopic approach, lying in between microscopic molecular dynamics and conventional macroscopic fluid dynamics. It does not solve the differential equations, but only involves a series of collision and stream steps. More importantly, it is relatively easy to set the non-slip boundary condition for systems with complex geometry and there are a couple of free surface models[9]developed for simulating the moving interface between immiscible gas and liquid fluids. An alternative solution is the Shan-Chen multiphase model[10,11], which can be useful in treating problems involving surface tension, capillarity and phase transition in multiphase multi-component systems.

    In this work, we simulate droplet moving in micro-channel to investigate the effects of wall wettabilities and topography on drag reduction. With a general bounce-back no-slip boundary condition applied to the interface between fluids and solid surfaces, together with the Shan-Chen multiphase model, the LBM is used to simulate the liquid-phase flow inside micro-channels with different wall wettabilities and topography.

    2. Numerical model

    2.1 The LBGK model

    The LBM, which involves a single relaxation time in the Bhatnagar-Gross-Krook (BGK) collision operator[12], is used here. The time evolution of this model can be written as

    where c=Δx/Δt is the lattice velocity, Δx the lattice distance, and Δt the time step of simulation.

    The mass density ρ and momentum density ρu of the fluid are calculated from the first and second moments of the distribution function, i.e.,

    And the relaxation time tunes the kinematic viscosity as

    The non-slip boundary condition at solid-fluid interfaces is realized by the bounce-back rule, where the momentum of the fluid particles that meet a solid wall is simply reversed. The bounce-back rule is simple and computationally efficient, and enables fluid flow simulations in complex geometries. On the inlet and outlet boundaries, the periodic boundary conditions are used.

    2.2Shan-Chen multiphase model

    To simulate non-ideal multiphase fluids, the attractive or repulsive interaction among molecules, which is referred to as the non-ideal interaction, should be included in the LBM. There are many approaches to incorporate non-ideal interactions, such as the color-fluid model, interparticle-potential model, free-energy model, mean-field theory model and so on. The interparticle-potential model proposed by Shan and Chen is to mimic microscopic interaction forces between the fluid components. This model modified the collision operator by using an equilibrium velocity that includes an interactive force. This force guarantees phase separation and introduces surface-tension effects[9].

    This model has been applied with considerable success in measuring contact angles and porous flow[13]. As an extension of the Shan-Chen model, Benzi et al.[14]derived an analytical expression for the contact angle and for surface energy between any two of the liquid, solid and vapor phases. Because of spurious velocities, it is difficult for most LBM schemes to deal with two phases with a high density ratio. It has been found that highly isotropic gradient operators are able to reduce the spurious velocities[15]and Yuan and Schaefer proposed to modify the EOS, and thus one can reach density ratios higher than 1000:1 with the simulation still stable[16].

    In the Shan-Chen multiphase model, the non-ideal interaction is obtained via using an attractive short-range force

    Adhesive forces between the fluid and solid phases are modeled by introducing an extra force

    s=0, 1 for the fluid and the solid phase, respectively, the interaction strengthGis used to control the two-phase liquid interaction, and adhesion parameterGadsis used to control the wettability behavior of the liquid at solid surfaces.

    ψ(x,t) is a local “effective mass”[10,11,17,18], which is defined as

    Using these definitions, the fluid momentum is changed at each time step according to

    whereu′ is the new fluid velocity. The equation of state in the Shan-Chen model is[18]

    3. Results and discussion

    3.1Contact angle simulation

    The LBM simulations were carried out in a 2-D domain. The grid mesh used is 50×100. In the simulation, the general non-slip bounce-back schemewas employed for the solid-fluid interfaces, and periodic boundary conditions were applied in the horizontal direction (the same below). A droplet, with the diameter of 30 is set in the middle of the lower boundary. After 3×104time steps (in our simulations the units are lattice units as Ref.[18], the same as below), it tends to be stabilized, because it runs other more time steps, it has the same status. Figure 1 shows an example of the static contact angle, which is 135owhenG=?120,Gads=?100 andψ(x,t)=4e?200/ρin Eqs.(9) and (10). It is further found that the contact angle of droplet at the lower boundary varies from 0 degree to 180owith changing adhesion parameterGads. (see in Fig.2)

    Fig.1 Static contact angle

    As is shown in Fig.2, the contact angle is proportional to the adhesion parameters, and hence we can change adhesion parameters to simulate arbitrary contact angle, and then obtain different wall wettabilities.

    Fig.2 Contact angle as a function ofGadsforG=?120

    Fig.3 Initial conditions

    3.2Effects of wall wettability

    The initial condition is illustrated in Fig.3. The grid mesh used is 66×400 and the size of the liquid segment is 50×60. The darkest part represents the liquid, the lightest parts represent the gas, and the parts with in-between darkness represent the solid walls (the same as below). ChangingNf, we can get different grooved surface, and asNf=0, it can be considered as smoothed surface.

    In engineering applications, surfactants are often injected into the micro-channel to change the wall wettalility and to reduce the interfacial tension between wall and water[19]. In the simulation of a droplet moving inside a smooth channel, the parameters areG=?120 ,ψ(x,t)=4e?200/ρ,Nh=8,Nw=2, andNf=0, the different wall wettabilities are easily achiwved by changing the adhesion parameterGads. In the simulations, the wettabilities of the walls (upper and lower) were set as hydrophilic (with the contact angle of 68o), neutral wetting (with the contact angle of 90o), and hydrophobic (with the contact angles of 108oand 129o), respectively. The simulations were run to 1×104time steps when static equilibrium was nearly attained. After 1×104time steps, body-force was applied in the flow direction (this method has been used in Ref. [18]).

    Fig.4 The average liquid velocity under different wettabilities of the wall

    Figure 4 gives the comparison of the average liquid velocity under different wettabilities of the wall. There are four cases for the evolution processes of droplet velocity. The droplet moves faster on the wall surface in the more hydrophobic case, i.e., the wettabilities have great effects on the flow. The more hydrophobic the wall is, the faster the flow rate is, and then the more remarkable the drag reduction effect is.

    3.3Effect of smooth and grooved surface

    In this section the droplets moving inside a micro-channel with a smooth surface and a grooved

    surface are simulated, and the parameters areNh=8,Nw=2,Nf=3 for grooved surface andNh=8,Nw=2,Nf=0 for smoothed surface respectively. The wettability of the wall is set to be hydrophilic (with the contact angle of 68o) or hydrophobic (with the contact angle of 129o). In both cases, the simulations were run to 1×104time steps till the static equilibrium os nearly attained. After 1×104time steps, body-force is applied in the flow direction.

    The average liquid velocity under different wettabilities of the lower wall is shown in Figs.5 and 6. When the surface of lower wall is hydrophobic, the average velocity of fluid flowing in the grooved surface wall is higher than that in the smooth surface, and when the wettability of lower wall is hydrophilic, it is opposite.

    Fig.5 The average liquid velocity under smooth and grooved hydrophobic surfaces

    Fig.6 The average liquid velocity under smooth and grooved hydrophilic surfaces

    3.4Effects of roughness

    Studies[20]have shown that the inorganic nanoparticles modified by weak hydrophobic material could have strong hydrophobic property. In this section we simulate a droplet moving inside a grooved channel in a 2-D domain, the parameters areG=?120 ,ψ(x,t)=4e?200/ρ,Nh=8,Nw=2, and the distance between neighboring nanoparticles,Nf, is changed to be 5,11,17 and 22 respectively. In the simulation, nanoparticles’ intrinsic contact angle is 108o. Figure 7 shows the comparison of snapshots of the liquid positions and configurations every 5000 time steps for the four cases.

    From the image sequences we can see that the presence of grain spacing alters the droplet dynamics properties. When the grain spacing changes from 5 to 17, the droplet speed increases, but when grain spacing reaches to 22, the droplet speed decreases greatly. This also can be seen from Fig.8. From Fig.7 we can also see that when the grain spacing changes from 5 to 17, the droplet does not contact the bottom but when the grain spacing reaches to 22 the droplet contacts the bottom.

    A general trend shown in Fig.8 is that in each case the time series of the average liquid velocity are similar to those of a cosine curve when grain spacing is 5 to 17, and we also can see that, when the grain spacing is wider, the average liquid velocity is higher, the frequency of the curve is lower and the amplitude of the curve is greater. This may be due to the fact that a non-continuous solid-liquid contact line in the roughness wall is made by the gas trapped by nano-structured boundary. When the solid-liquid contact line is continuous the liquid velocity is lower, and when the solid-liquid contact line is non-continuous the liquid velocity is higher. It also can be seen from Fig.8 that the speed of the droplet varies with the grain spacing. There is a critical grain distance. When the grain spacing is smaller than the critical distance (as shown in Fig.8, grain spacing is between 5 and 17), the average liquid velocity increases as the distance between nanoparticles increases, this may be due to the fact that when the distance between neighboring nanoparticles is wider, more gas will be trapped by the nano-structured and the solid-liquid contact line will become shorter, which will make the drag on the droplet decrease. When grain spacing is more than the critical distance such as 22 lattice unit, the droplet will contact the bottom and the average liquid velocity will decrease greatly.

    4. Conclusion

    Fig.7 Comparison of snapshots of the liquid positions and configurations

    In summary, a droplet with a constant driving force moving inside a micro-channel has been studied by using an LBM and the Shan-Chen multiphase model. It is found that the droplet can move faster with higher contact angle on smooth hydrophobic surfaces and the drag on the droplet is smaller on the grooved surface than that on the surface when the wettability of the wall is hydrophobic, but when the wettability of the wall is hydrophilic, the situation is opposite. Roughness can make hydrophobic wall more hydrophobic and make hydrophilic wall more hydrophilic. It is also found that the drag on the droplet is strongly affected by the wall wettability and roughness when the system scale is small. These results and findings would probably be helpful for seeking some insights into the drag reduction and also into the multiphase flows in micro machines.

    Fig.8 Comparison of the average liquid velocity under different grain spacing

    [1] DI Qin-feng, SHEN Chen and WANG Zhang-hong et al. Experimental research on drag reduction of flow in micro-channels of rocks using nano-particle adsorption method[J].Acta Petrolei Sinica,2009, 30(1): 125-128 (in Chinese).

    [2] HYVALUOMA J., RAISKINMAKI P. and JASBERG A. et al. Simulation of liquid penetration in paper[J].Physical Review E,2006, 73(3): 036705-1-036705-8.

    [3] SHI Zi-yuan, YAN Yong-hua and YANG Fan et al. A lattice Boltzmann method for simulation of a three-dimensional drop impact on a liquid film[J].Journal of Hydrodynamics,2008, 20(3): 267-272.

    [4] Van DAM D. B., LE CLERC C. Experimental study of the impact of an ink-jet printed droplet on a solid substrate[J].Physics of Fluids,2004, 16(9): 3403-3414.

    [5] GUO Jia-hong, DAI Shi-qiang. Research on stability of liquid film on hot solid surface impinged by small droplets[J].Journal of Hydrodynamics,Ser. B,2007, 19(3): 264-271.

    [6] DUPUIS A., YEOMANS J. M. Modeling droplets on superhydrophobic surfaces: Equilibrium states and transitions[J].Langmuir,2005, 21(6): 2624-2629.

    [7] KIM L. S., JEONG H. K. and HA M. Y. et al. Numerical simulation of droplet formation in a micro-channel using the lattice Boltzmann method[J].Journal of Mechanical Science and Technology,2008, 22(4): 770-779.

    [8] CHEN S., DOOLEN G. D. Lattice Boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998, 30(1): 329-364.

    [9] AIDUN C. K., CLAUSEN J. R. Lattice Boltzmann method for complex flows[J].Annual Review of Fluid Mechanics,42(1): 439-472.

    [10] SHAN Xiao-wen, CHEN Hu-dong. Lattice Boltzmann model for simulating flows with multiple phases and components[J].Physical Review E,1993, 47(3): 1815-1819.

    [11] SHAN Xiao-wen and CHEN Hu-dong. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J].Physical Review E,1994, 49(4): 2941-2948.

    [12] QIAN Yue-hong, HUMIERES D. D'. and LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J].Europhysics Letters,1992, 17(6): 479-484.

    [13] HUANG Haibo, THORNE D. T. Jr and SCHAAP M. G. et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[J].Physical Review E,2007, 76(6): 066701-1-066701-6.

    [14] BENZI R., BIFERALE L. and SBRAGAGLIA M. et al. Mesoscopic modeling of a two-phase flow in thepresence of boundaries: The contact angle[J].Physical Review E,2006, 74(2): 1509-1-1509-14.

    [15] SHAN X. W. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models[J].Physical Review E,2006, 73(4): 7701-1-7701-4.

    [16] YUAN P., SCHAEFER L. Equations of state in a lattice Boltzmann model[J].Physics of Fluids,2006, 18(4): 42101-1-42101-11.

    [17] QIAN Yue-hong, SUCCI S. and ORSZAG S. A. Recent advances in lattice Boltzmann computing[J].Ann. Rev. comp. Phys.,1995, (3): 195-242.

    [18] SUKOP M. C.Lattice Boltzmann modeling: an introduction for geoscientists and engineers[M]. 2006, Berlin: Springer.

    [19] YIN Dai-yin, PU Hui. Numerical simulation study on surfactant flooding for low permeability oilfield in the condition of threshold pressure[J].Journal of Hydrodynamics,2008, 20(4): 492-498.

    [20] GU Chun-yuan, DI Qin-feng and SHI Li-yi et al. Experimental investigation of superhydrophobic properties of the surface constructed by nanoparticles[J].Acta Physica Sinica,2008, 57(5): 3071-3076(in Chinese).

    October 12, 2009, Revised March 3, 2010)

    * Project supported by the National Natural Science Foundation of China (Grant No. 50874071), the National High Technology Research and Development Program of China (863 Program, Grant No. 2008AA06Z201), the Program of Science and Technology Commission of Shanghai Municipality (Grant No. 071605102), the project of Shanghai Education Commission Research Innovation (Grand No. 08ZZ45), the Program for Changjiang Scholars and Innovative Research Team in Universities (Grant No. IRT0844), and the China Postdoctoral Science Foundation (Grant No. 20090450687).

    Biography:ZHANG Ren-liang (1982-), Male, Ph. D. Candidate

    DI Qin-feng, qinfengd@sina.com

    2010,22(3):366-372

    10.1016/S1001-6058(09)60066-4

    男女下面进入的视频免费午夜 | 中国美女看黄片| 欧美激情高清一区二区三区| 香蕉国产在线看| 哪里可以看免费的av片| 欧美午夜高清在线| 香蕉av资源在线| 国产免费av片在线观看野外av| 亚洲性夜色夜夜综合| 一本一本综合久久| 亚洲在线自拍视频| 国产99白浆流出| 草草在线视频免费看| 国产伦人伦偷精品视频| 国产单亲对白刺激| 欧美日韩瑟瑟在线播放| 啦啦啦免费观看视频1| av在线天堂中文字幕| 国产成人av教育| 黄色a级毛片大全视频| 亚洲人成网站在线播放欧美日韩| 久久精品国产清高在天天线| 99riav亚洲国产免费| 精品日产1卡2卡| 国产伦一二天堂av在线观看| 美女免费视频网站| 亚洲av熟女| 国产97色在线日韩免费| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人澡欧美一区二区| 嫩草影院精品99| 国产成人av教育| 丁香六月欧美| 婷婷精品国产亚洲av在线| 亚洲精品国产精品久久久不卡| 欧美色视频一区免费| 最新美女视频免费是黄的| 日本成人三级电影网站| 在线免费观看的www视频| 中国美女看黄片| 亚洲第一电影网av| 欧美三级亚洲精品| 中文字幕人妻丝袜一区二区| 久久性视频一级片| 国产激情欧美一区二区| 久久久久亚洲av毛片大全| 欧美日韩中文字幕国产精品一区二区三区| 精品无人区乱码1区二区| 真人做人爱边吃奶动态| 人人妻人人澡欧美一区二区| 国产成人精品久久二区二区91| 成年女人毛片免费观看观看9| 久久精品国产综合久久久| www.自偷自拍.com| 国产一区二区三区在线臀色熟女| 国产97色在线日韩免费| 777久久人妻少妇嫩草av网站| 久久国产精品男人的天堂亚洲| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| netflix在线观看网站| 此物有八面人人有两片| 制服丝袜大香蕉在线| 成人国语在线视频| 久久久久国产精品人妻aⅴ院| 欧美av亚洲av综合av国产av| 国产伦人伦偷精品视频| 国产精品久久电影中文字幕| 久久香蕉精品热| 91麻豆精品激情在线观看国产| 丝袜人妻中文字幕| 欧美最黄视频在线播放免费| 伊人久久大香线蕉亚洲五| 成人免费观看视频高清| 亚洲成a人片在线一区二区| av电影中文网址| 国产男靠女视频免费网站| 琪琪午夜伦伦电影理论片6080| 日本一区二区免费在线视频| 欧美乱色亚洲激情| 亚洲片人在线观看| 国产av又大| 亚洲精品av麻豆狂野| 97碰自拍视频| 日本a在线网址| 欧美成人免费av一区二区三区| 色婷婷久久久亚洲欧美| 亚洲片人在线观看| 亚洲成av人片免费观看| 亚洲av成人一区二区三| 亚洲国产毛片av蜜桃av| 满18在线观看网站| 亚洲人成网站高清观看| 少妇粗大呻吟视频| 国产精品自产拍在线观看55亚洲| 亚洲一区高清亚洲精品| 亚洲欧美精品综合一区二区三区| 99在线人妻在线中文字幕| 国产真实乱freesex| 久久 成人 亚洲| 国产精品影院久久| 一级片免费观看大全| 在线播放国产精品三级| 色哟哟哟哟哟哟| 在线天堂中文资源库| 国产麻豆成人av免费视频| 精品卡一卡二卡四卡免费| 无遮挡黄片免费观看| 亚洲av熟女| 亚洲第一电影网av| 麻豆久久精品国产亚洲av| 美女高潮到喷水免费观看| 久久久精品国产亚洲av高清涩受| 午夜激情av网站| 久久天堂一区二区三区四区| 一进一出抽搐动态| 日韩精品中文字幕看吧| 十八禁网站免费在线| 男女视频在线观看网站免费 | 一级作爱视频免费观看| 成熟少妇高潮喷水视频| 美国免费a级毛片| 国产视频一区二区在线看| 久久久久亚洲av毛片大全| 免费av毛片视频| 亚洲中文av在线| 国产高清有码在线观看视频 | 90打野战视频偷拍视频| 欧美在线一区亚洲| 性欧美人与动物交配| 午夜久久久久精精品| 色播在线永久视频| 12—13女人毛片做爰片一| 国产亚洲av高清不卡| 久久精品国产99精品国产亚洲性色| 欧美成狂野欧美在线观看| 91av网站免费观看| 国产一区二区在线av高清观看| 伊人久久大香线蕉亚洲五| 亚洲人成网站在线播放欧美日韩| 日韩国内少妇激情av| 亚洲精品国产区一区二| 男人舔女人下体高潮全视频| 久久久精品欧美日韩精品| 久久性视频一级片| 午夜久久久在线观看| 亚洲国产日韩欧美精品在线观看 | 久久狼人影院| 制服诱惑二区| 亚洲va日本ⅴa欧美va伊人久久| 国产高清激情床上av| 久久九九热精品免费| 精品国产乱子伦一区二区三区| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女| 人妻久久中文字幕网| 一级黄色大片毛片| or卡值多少钱| 天堂影院成人在线观看| 亚洲精品在线观看二区| 免费人成视频x8x8入口观看| 我的亚洲天堂| 啦啦啦免费观看视频1| 亚洲精品久久国产高清桃花| 欧美日本视频| www日本黄色视频网| 日韩高清综合在线| 韩国av一区二区三区四区| 一区福利在线观看| 国产成人av教育| 在线十欧美十亚洲十日本专区| 日韩欧美一区二区三区在线观看| 免费在线观看成人毛片| 一区二区三区激情视频| 午夜亚洲福利在线播放| 精品久久久久久久久久免费视频| 日韩成人在线观看一区二区三区| 日韩高清综合在线| 搞女人的毛片| 久久久水蜜桃国产精品网| 老司机午夜十八禁免费视频| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 国产片内射在线| 悠悠久久av| 免费看美女性在线毛片视频| 怎么达到女性高潮| 午夜视频精品福利| 久久亚洲精品不卡| 国产伦人伦偷精品视频| 亚洲av电影不卡..在线观看| 窝窝影院91人妻| 精品国产超薄肉色丝袜足j| 国产野战对白在线观看| 久久国产精品男人的天堂亚洲| 在线视频色国产色| 波多野结衣av一区二区av| 18禁黄网站禁片免费观看直播| 成人三级黄色视频| 美女免费视频网站| 久热这里只有精品99| 精品国产美女av久久久久小说| 国产精品久久久人人做人人爽| 在线免费观看的www视频| 免费高清视频大片| 嫩草影院精品99| 啪啪无遮挡十八禁网站| 大香蕉久久成人网| 国产又黄又爽又无遮挡在线| 动漫黄色视频在线观看| 国产av不卡久久| 国产色视频综合| www.熟女人妻精品国产| 日韩精品中文字幕看吧| 午夜福利一区二区在线看| 久久精品成人免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩成人在线观看一区二区三区| 欧美日韩一级在线毛片| 国产亚洲精品久久久久久毛片| 精品久久久久久久毛片微露脸| 亚洲第一电影网av| www日本黄色视频网| 久9热在线精品视频| 色老头精品视频在线观看| 国产午夜精品久久久久久| 午夜久久久在线观看| 欧美+亚洲+日韩+国产| 久久天躁狠狠躁夜夜2o2o| netflix在线观看网站| 久久中文看片网| 久久精品国产99精品国产亚洲性色| 亚洲精品国产区一区二| 亚洲aⅴ乱码一区二区在线播放 | 波多野结衣av一区二区av| 亚洲色图 男人天堂 中文字幕| 久久久久国产精品人妻aⅴ院| 国产一区二区激情短视频| 国产激情久久老熟女| 亚洲全国av大片| 久久精品成人免费网站| 亚洲av五月六月丁香网| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久久中文| 在线永久观看黄色视频| 婷婷丁香在线五月| 午夜影院日韩av| 1024手机看黄色片| 日本成人三级电影网站| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 亚洲熟妇熟女久久| 九色国产91popny在线| 亚洲第一av免费看| 欧美黄色淫秽网站| 午夜视频精品福利| 又大又爽又粗| 午夜激情av网站| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 宅男免费午夜| 国产精品 欧美亚洲| 日本五十路高清| 国产亚洲av嫩草精品影院| 欧美 亚洲 国产 日韩一| 哪里可以看免费的av片| 黄片播放在线免费| 美女午夜性视频免费| 午夜老司机福利片| 国产精品综合久久久久久久免费| 亚洲国产精品成人综合色| 国产片内射在线| 啦啦啦观看免费观看视频高清| 一级a爱视频在线免费观看| 黄色女人牲交| 久久久久九九精品影院| 50天的宝宝边吃奶边哭怎么回事| 久久久久久九九精品二区国产 | 国产精品自产拍在线观看55亚洲| 少妇的丰满在线观看| 白带黄色成豆腐渣| 宅男免费午夜| 中文字幕人妻熟女乱码| 香蕉久久夜色| 一a级毛片在线观看| 丝袜人妻中文字幕| 99国产精品99久久久久| 中文字幕人成人乱码亚洲影| 首页视频小说图片口味搜索| 婷婷精品国产亚洲av在线| 麻豆国产av国片精品| 少妇 在线观看| 久久精品国产亚洲av高清一级| 亚洲国产欧美网| 国产av不卡久久| 制服人妻中文乱码| 99re在线观看精品视频| 特大巨黑吊av在线直播 | x7x7x7水蜜桃| 午夜激情av网站| 少妇被粗大的猛进出69影院| 不卡一级毛片| 香蕉丝袜av| 丰满人妻熟妇乱又伦精品不卡| 成人特级黄色片久久久久久久| 天天添夜夜摸| 精品第一国产精品| 日本五十路高清| 日韩高清综合在线| 午夜日韩欧美国产| 久久久国产欧美日韩av| 在线观看免费日韩欧美大片| 精品久久久久久久人妻蜜臀av| 午夜福利18| 欧美成人性av电影在线观看| 日本在线视频免费播放| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 成人18禁在线播放| 午夜视频精品福利| 日本免费a在线| 亚洲第一电影网av| 天天躁夜夜躁狠狠躁躁| 91av网站免费观看| 国产人伦9x9x在线观看| 国内少妇人妻偷人精品xxx网站 | 国产免费男女视频| 亚洲成人国产一区在线观看| 中文字幕人妻熟女乱码| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 一二三四在线观看免费中文在| 国产成人精品久久二区二区91| 老司机深夜福利视频在线观看| 俄罗斯特黄特色一大片| 亚洲自偷自拍图片 自拍| 欧美性猛交╳xxx乱大交人| 精品久久久久久久人妻蜜臀av| 亚洲精品美女久久av网站| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 国产激情久久老熟女| 日韩 欧美 亚洲 中文字幕| 久久精品国产99精品国产亚洲性色| ponron亚洲| 免费搜索国产男女视频| 国产又黄又爽又无遮挡在线| 色播亚洲综合网| 国产亚洲精品综合一区在线观看 | 国产成人系列免费观看| 久久久国产成人免费| 国产乱人伦免费视频| 国产精品爽爽va在线观看网站 | 变态另类成人亚洲欧美熟女| 99精品欧美一区二区三区四区| 国产区一区二久久| 女性被躁到高潮视频| 黄片小视频在线播放| 国产区一区二久久| 亚洲电影在线观看av| 欧美日韩亚洲综合一区二区三区_| 黄色丝袜av网址大全| 99国产极品粉嫩在线观看| 亚洲五月天丁香| 亚洲国产欧美网| 宅男免费午夜| 夜夜夜夜夜久久久久| 一区二区三区激情视频| 99国产综合亚洲精品| 国产人伦9x9x在线观看| 午夜免费成人在线视频| 午夜福利视频1000在线观看| 国产又黄又爽又无遮挡在线| 亚洲av美国av| 成人欧美大片| 免费高清在线观看日韩| 国产精品亚洲美女久久久| 日韩欧美免费精品| 欧美性长视频在线观看| av超薄肉色丝袜交足视频| 国产乱人伦免费视频| 精品久久久久久久末码| 精品国产亚洲在线| 在线观看午夜福利视频| 日本熟妇午夜| xxxwww97欧美| 欧美成人一区二区免费高清观看 | 国产成年人精品一区二区| 免费看日本二区| 亚洲精品在线观看二区| 欧美人与性动交α欧美精品济南到| 午夜两性在线视频| 久久久久久久精品吃奶| 看黄色毛片网站| 一进一出好大好爽视频| 99久久综合精品五月天人人| 91字幕亚洲| 日韩有码中文字幕| 亚洲人成网站在线播放欧美日韩| 国产av不卡久久| 男女那种视频在线观看| 精品国产美女av久久久久小说| 国产成人一区二区三区免费视频网站| 在线观看舔阴道视频| 欧美激情 高清一区二区三区| 少妇的丰满在线观看| 18禁观看日本| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| 亚洲精品粉嫩美女一区| 免费看日本二区| 手机成人av网站| 黄色视频不卡| 成年免费大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩三级视频一区二区三区| 久久久久精品国产欧美久久久| 久久久久亚洲av毛片大全| 青草久久国产| 亚洲国产欧美网| 免费看a级黄色片| 午夜福利视频1000在线观看| 免费在线观看视频国产中文字幕亚洲| 午夜亚洲福利在线播放| 国产精品98久久久久久宅男小说| 一本久久中文字幕| 91字幕亚洲| 欧美黄色淫秽网站| 国产av一区二区精品久久| 最新美女视频免费是黄的| 亚洲av成人av| 日日夜夜操网爽| 亚洲精品色激情综合| 国产精华一区二区三区| 三级毛片av免费| 欧美精品亚洲一区二区| 亚洲av日韩精品久久久久久密| 日韩欧美国产在线观看| 国产精品久久久av美女十八| 亚洲人成伊人成综合网2020| 中文亚洲av片在线观看爽| 成人亚洲精品一区在线观看| 欧美一级a爱片免费观看看 | 久久久精品欧美日韩精品| 超碰成人久久| 午夜福利在线观看吧| 侵犯人妻中文字幕一二三四区| 日日干狠狠操夜夜爽| 在线观看舔阴道视频| 宅男免费午夜| 久久久国产成人精品二区| 一区二区三区激情视频| 免费人成视频x8x8入口观看| 熟妇人妻久久中文字幕3abv| 1024视频免费在线观看| 国产精品综合久久久久久久免费| 嫩草影院精品99| 亚洲午夜理论影院| 欧美zozozo另类| 亚洲国产高清在线一区二区三 | 熟女电影av网| 午夜激情福利司机影院| avwww免费| 最近最新中文字幕大全电影3 | 91老司机精品| 国产精品av久久久久免费| 手机成人av网站| 久久九九热精品免费| 久久欧美精品欧美久久欧美| 亚洲男人的天堂狠狠| 亚洲,欧美精品.| 可以在线观看毛片的网站| 久久中文字幕人妻熟女| 一级黄色大片毛片| 人人妻人人澡人人看| 亚洲第一av免费看| 黄片播放在线免费| 香蕉丝袜av| 精品不卡国产一区二区三区| 国产成人一区二区三区免费视频网站| 男女下面进入的视频免费午夜 | 久久精品国产亚洲av香蕉五月| 50天的宝宝边吃奶边哭怎么回事| 免费高清视频大片| 久久青草综合色| 中文字幕人妻丝袜一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲第一av免费看| 美女 人体艺术 gogo| 国产午夜福利久久久久久| 69av精品久久久久久| www日本在线高清视频| 极品教师在线免费播放| 亚洲av成人一区二区三| 国产精品爽爽va在线观看网站 | 神马国产精品三级电影在线观看 | 欧美中文日本在线观看视频| 最好的美女福利视频网| av片东京热男人的天堂| 女人高潮潮喷娇喘18禁视频| 免费在线观看成人毛片| 婷婷精品国产亚洲av在线| 亚洲人成伊人成综合网2020| 波多野结衣高清无吗| 精品一区二区三区四区五区乱码| 国产精品影院久久| 国产亚洲欧美98| 国产野战对白在线观看| 精品无人区乱码1区二区| 免费在线观看影片大全网站| 高清毛片免费观看视频网站| 国产伦在线观看视频一区| 国内毛片毛片毛片毛片毛片| www日本在线高清视频| 两性夫妻黄色片| 久久国产乱子伦精品免费另类| 日韩欧美国产在线观看| 极品教师在线免费播放| 亚洲三区欧美一区| 首页视频小说图片口味搜索| 88av欧美| 国产精品乱码一区二三区的特点| 好男人在线观看高清免费视频 | 国产人伦9x9x在线观看| 极品教师在线免费播放| 亚洲中文字幕日韩| 桃色一区二区三区在线观看| 国产精品免费一区二区三区在线| 香蕉久久夜色| 久久九九热精品免费| 亚洲国产毛片av蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品中文字幕一二三四区| 亚洲精品国产区一区二| 色综合欧美亚洲国产小说| 国产av不卡久久| 日韩精品中文字幕看吧| 免费在线观看黄色视频的| 国产又色又爽无遮挡免费看| 欧美最黄视频在线播放免费| 日韩av在线大香蕉| 欧美一区二区精品小视频在线| 校园春色视频在线观看| 19禁男女啪啪无遮挡网站| 手机成人av网站| 18禁黄网站禁片午夜丰满| 久久亚洲精品不卡| 99久久99久久久精品蜜桃| 日韩高清综合在线| 亚洲欧美日韩无卡精品| 看免费av毛片| 夜夜爽天天搞| www.自偷自拍.com| 最新美女视频免费是黄的| 日韩欧美免费精品| 久久婷婷成人综合色麻豆| 色av中文字幕| 色综合站精品国产| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 天堂动漫精品| 成年版毛片免费区| 国产成人一区二区三区免费视频网站| 香蕉av资源在线| av电影中文网址| 亚洲色图 男人天堂 中文字幕| 国产真人三级小视频在线观看| 日日爽夜夜爽网站| 精品久久久久久久末码| 男女午夜视频在线观看| 亚洲欧美日韩高清在线视频| 人成视频在线观看免费观看| 18禁观看日本| 欧美大码av| 51午夜福利影视在线观看| 久久久久久九九精品二区国产 | 亚洲成人免费电影在线观看| 老司机午夜福利在线观看视频| 在线天堂中文资源库| 一级a爱视频在线免费观看| 国产亚洲欧美98| 波多野结衣高清作品| 免费无遮挡裸体视频| 老司机午夜十八禁免费视频| 男女床上黄色一级片免费看| 免费在线观看视频国产中文字幕亚洲| av福利片在线| 1024香蕉在线观看| 欧美精品啪啪一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲,欧美精品.| 又黄又爽又免费观看的视频| 中文字幕精品亚洲无线码一区 | 日本三级黄在线观看| 露出奶头的视频| 亚洲电影在线观看av| 国产亚洲欧美精品永久| 欧美日韩中文字幕国产精品一区二区三区| 国产视频一区二区在线看| 久久久久国产一级毛片高清牌| 久久久久久国产a免费观看| 午夜两性在线视频| 成熟少妇高潮喷水视频| 嫩草影院精品99| 久久婷婷成人综合色麻豆| 色尼玛亚洲综合影院| 中文字幕另类日韩欧美亚洲嫩草| 国产精品综合久久久久久久免费| 伦理电影免费视频| 欧美日韩乱码在线| 好男人电影高清在线观看| 国产精品一区二区免费欧美| 大型av网站在线播放|