• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CALCULATION OF ADDED MASS OF A VEHICLE RUNNING WITH CAVITY*

    2010-07-02 01:37:53LIJie

    LI Jie

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China,

    E-mail: lijie@sjtu.edu.cn

    LU Chuan-jing

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

    HUANG Xuan

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    CALCULATION OF ADDED MASS OF A VEHICLE RUNNING WITH CAVITY*

    LI Jie

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China,

    E-mail: lijie@sjtu.edu.cn

    LU Chuan-jing

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

    HUANG Xuan

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    A numerical method is developed to obtain the added mass coefficients of a vehicle running with cavity in numerical simulation for the multiphase flow of the vehicle which is imposed an added vibration and analyzing its hydrodynamic loads. The method is verified through the cases of non-cavitating sphere and ellipsoid. The changing rule of the added mass of a sphere during water exit is gained. Then the influence of cavitation on the added mass of a cylinder is studied. The results show that λ11, λ22, λ26, λ66all decrease as the cavitation number reduces and the length of the attached cavity increases. There is almost a linear relationship between the cavity length and λ22.The base cavity has great influence on λ11, its contribution decreases more than 60%, when the cavitation number changes from 0.6 to 0.2.

    added mass, cavity carrying, forced vibration method

    1. Introduction

    Whenever a body is in accelerated motion relative to surrounding fluid, it will be imposed an additional inertial force, which could be attributed to an equivalent added mass of fluid. The added mass is a classical concept and has been widely studied for many years. The added mass effect was discovered by Du Buat in 1786 and Friedrich Bessel in 1828 independently. The added mass is of fundamental importance in hydrodynamic research.

    The added mass was studied numerically for several decades. Most numerical works for the issue were done on the basis of the potential theory. Both the BEM and FEM can be applied to determine the added mass for an object of complex shape moving in an unbound region[1,2]. For example, Lin[3]and Liu[4]studied the added mass of submarine and airship by solving the potential flow problem with the Hess-Smith method. Many experimental techniques were also developed to investigate the added mass, such as free oscillation[5], forced oscillation[6]inertia method, etc.. Thus the added mass are all extracted from the hydrodynamic characters for vibration. A novel parameter identification method based on a TSK fuzzy system was reported by Chen et al.[7], which canbe effectively used to determine the added mass changing with time, i.e., for the case of water exit. With the advancement in CFD methods, numerical methods to calculate added mass were worked out by simulating accelerated flows directly[8-10].

    For a cavity-carrying vehicle, the added mass depends not only on its shape, but also on other kinematic and dynamic parameters. Less work has been done for finding the added mass in this case. With the potential theory, Uhlman[11]studied the added mass of supercavitating body in surge. Zhu[12]investigated the added mass of a slender body running with cavity by experiment in a cavitation tunnel.

    In this article, a new numerical method is developed to predict the added mass of cavitycarrying bodies. The method is verified by comparing the present numerical results with the analytical solutions of non-cavitating sphere and ellipsoid moving in unbounded fields. Then, the evolution of the added mass of non-cavitating sphere during water exit and the influence of cavitation on the added mass of the moving vehicle are studied.

    2. Method of calculating added mass

    The present method to predict the added mass of a body running with cavity is based on calculating hydrodynamic forces of the body which is imposed by an added vibration. It includes two main steps. First, the multiphase flow field of body running with cavity, which is forced to vibrate with small amplitude and high frequency according to scheduled rule, is simulated numerically and the evolution of hydrodynamic forces are calculated. Then, the added mass coefficients are extracted from the numerical data of hydrodynamic load with the Fourier analysis. The following two sections will explain the steps succesively.

    2.1Numerical simulation of multiphase flow

    The homogeneous equilibrium model[13]based on the isotropic RANS equations is adopted to simulate the multiphase flow. The mixture of vapor and water is thought as single fluid with changeable density. All phases share the fields for all variables and properties. The slip velocity between the phases is ignored. The following governing equations are given to describe the multiphase flow of vapor and water by introducing the volume fraction variableαfor each phase[14,15].

    The continuity equation and RANS equation are

    whereuiandxirepresent the velocity components and the coordinates,tis the time,pdenotes the local pressure, the densityρand the viscosityμof mixture are computed in a volume-fraction-average manner,μtdenotes the turbulent viscosity.

    The continuity equation for the vapor phase is

    The subscriptvrefers to vapor. The mass transfer processes in Eq.(3) is expressed as[16]

    wheren0is defined as nuclei concentration per unit volume of liquid,pvis the equilibrium vapor pressure,ρlis density of liquid.

    The mathematic model is made closed by using the two-equation RNGk?εmodel:

    wherekis the turbulent kinetic energy andεis the dissipation rate. The turbulent viscosityμtis given as

    The finite volume method is employed to discretize the integral-differential equations, and the SIMPLE scheme is adopted to solve the pressurevelocity coupling problem. The second-order upwind scheme is applied to discretize the momentum equations. The first-order upwind scheme is used for the turbulent transportation equations. The moving-grid technology is applied to adapt the changing flow domain.

    The computational model and the boundary conditions for the problem is shown in Fig.1.

    Fig.1 Computational model

    2.2Method of extracting the added mass

    For the forced vibration of a body in an incoming flow as shown in Fig.1, the velocity of body forced relative to fluid is: whereVis the velocity of incoming flow, andvis the forced vibration velocity of the body. It is assumedvis much smaller thanV. To obtain thecomponent of added massλij, let the body vibrate with the mode

    where the subscripti=1,2,3 represent the translational mode,i=4,5,6 the rotational mode,Aithe amplitude of vibration velocity,ωthe vibration frequency.

    The present method is also applicable to slowly varying motions so long as the vibration period is far shorter than the time scale of income flowV. For simplicity, here assumeVis a constant.

    The hydrodynamic forceFimposed on the body is a function of the incoming velocityV, vibration velocityvandaccelerationv. With the Taylor series expansion to the first order, it can be expressed as

    The terms on the right side of Eq.(10) are the force components corresponding to position, damping and inertia. From the definition of added mass, it follows that

    Substituting Eqs.(9) and (11) into Eq.(10) yields:

    With the Fourier analysis, the added mass can be written as

    whereNis the number of vibration period,Fjis the hydrodynamic force in time domain, which is recorded by pressure integral over the body surface, easy to obtained during numerical simulations.

    3. Verification of the method

    The cases of non-cavitating sphere and ellipsoid moving in unbounded flow fields are taken as typical benchmarks to verify the present method. The effects of vibration frequency, vibration amplitude, time step and mesh dependence are examined through a series of numerical experiments.

    3.1Added mass of sphere

    The added mass of a full wetted rigid sphere vibrating in water is calculated first. Its radiusR=0.4m , the upstream velocityV=10m/s, and thevibration velocityv1=A1sinω1t, whereA1=0.1m/s,ω1=2π×100, and the period is 0.01 s. The drag coefficient obtained is shown in Fig.2, LetN=5, then the calculated value of the added mass is 134.49 kg according to Eq.(13). Compared to the analytical solution of potential flow 2/3ρπR3(=133.8kg ), the error is smaller than 1%. The error comes from numerical error and viscous effect. The latter is known as a positive factor to increase the added mass not more than 0.1 percent. For the present case, the viscous effect can be neglected.

    Fig.2 Drag coefficient of sphere

    Figure 3 shows the time evolution of added mass. It can be seen that the result is almost invariable along with the time.

    Fig.3 Added mass of sphere vs.time

    3.2Added mass of ellipsoid

    For the added mass matrix of ellipsoid, there are three non-zero components:λ11,λ22andλ66. To gain these components, corresponding oscillatory movements, namely surge along the major axis, sway along the minor axis and pitch movement should be simulated respectively. In the calculated cases, the semimajor axisa=0.8m, and the semiminor axisb=0.4m. The upstream velocity and vibration velocity are the same as those for sphere. The numerical results are in good agreement with the analytical ones, and all the errors are smaller than 1% as shown in Table 1.

    Table 1 Added mass of ellipsoid

    4. The added mass of sphere during water exit

    The added mass is proportional to the fluid density. So the added mass in water is much larger than in air. For an object exits from water, its added mass will keep reducing until it is out of water completely.

    The vertical water exit of a sphere of radiusR=0.4m with the constant velocityV=10m/s is simulated numerically. The interface of water and air is caught by the VOF method. The vibration frequencyωis taken as 2π×500, which is high enough to ensure the vibration period (0.002 s) is far shorter than the time scale of water exit (2R/V=0.08s).

    Figure 4 describes the calculated results of the added mass for the sphere. The data can be fit by using the following formula:

    wherehis the vertical distance from the sphere top to still water surface, andλ0the added mass of sphere in unbounded flow field.

    The change rate of added mass is

    while ash/R=2,dλ/dtreaches its minimum

    It means the added mass is of the maximum reducing rate at the position ofh/R=2.

    Fig.4 Added mass during water exit

    5. Added mass of a vehicle running with cavity

    When an underwater vehicle moves with high speed, the cavities developed on its nose (attached cavity) and bottom (base cavity) will affect hydrodynamic forces directly. Therefore the added mass of the vehicle can be far different from that in fully wetted case. Although it can hardly be predicted by the classic potential flow theory, it is solved with the present method so long as the cavitating flow can be simulated correctly.

    Here, a cylinder with the slender ratio greater than 10 is chosen. Its head part and tail part are both spherical crowns. The lengthL=1.0m and the radiusR=0.075m.The other geometrical parameters described in Fig.5 are:L1=0.06m ,L2=0.56m,L3=0.34m andL4=0.04m.

    Fig.5 Shape of cylinder

    The numerical results of cavity shape for several cavitation numbers are shown in Fig.6. The relationship between the cavity lengthLσand cavitation numberσis presented in Fig.7. The shape of cavity shows itself unstable characters in the unsteady calculation scheme especially for larger

    cavitation number, and the cavity length is defined as the time-average value. The total forces gained are divided into three parts: the loads on the head, body and tail, so that the contribution of each part to the added mass can be analyzed.

    Fig.6 Cavity shape for different values ofσ

    Fig.7 Relationship between σ andLσ

    The numerical results show that the added mass coefficientsλ11,λ22,λ26andλ66all decrease as cavitation number reduces and the cavity length increases (see Fig.8). For the axial componentλ11, the body part has no contribution, the head and tail parts have almost equal contribution in the fully wetted case (Lσ=0). The contributions toλ11by the head and tail reduce with the development of cavity. The value ofλ11due to the tail part will reduce by 60% as the cavitation number is 0.2, whileλ11due to the head reduce slowly.

    For the present vehicle, the main contributions toλ22,λ26andλ66are from its body part. Both the head and tail part have small effects. On the whole,λ22,λ26andλ66reduce monotonously asLσincreases. There is almost linear relationship betweenλ22andLσ. Hereλ26andλ66are defined both relative to the center of mass, and they reduce quickly as the cavity grows.

    Fig.8 Rrelationship between added mass and cavity length

    6. Conclusions

    A numerical method for predicting the added mass of a body running with cavity has been developed in this article. The method includes two main steps. First, the multiphase flow of the body which is imposed to vibrate with small amplitude and high frequency is simulated to obtain the hydrodynamic forces. Then, the added mass coefficients are extracted through the Fourier analysis on the hydrodynamic force data. The method is verified with the cases of non-cavitating sphere and ellipsoid moving in unbounded flow fields.

    The changing rule of the added mass of a sphere during water exit is gained. A formula is fit based on the numerical data. It means the added mass is of the maximum reducing rate at the positionh/R=2.

    The influence of cavitation on the added mass of a cavity running vehicle is studied. the results show thatλ11,λ22,λ26andλ66all decrease as the cavitation number reduces and the cavitation length increases. The base cavity has great influence onλ11, and its contribution decreases by more than 60%, as the cavitation number decreases from 0.6 to 0.2. There is almost linear relationship between attached cavity lengthLσandλ22.

    [1] LI Hua-dong, ZHU Xi and LUO Zhong et al. Boundary element method for solving added mass of structure[J].Journal of Naval University of Engineering,2009, 21(2): 45-49(in Chinese).

    [2] LEUNG A. Y. T., FOK A. S. L. and Dai H. et al. The fractal finite element method for added-mass-type problems[J].International Journal for Numerical Methods in Engineering,2008, 75(10): 1194-1213.

    [3] LIN Chao-you, ZHU Jun. Numerical computation of added mass of submarine maneuvering with small clearance to sea-bottom[J].Ship Engineering,2003, 5(1): 26-29(in Chinese).

    [4] LIU Dan, WANG Xiao-liang and SHAN Xue-xiong. Added mass to stratospheric airship and its effect on motion[J].Computer Simulation,2006, 23(6): 52-56(in Chinese).

    [5] KUWABARA Joji, SORNEYA Sotoshi. Experimental investigation of added mass coefficient with a free oscillating circular cylinder[J].Japan Society of Mechanical Engineering,2008, 74(6): 1396-1401.

    [6] PAN Guang, WEI Gang and DU Xiao-xu. Whole scheme of added mass's forced oscillatory mechanism[J].Measurement and Control Technology,2007, 26(1): 35-37(in Chinese).

    [7] CHEN Wei-qi, YAN Kai and SHI Gan-jun et al. Parameter identification of hydrodynamic forces of water-exit body based on TSK fuzzy system[J].Journal of Hydrodynamics Ser. A,2005, 20(4): 446-451(in Chinese).

    [8] SHEN Ding-an, LIU Hong-mei. Maneuvering performance in the shallow water of large-scale ships[J].Journal of Ship Mechanics,2009, 13(5): 727-733(in Chinese).

    [9] YANG Lu-chun, PANG Yong-jie and HUANG Li-hua et al. Study of the CFD approach to simulate PMM experiments of submarine[J].Ship Science and Technology,2009, 31(12): 12-17(in Chinese).

    [10] ZHU Ren-chuan, GUO Hai-qiang and MIAO Guo-pinget al. A computational method for evaluation of added mass and damping of ship based on CFD theory[J].Journal of Shanghai Jiaotong University,2009, 43(2): 198-203(in Chinese).

    [11] UHLMAN J. S., FINE N. E. and KRING D. C. Calculation of the added mass and damping forces on supercavitating bodies[C].Proceedings 4th International Symposium on Cavitation.Pasadena, CA, USA, 2001.

    [12] ZHU Xiao-min, YAN Kai and JIANG Han-ming, Experimental investigation on added mass of slender bodies of revolution running with cavity[J].Journal of Ship Mechanics,1998, 2(5): 28-34(in Chinese).

    [13] CHEN Ying, LU Chuan-jing. A Homogeneousequilibrium-model based numerical code for cavitation flows and evaluation by computation cases[J].Journal of Hydrodynamics,2008, 20(2): 186-194.

    [14] CHEN Ying, LU Chuan-jing and WU Lei. Numerical method for three dimensional cavitation flows at small cavitation numbers[J].Journal of Computational Physics,2008, 25(2): 163-170(in Chinese).

    [15] OKITA K., UGAJIN H. and MATSUMOTO Y. Numerical analysis of the influence of the tip clearance flows on the unsteady cavitating flows in a three-dimensional inducer[J].Journal of Hydrodynamics,2009 21(1): 34-40.

    [16] YUAN Wei-xing, SCHNERR G. H. Cavitation in injection nozzles effect of injection pressure fluctuations[C].Proceedings 4th International symposium on Cavitation.Pasadena, CA, USA, 2001.

    December 26, 2009, Revised April 14, 2010)

    * Project supported by the National Nature Science Foundation of China (Grant No. 10832007).

    Biography:LI Jie (1977-), Male, Ph. D. Candidate, Lecturer

    2010,22(3):312-318

    10.1016/S1001-6058(09)60060-3

    亚洲精品久久午夜乱码| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| 亚洲情色 制服丝袜| 国产高清国产精品国产三级| 欧美国产精品一级二级三级| 婷婷丁香在线五月| 亚洲国产欧美在线一区| 熟女少妇亚洲综合色aaa.| 首页视频小说图片口味搜索 | 99久久综合免费| 一级黄片播放器| 天天影视国产精品| 国产一区二区激情短视频 | 在线观看国产h片| 最近手机中文字幕大全| 丝袜喷水一区| 人成视频在线观看免费观看| 一级片'在线观看视频| 中文字幕精品免费在线观看视频| 国产xxxxx性猛交| 大陆偷拍与自拍| av福利片在线| 亚洲国产欧美网| 纯流量卡能插随身wifi吗| 亚洲精品美女久久久久99蜜臀 | 欧美+亚洲+日韩+国产| 99国产精品免费福利视频| 伊人亚洲综合成人网| 国产男人的电影天堂91| 国产精品99久久99久久久不卡| 精品一区二区三卡| 婷婷色麻豆天堂久久| 夫妻午夜视频| 亚洲专区国产一区二区| 中文字幕人妻丝袜一区二区| 久久精品成人免费网站| 亚洲美女黄色视频免费看| 亚洲人成网站在线观看播放| 一级毛片我不卡| 各种免费的搞黄视频| 最新在线观看一区二区三区 | 制服人妻中文乱码| 国产1区2区3区精品| 国产免费一区二区三区四区乱码| 高清不卡的av网站| 99久久99久久久精品蜜桃| netflix在线观看网站| 欧美性长视频在线观看| 国产老妇伦熟女老妇高清| 久久国产精品影院| 蜜桃国产av成人99| av视频免费观看在线观看| 少妇 在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁夜夜躁狠狠久久av| 国产激情久久老熟女| 水蜜桃什么品种好| 亚洲久久久国产精品| 丝袜美足系列| 人人妻人人爽人人添夜夜欢视频| 精品国产乱码久久久久久男人| 亚洲黑人精品在线| 久久精品国产亚洲av涩爱| 欧美精品高潮呻吟av久久| 欧美精品高潮呻吟av久久| 国产一卡二卡三卡精品| 亚洲,欧美,日韩| 欧美黑人欧美精品刺激| 99国产精品免费福利视频| 波野结衣二区三区在线| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区二区三区在线| 麻豆av在线久日| 免费在线观看黄色视频的| 操美女的视频在线观看| 丰满少妇做爰视频| 搡老岳熟女国产| 亚洲七黄色美女视频| 中文精品一卡2卡3卡4更新| 在线 av 中文字幕| 久久av网站| 青草久久国产| 精品一区二区三区av网在线观看 | 两人在一起打扑克的视频| 天天躁日日躁夜夜躁夜夜| 在线观看人妻少妇| 久久久亚洲精品成人影院| 亚洲精品国产色婷婷电影| 一区二区三区激情视频| 国产精品.久久久| 日韩制服骚丝袜av| 一边摸一边抽搐一进一出视频| 日韩精品免费视频一区二区三区| 亚洲一区二区三区欧美精品| 高清不卡的av网站| 国产真人三级小视频在线观看| 男女下面插进去视频免费观看| 日韩av免费高清视频| 亚洲精品一卡2卡三卡4卡5卡 | 久久女婷五月综合色啪小说| 一级片'在线观看视频| 日韩 亚洲 欧美在线| kizo精华| 视频区图区小说| 99九九在线精品视频| 国产日韩欧美在线精品| 这个男人来自地球电影免费观看| 久久综合国产亚洲精品| av天堂在线播放| 性色av乱码一区二区三区2| xxx大片免费视频| 午夜激情av网站| 国产一卡二卡三卡精品| 精品一区二区三区四区五区乱码 | 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 亚洲五月色婷婷综合| 免费在线观看完整版高清| 亚洲熟女精品中文字幕| 不卡av一区二区三区| 久久精品aⅴ一区二区三区四区| 国产黄色免费在线视频| 咕卡用的链子| 80岁老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 天天躁日日躁夜夜躁夜夜| 久久狼人影院| 麻豆国产av国片精品| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 交换朋友夫妻互换小说| 啦啦啦中文免费视频观看日本| 乱人伦中国视频| 国产伦人伦偷精品视频| 国产一区二区 视频在线| 午夜视频精品福利| 亚洲国产精品一区二区三区在线| av国产精品久久久久影院| 乱人伦中国视频| 男女下面插进去视频免费观看| 成人影院久久| av天堂在线播放| 天天操日日干夜夜撸| 两个人看的免费小视频| 91字幕亚洲| 亚洲av日韩在线播放| 国产精品一区二区在线不卡| 午夜免费成人在线视频| 美女大奶头黄色视频| 国产成人av激情在线播放| 精品亚洲乱码少妇综合久久| 1024视频免费在线观看| 校园人妻丝袜中文字幕| 国产亚洲精品第一综合不卡| 欧美精品一区二区免费开放| 老司机深夜福利视频在线观看 | 久久99一区二区三区| 国产欧美日韩综合在线一区二区| 大香蕉久久成人网| 亚洲第一av免费看| 考比视频在线观看| 久久99一区二区三区| 国产高清国产精品国产三级| 久久久国产欧美日韩av| 久久久亚洲精品成人影院| 亚洲色图综合在线观看| av在线老鸭窝| 日韩av不卡免费在线播放| 久久青草综合色| 男女午夜视频在线观看| 亚洲国产欧美一区二区综合| 精品卡一卡二卡四卡免费| 日本欧美视频一区| 午夜av观看不卡| 一级毛片我不卡| 国产午夜精品一二区理论片| 99久久精品国产亚洲精品| 777久久人妻少妇嫩草av网站| 欧美黑人欧美精品刺激| 女人精品久久久久毛片| 亚洲精品成人av观看孕妇| av又黄又爽大尺度在线免费看| 亚洲精品成人av观看孕妇| 日韩熟女老妇一区二区性免费视频| 亚洲综合色网址| 蜜桃国产av成人99| 中文字幕人妻丝袜制服| www.熟女人妻精品国产| 亚洲国产成人一精品久久久| 免费观看人在逋| 欧美另类一区| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说| av在线播放精品| 美女午夜性视频免费| 成人手机av| 色播在线永久视频| 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 老司机亚洲免费影院| 在线精品无人区一区二区三| 欧美另类一区| 午夜影院在线不卡| 后天国语完整版免费观看| 一区二区三区乱码不卡18| av视频免费观看在线观看| 女警被强在线播放| 欧美 亚洲 国产 日韩一| 亚洲,欧美,日韩| 最新在线观看一区二区三区 | 在线观看免费视频网站a站| 精品熟女少妇八av免费久了| 水蜜桃什么品种好| 成人免费观看视频高清| 国产男女内射视频| 在线亚洲精品国产二区图片欧美| 亚洲精品自拍成人| 国产成人精品久久二区二区免费| 国产又色又爽无遮挡免| 女警被强在线播放| 久久国产精品影院| 国产免费现黄频在线看| 国产高清videossex| 精品人妻一区二区三区麻豆| 在线观看免费午夜福利视频| 日韩一区二区三区影片| 叶爱在线成人免费视频播放| 国精品久久久久久国模美| 成年动漫av网址| bbb黄色大片| 97精品久久久久久久久久精品| 久久女婷五月综合色啪小说| 成人影院久久| 久久亚洲精品不卡| 亚洲伊人久久精品综合| 日韩中文字幕欧美一区二区 | 国产精品国产三级国产专区5o| 丝袜美腿诱惑在线| 黄片播放在线免费| 亚洲欧美色中文字幕在线| 最黄视频免费看| 久热爱精品视频在线9| 国产精品av久久久久免费| 我的亚洲天堂| a级片在线免费高清观看视频| 女人精品久久久久毛片| 999精品在线视频| 欧美精品人与动牲交sv欧美| 国产精品熟女久久久久浪| 黄色视频不卡| 黄片播放在线免费| 久久狼人影院| 国产精品人妻久久久影院| 中文字幕亚洲精品专区| 麻豆av在线久日| 一本大道久久a久久精品| 啦啦啦 在线观看视频| 亚洲国产中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 99久久精品国产亚洲精品| 亚洲精品国产区一区二| 国产成人精品久久二区二区91| 免费在线观看日本一区| av欧美777| 国产成人免费观看mmmm| 飞空精品影院首页| 亚洲一区二区三区欧美精品| 黄色视频在线播放观看不卡| 欧美xxⅹ黑人| 亚洲,一卡二卡三卡| 久久毛片免费看一区二区三区| 在线av久久热| 国产亚洲精品第一综合不卡| 少妇人妻久久综合中文| 亚洲av综合色区一区| 日韩av不卡免费在线播放| 欧美人与性动交α欧美软件| 叶爱在线成人免费视频播放| 久久精品国产综合久久久| 欧美黑人欧美精品刺激| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 免费观看a级毛片全部| 午夜激情av网站| 免费观看人在逋| 亚洲中文日韩欧美视频| 亚洲成av片中文字幕在线观看| svipshipincom国产片| 精品亚洲成a人片在线观看| 69精品国产乱码久久久| 一级黄色大片毛片| 高清黄色对白视频在线免费看| 99九九在线精品视频| 九草在线视频观看| 亚洲av电影在线观看一区二区三区| 巨乳人妻的诱惑在线观看| 人人妻人人澡人人看| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 久热爱精品视频在线9| 高清黄色对白视频在线免费看| 亚洲国产最新在线播放| 欧美黑人欧美精品刺激| 国产片内射在线| 国产真人三级小视频在线观看| 亚洲av男天堂| 亚洲少妇的诱惑av| 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 久久久亚洲精品成人影院| 日本欧美国产在线视频| 国产精品av久久久久免费| 中文字幕高清在线视频| 欧美日本中文国产一区发布| 高潮久久久久久久久久久不卡| av视频免费观看在线观看| 一级片'在线观看视频| 国产亚洲av片在线观看秒播厂| av福利片在线| a 毛片基地| 五月开心婷婷网| 最新在线观看一区二区三区 | 三上悠亚av全集在线观看| 大香蕉久久网| 一本色道久久久久久精品综合| 中文字幕精品免费在线观看视频| 国产精品麻豆人妻色哟哟久久| 满18在线观看网站| 国产视频首页在线观看| 黄色视频在线播放观看不卡| 免费在线观看完整版高清| 久9热在线精品视频| 中文字幕av电影在线播放| 国产免费又黄又爽又色| 精品福利永久在线观看| 男女高潮啪啪啪动态图| 亚洲国产精品成人久久小说| 两个人免费观看高清视频| 99热国产这里只有精品6| 欧美日韩黄片免| 国产黄色免费在线视频| 一二三四在线观看免费中文在| 亚洲黑人精品在线| 男人爽女人下面视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆乱淫一区二区| 1024视频免费在线观看| 日韩 亚洲 欧美在线| av网站免费在线观看视频| 欧美人与性动交α欧美软件| 亚洲国产精品一区二区三区在线| 丝袜脚勾引网站| 天天操日日干夜夜撸| 男人爽女人下面视频在线观看| 男女免费视频国产| 欧美精品啪啪一区二区三区 | 男女下面插进去视频免费观看| 日本欧美国产在线视频| 51午夜福利影视在线观看| 一区二区三区乱码不卡18| 色网站视频免费| 精品国产国语对白av| 国产高清不卡午夜福利| 王馨瑶露胸无遮挡在线观看| 免费观看人在逋| 亚洲自偷自拍图片 自拍| 国产有黄有色有爽视频| 高清欧美精品videossex| 精品国产乱码久久久久久男人| 美国免费a级毛片| 欧美日韩亚洲综合一区二区三区_| 欧美乱码精品一区二区三区| 精品国产乱码久久久久久男人| 美国免费a级毛片| 精品久久久久久久毛片微露脸 | av不卡在线播放| 性色av乱码一区二区三区2| 超碰成人久久| 国产精品 国内视频| 水蜜桃什么品种好| 麻豆av在线久日| 一边摸一边做爽爽视频免费| 男人操女人黄网站| 晚上一个人看的免费电影| 69精品国产乱码久久久| 国产爽快片一区二区三区| 亚洲av成人精品一二三区| 日韩制服丝袜自拍偷拍| 99热网站在线观看| 亚洲成人免费av在线播放| 最新在线观看一区二区三区 | 国产一区二区在线观看av| 精品人妻一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 成年动漫av网址| 国产精品欧美亚洲77777| 免费看不卡的av| 欧美久久黑人一区二区| 国产一区二区三区综合在线观看| 国产成人a∨麻豆精品| 精品久久久久久久毛片微露脸 | 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 亚洲 国产 在线| 99久久精品国产亚洲精品| 无遮挡黄片免费观看| 日韩中文字幕视频在线看片| 欧美变态另类bdsm刘玥| 青春草亚洲视频在线观看| 中文字幕人妻丝袜一区二区| 精品少妇内射三级| 久久中文字幕一级| 久久久久网色| 这个男人来自地球电影免费观看| 免费在线观看影片大全网站 | 热re99久久精品国产66热6| 欧美成狂野欧美在线观看| 中文字幕亚洲精品专区| 亚洲国产av影院在线观看| 丁香六月天网| 日本猛色少妇xxxxx猛交久久| 久久天堂一区二区三区四区| 久久久久久久精品精品| 岛国毛片在线播放| 亚洲成人手机| 久久99一区二区三区| 一级a爱视频在线免费观看| 免费高清在线观看视频在线观看| 久久久久久久大尺度免费视频| 国产国语露脸激情在线看| 精品人妻1区二区| 大码成人一级视频| 80岁老熟妇乱子伦牲交| 91老司机精品| 色网站视频免费| 亚洲精品日本国产第一区| 日韩人妻精品一区2区三区| 国产精品国产三级国产专区5o| 日本色播在线视频| 亚洲精品一区蜜桃| 中文精品一卡2卡3卡4更新| 免费看不卡的av| 看免费av毛片| 欧美日韩综合久久久久久| 老司机深夜福利视频在线观看 | 国产视频首页在线观看| 日韩,欧美,国产一区二区三区| 99久久综合免费| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区国产| 69精品国产乱码久久久| 男女午夜视频在线观看| 亚洲国产中文字幕在线视频| 十八禁网站网址无遮挡| 大片免费播放器 马上看| 日韩大码丰满熟妇| 亚洲精品国产区一区二| 国产精品成人在线| 一边摸一边做爽爽视频免费| 午夜免费男女啪啪视频观看| 亚洲九九香蕉| 脱女人内裤的视频| 少妇精品久久久久久久| 精品熟女少妇八av免费久了| 99热全是精品| 久久99一区二区三区| 午夜福利影视在线免费观看| 岛国毛片在线播放| 久久国产精品人妻蜜桃| 一区二区日韩欧美中文字幕| 首页视频小说图片口味搜索 | 欧美在线一区亚洲| 免费在线观看视频国产中文字幕亚洲 | 麻豆乱淫一区二区| 伊人亚洲综合成人网| 欧美精品啪啪一区二区三区 | 十八禁网站网址无遮挡| 青春草亚洲视频在线观看| 18禁国产床啪视频网站| 国产激情久久老熟女| 久热这里只有精品99| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 少妇被粗大的猛进出69影院| 国产视频首页在线观看| 宅男免费午夜| 久久热在线av| 亚洲,欧美,日韩| 国产99久久九九免费精品| 成人免费观看视频高清| 黄色毛片三级朝国网站| 午夜福利在线免费观看网站| 精品少妇内射三级| 免费观看人在逋| 五月天丁香电影| av网站免费在线观看视频| 精品福利观看| 亚洲av欧美aⅴ国产| 99热全是精品| 波多野结衣一区麻豆| 成人国产一区最新在线观看 | 国产一区有黄有色的免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 人妻 亚洲 视频| 国产片内射在线| 宅男免费午夜| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 精品一区二区三区av网在线观看 | 免费久久久久久久精品成人欧美视频| 美女午夜性视频免费| 中文精品一卡2卡3卡4更新| av在线老鸭窝| 成年女人毛片免费观看观看9 | 久久天躁狠狠躁夜夜2o2o | 母亲3免费完整高清在线观看| 99国产精品一区二区三区| 欧美xxⅹ黑人| 欧美 亚洲 国产 日韩一| 99国产综合亚洲精品| 国语对白做爰xxxⅹ性视频网站| 午夜福利免费观看在线| 亚洲国产欧美网| 国产成人精品在线电影| 精品国产国语对白av| 久久国产精品大桥未久av| 一级毛片我不卡| 精品国产一区二区三区久久久樱花| 色播在线永久视频| 精品久久久久久久毛片微露脸 | 美女视频免费永久观看网站| xxx大片免费视频| 老汉色av国产亚洲站长工具| 国产片特级美女逼逼视频| 美女主播在线视频| 亚洲精品久久成人aⅴ小说| 国精品久久久久久国模美| 国产精品久久久久久人妻精品电影 | 在线观看国产h片| 精品国产一区二区三区久久久樱花| 99热全是精品| 欧美黄色淫秽网站| 欧美人与善性xxx| 国产精品久久久久成人av| 国产精品一国产av| 精品国产一区二区三区四区第35| 中文字幕av电影在线播放| 美女大奶头黄色视频| 国产深夜福利视频在线观看| 久久ye,这里只有精品| 最近中文字幕2019免费版| 韩国高清视频一区二区三区| 狂野欧美激情性xxxx| www.999成人在线观看| 在线 av 中文字幕| 久久精品久久久久久噜噜老黄| 欧美黑人精品巨大| 丝袜美足系列| 免费高清在线观看视频在线观看| tube8黄色片| 久久精品久久精品一区二区三区| 国产成人精品久久二区二区91| 久久久久久久国产电影| 多毛熟女@视频| 色94色欧美一区二区| 麻豆乱淫一区二区| 爱豆传媒免费全集在线观看| 成年人免费黄色播放视频| 手机成人av网站| 国产国语露脸激情在线看| 国产午夜精品一二区理论片| 精品久久久精品久久久| 午夜av观看不卡| 午夜福利乱码中文字幕| 亚洲欧美一区二区三区久久| 成年人黄色毛片网站| 国产淫语在线视频| 午夜日韩欧美国产| 中文欧美无线码| avwww免费| 亚洲国产最新在线播放| 国产一区二区三区av在线| 日韩电影二区| netflix在线观看网站| 久久九九热精品免费| 天天影视国产精品| 午夜福利视频精品| 免费人妻精品一区二区三区视频| 欧美av亚洲av综合av国产av| 亚洲精品av麻豆狂野| 又大又爽又粗| 日本欧美视频一区| 久久 成人 亚洲| 国产精品国产三级专区第一集| 国产在线观看jvid| 国产成人a∨麻豆精品| 在线观看免费日韩欧美大片| 久久狼人影院| 99九九在线精品视频| 成人黄色视频免费在线看| 久久亚洲精品不卡| 人妻人人澡人人爽人人| 男人操女人黄网站| 考比视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 欧美黄色淫秽网站| 看免费成人av毛片| 亚洲五月色婷婷综合| 91麻豆av在线| 久久国产精品大桥未久av| 丝袜在线中文字幕| 欧美精品av麻豆av| 中文字幕人妻丝袜制服|