• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TURBULENT FLOWS AROUND SAND DUNES IN ALLUVIAL RIVERS*

    2010-05-06 08:05:12LIUShiheYINShuran

    LIU Shi-he, YIN Shu-ran

    College of Water Resource and Hydropower, Wuhan University, Wuhan 430072, China, E-mail: shihe3086@163.com

    GUO Wei

    Yangtze River Scientific Research Institute, Wuhan 430010, China

    (Received November 9, 2009, Revised December 29 2009)

    TURBULENT FLOWS AROUND SAND DUNES IN ALLUVIAL RIVERS*

    LIU Shi-he, YIN Shu-ran

    College of Water Resource and Hydropower, Wuhan University, Wuhan 430072, China, E-mail: shihe3086@163.com

    GUO Wei

    Yangtze River Scientific Research Institute, Wuhan 430010, China

    (Received November 9, 2009, Revised December 29 2009)

    The sand dunes are typical bed forms of natural alluvial rivers. In this article, a vertical 2-D Reynolds stress model is established for the simulation of turbulent flows around sand dunes, and water-sand boundary conditions are set with particular attention. By numerical simulations, the following conclusions can be drawn. (1) The flow resistance in rivers with sand dunes could be divided into the sand-grain resistance and the sand dune resistance, and the sand-grain resistance coefficient mainly depends on Reynolds number, relative sand grain roughness and sand dune steepness. This coefficient in rivers with sand dunes would be larger than that calculated in a flat riverbed, and the steeper the sand dunes, the larger the sand-grain resistance coefficient. (2) The sand dune resistance coefficient mainly depends on the relative sand dune height and sand dune steepness, the steeper the sand dunes, the larger the sand dune resistance coefficient. (3) For the flat riverbed, the turbulent eddy viscosity coefficient and the sediment diffusion coefficient are approximately identical, but for the sand dune riverbed, in the vertical position, where the sediment diffusion coefficient reaches its maximum, it would be higher than the turbulent eddy viscosity coefficient.

    sand dune, flow resistance, sediment diffusion coefficient, eddy viscosity

    1. Introduction

    The sand dunes are typical bed forms of natural alluvial rivers. The study of flows around sand dunes in alluvial rivers is very important both in basic sciences and engineering applications, because it not only concerns the mechanism of flow resistance and sediment transport, but also can help to establish a better mathematical model to simulate sediment-laden flows for flood control, navigation, etc. Liu et al.[1]analyzed the river flow around sand waves and sandbars based on the rapid distortion theory. Bai et al.[2]conducted experimental research on turbulent characteristics of flows over sand ripples. Huo et al.[3]performed experimental research on the time variation of the bed shear stress under the wave effect. In the field of numerical simulations. Yoon and Patel[4]simulated turbulent flows over sand dunes by k-ω turbulence model. Yue[5]further simulated the turbulent flow over a fixed two-dimensional sand dune by large eddy simulation. On the other hand, the riverbed with sand dunes is also one kind of wavy boundaries, similar to the ocean surface with wind-waves[6], the corrugated tubes and sinusoidal wavy cylinder[7]in some industrial installations. There were numerous researches on turbulent flows around common wavy boundaries such as the sine wave boundary. For example, Zilker and Hanratty[8]used the hot film sensor to measure the velocity distribution, and adopted the electric-chemical method to make the actual measurement of the wall shear stress on the sine wave boundary. Hudson et al.[9]used LDV to measure velocity on the sine wave train. Markatos[10]used a standard k-ω model to simulate turbulent flowsover arbitrary shapes. Cherukat et al.[11]adopted the direct numerical simulation to study fully developed turbulent flows over a sine wave wall.

    Generally speaking, the formation and evolution of sand dunes in natural alluvial rivers depend on both the bed material composition and flow characteristics. The calculation of sand-grain resistance in alluvial rivers with sand dunes is currently simplified to the calculation in a static flat bed (without sand dunes) due to the lack of appropriate information, which inevitably results in some errors. In addition, the sediment diffusion coefficient is generally approximated by the turbulent eddy viscosity coefficient of flows in the study of the vertical distribution of the suspended sediment concentration in river dynamics. However, there is not much study concerning the validity of this simplification for river flows with sand dunes. Furthermore, very few numerical simulations for flows around sand dunes consider water-sand boundary conditions, which would lead to inaccurate results to some extent due to the effect of sand grains on the characteristics of turbulent flows around sand dunes composed of sand grains.

    In this article the vertical 2-D Reynolds stress model is employed for simulating turbulent flows around sand dunes, and particular attention is paid to the treatment of the water-sand boundary conditions in order to provide some insight on above issues.

    2. Mathematical model and numerical method

    2.1 Governing equations

    The governing equations for the vertical 2-D Reynolds stress model are as follows:

    Equations (1) and (2) are Reynolds equations, whereandrefer to the mean velocity and the mean pressure, respectively, ν and νtare the kinematical viscosity coefficient and the turbulent eddy viscosity coefficient, respectively, ρ andare the density of water and Reynolds stress tensor, respectively. Equation (3) is Reynolds stress equation, where Gij,Φijand Dijare Reynolds stress generation term, the pressure dependent variable and the diffusion term, respectively, and are calculated based on models in relation to the turbulent kinetic energy, the turbulent kinetic energy dissipation rate, and others. Equations (4) and (5) are the turbulent kinetic energy equation and the turbulent kinetic energy dissipation rate equation, respectively, whereijrefers to the strain-rate tensor of the mean velocity field, k andε refer to the turbulent kinetic energy and the turbulent kinetic dissipation rate, respectively, σk, σε, Cε1and Cε2are empirical parameters. For details about the calculation of the above terms and the determination of the empirical parameters, see Ref.[12].

    2.2 Boundary conditions

    2.2.1 Water-sand boundary

    The formation of sand dunes is related to the bed material composition and the turbulent flow characteristics. In Fig.1 a sketch of sand dunes in alluvial rivers is given. Due to the coupling effect it is almost impossible to describe the geometric characteristics of sand dunes by only one parameter. In this article, the sand dune steepness Δ/λ, the relative sand dune height Δ/Rb(Rb=H is the hydraulic radius) and the relative sand grain roughness d50/Rb(d50is the median diameter of the bed material) are adopted to describe the coupling effect between the bed material composition and the turbulent flow characteristics. According to Ref.[13], Δ/λ usually ranges between 0.05-0.2.

    Fig.1 Sketch of sand dune on riverbed

    The sand dune is composed of sand grains, thus both the scales of the sand dune and the sand grain will influence the turbulent flow. Based on the studies in Ref.[13,14], the zero position of the bed is taken as 0.75d50, and the longitudinal velocityPis calculated by the formula suggested in Ref.[14], which satisfies all wall conditions, including the hydraulic smooth region, transitional region and rough region.

    u?is the shear velocity, x2Pis the vertical distance away from the surface of the sand dunes and k=0.4, E=9.8, α1=0.0175, α2=0.002, α3=0.019.

    2.2.2 Water-air boundary

    The water-air boundary condition is determined according to the rigid-lid hypothesis, because, generally speaking, the effect of sand dunes on the turbulent flow can only be observed within several sand dune heights and the ratio of water depth to sand dune height adopted in this article is large enough.

    2.3 Numerical scheme

    In the numerical simulation, the fitting quadrilateral meshes of 1530×50 are used. For sand dune riverbeds with different d50, the distance between the first layer of meshes and the surface of the sand dune is approximately 0.5 mm-3.5 mm.

    The governing equations are discretised by FVM over the control volume, a third-order accuracy QUICK scheme is used for the convection term while the central difference scheme is used for the diffusion term. The variables are evaluated at the center of the control volume and the arrangement of collocated variables is employed to deal with the coupling relationship between pressure and velocity.

    The algebraic equations are solved by the Gauss-Seidel iteration method. The converging criterion is that the unit mass flow residue should be less than 0.01% of the inflow and the overall mass flow residue should be less than 0.5% of the inflow.

    3. Validation

    3.1 Mean velocity

    In Ref.[13], the longitudinal mean velocity in different vertical positions around sand dunes was measured a comparison between the measured mean velocity and the calculated values by this article is given in Fig.2. As can be seen from this figure, the calculated and measured velocities are in good agreement.

    Fig.2 Comparison of the measured and calculated longitudinal mean velocities around sand dunes

    Fig.3 Comparison of the measured and calculated wall shear stresses on sand dunes

    3.2 Wall shear stress

    In Ref.[13], the wall shear stress on sand dunes was measured. A comparison between the measured wall shear stress and the calculated values by this article is given in Fig.3. As can be seen from this figure, the calculated and measured wall shear stresses are also in good agreement.

    The riverbed with sand dunes is in a kind of wavy boundaries and for various forms of wavy boundaries such as the sine wave boundary, Zilker and Hanratty[8]measured the wall shear stress by the electric-chemical method. A comparison between the measured wall shear stress and the calculated values by this article is given in Fig.4, which shows a good agreement.

    Fig.4 Wall shear stress distribution on sine wavy boundary, wτ refers to the wavy shear stress, <wτ> refers to the average shear stress within a wavelength, λ refers to the wave length of wavy boundary

    4. Discussion on flow resistance in alluvial rivers with sand dunes

    As mentioned above, the sand dune is composed of sand grains and hence the flow resistance could be further divided into the sand-grain resistance and the sand dune resistance. It is of significance to distinguish these resistances in alluvial rivers to better understand the total resistance and the sediment movement[13].

    4.1 Sand-grain resistance

    Sand-grain resistance FSis a surface resistance, which can be obtained by the integration of the wall shear stress τx1on the surface of sand dunes within a wavelength, i.e.,

    The mean sand-grain resistance coefficient FSfor a single sand dune is defined as

    where V refers to the mean velocity in the section. Previous studies show thatfSmainly depends on Reynolds number Re=VRb/ν, relative sand grain roughness d50/Rband sand dune steepness Δ/λ[16].

    In Fig.5 the measured variations of fSwithRe and d50/Rband those calculated in this article are compared, in whichΔ/λ and d50keep as constants with Δ/λ=0.15 and d50=1.75mm As can be seen from this figure,fSslightly decreases with the increase of Re, yet increases with the increase of d50/Rb.

    Fig.5 Variations of fSwith Re and d50/Rb, with experimental results from Ref. [16]

    In Fig.6, the measured variations of fSwith Refor the sand dune riverbed (Δ/λ≠0) and the flat riverbed (Δ/λ=0) are compared with the calculated ones in this article, in which d50/Rbkeeps as constant (=0.0061). As can be seen from this figure that: (1)fSrapidly decreases with the increase of Reuntil Re is larger than a certain value,fSthen keeps unchanged with the increase of Re, (2)fSin rivers with sand dunes is larger than that calculated in the flat riverbed, and the larger the sand dune steepness Δ/λ, the larger the sand-grain resistance coefficient fS.

    Fig.6 Variations of fSwith Re and Δ/λ

    Fig.7 Variation of fSwith C+, with experimental results from Ref.[16]

    4.2 Sand dune resistance

    Sand dune resistance FDresults from the asymmetric pressure distribution on sand dunes, which can be obtained by the integration of pressure pwithin a wavelength, i.e.,

    where θ refers to the angle between the sand dune surface and the horizontal plane. Similar to Eq.(9) the mean sand dune resistance coefficient fDfor a single sand dune is defined as

    The sand dune resistance coefficient strongly depends on the sand dune shape. In Ref.[16], based on the analysis of experimental results, the following formula for fDwas proposed:

    It was indicated that the parameter m in Eq.(12) is related toΔ/λ, but no detailed relation was given, except that a value of 4/9 was recommended. In Fig.8, the calculated results of this article are given, together with Eq.(12). As can be seen from this figure, the two results are in good agreement. In Fig.9, our calculated results for the variation of m withΔ/λ are given. As can be seen from this figure, the larger the sand dune steepness Δ/λ, the larger the coefficient m.

    Fig.8 The variation of fDwith Δ/Rb

    Fig.9 The variation of m withΔ/λ

    4.3 Comparison of sand-grain resistance and sand dune resistance

    The flow separation in the leeward of sand dunes results in changes of wall shear stress and pressure imposed on the surface of sand dunes, since the extent of the flow separation is related to Δ/λ. The sand-grain resistance and the sand dune resistance would also have the same tendency. In Fig.10, the variations of fSand fDwith Δ/λare given (while Re and d50/Rbkeep unchanged). As can be seen from Fig.10, (1)fSslightly increases with the increase of Δ/λ, while fDsharply increases with the increase of Δ/λ, (2) when Δ/λ is smaller thana certain value (0.07 in Fig.10), fDis less than fS, the sand-grain resistance dominates the flow resistance, but when Δ/λ is large enough, fDwould be much larger than fS, i.e., the flow resistance would be dominated by the sand dune resistance.

    Fig.10 Comparison of sand-grain resistance coefficient and sand dune resistance coefficient

    5. Discussion on turbulent eddy viscosity coefficient and sediment diffusion coefficient

    Fig.11 Vertical distributions of turbulent eddy viscosity coefficient and sediment diffusion coefficient

    6. Conclusions

    Based on the study of turbulent flows around sand dunes in alluvial rivers, the following conclusions are drawn:

    (1) A vertical 2-D Reynolds stress model is established for the simulation of turbulent flows around sand dunes. The calculated mean velocity and wall shear stress by the present model are in good agreement with experimental results.

    (2) The flow resistance in rivers with sand dunes could be divided into the sand-grain resistance and the sand dune resistance. The sand-grain resistance coefficient mainly depends on Reynolds number, relative sand grain roughness and sand dune steepness, and this coefficient in rivers with sand dunes would be larger than that calculated in a flat riverbed. The sand dune resistance coefficient mainly depends on the relative sand dune height and sand dune steepness. Furthermore, the steeper the sand dunes, the larger the sand-grain and sand dune resistance coefficients are.

    (3) For the flat riverbed, the turbulent eddy viscosity coefficient and the sediment diffusion coefficient are approximately identical, but for the sand dune riverbed, in the vertical position, the sediment diffusion coefficient reaches its maximum, which would be higher than the related turbulent eddy viscosity coefficient.

    References

    [1] LIU Shi-he, XIONG Xiao-yuan and LUO Qiu-shi. Theoretical analysis and numerical simulation of turbulence flow around sand waves and sand bars[J]. Journal of Hydrodynamics, 2009, 21(2): 292-298.

    [2] BAI Yu-chuan, XU Dong. Experimental study on turbulent characteristics of flow over sand ripples bed[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 449-454.

    [3] HUO Guang, WANG Yi-gang. A new measure for direct measurement of the bed shear stress of wavy boundary layer in wave flume[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(4): 517-524.

    [4] YOON J. Y., PATEL V. C. Numerical model of turbulent flow over sand dune[J]. Journal of Hydraulic Engineering, 1996, 122(1): 10-18.

    [5] YUE Wu-si, LIN Ching-long and PATEL C. V. Largeeddy simulation of turbulent flow over a fixed two-dimensional dune[J]. Journal of Hydraulic Engineering, 2006, 132(7): 643-651.

    [6] ZHOU Liang-ming, WANG Ai-fang and GUO Pei-fang. Numerical simulation of sea surface directional wave spectra under typhoon wind forcing[J]. Journal of Hydrodynamics, 2008, 20(6): 776-783.

    [7] ZOU Lin, LIN Yu-feng. Force reduction of flow around a sinusoidal wavy cylinder[J]. Journal of Hydrodynamics, 2009, 21(3): 308-315.

    [8] ZILKER D. P., HANRATTY T. J. Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1 Separated flows[J]. Journal Fluid Mechanics, 1977, 82: 29-51.

    [9] HUDSON J. D., DYKHNO L. and HANRATY T. J. Turbulence production in flow over a wavy wall[J]. Experiments in Fluids, 1996, 20(4): 257-265.

    [10] MARKATOS N. C. G., SPALDING D. B. and TATCHELL D. G. et al. solution method for three-dimensional turbulent boundary layers on bodies of arbitrary shapes[J]. Computer Methods in Applied Mechanics and Engineering, 1978, 15: 74-161.

    [11] CHERUKA P., NA Y. and HANRATTY T. J. et al. Direct numerical Simulation of a fully developed turbulent flow over a wavy wall[J]. Theoretical and Computational Fluid Dynamics, 1998, 11(2): 109-134.

    [12] LIU Shi-he. High velocity flow[M]. Beijing: Science Press, 2005, 7-13(in Chinese).

    [13] QIAN Ning, WAN Zhao-hui. Mechanics of sediment transport[M]. Beijing: Science Press, 2001, 145-189(in Chinese).

    [14] LIU Shi-he, HUANG Wei and LUO Qiu-shi. Numerical simulation of compound open channel flow[J]. Engineering Journal of Wuhan University, 2006, 39(6): 1-5(in Chinese).

    [15] TAO Wen-quan. Numerical heat transfer[M]. Xi’an: Xi’an Jiaotong University Press, 2001, 347-374(in Chinese).

    [16] SHEH H. W., FEHLMAN H. M. and MENDOZA C. Bed form resistances in open channel flows[J]. Journal of Hydraulic Engineering, 1990, 116(6): 799-815.

    [17] FENG Jing-ting, JIAO En-ze. River sediment hazard and prevention[M]. Bejing: China Water Power Press,1987, 44-47(in Chinese.).

    10.1016/S1001-6058(09)60034-2

    * Project support by the National Natural Science Foundation of China (Grant No. 50539060).

    Biography: LIU Shi-he (1962-), Male, Ph. D., Professor

    欧美成人午夜免费资源| 久久99精品国语久久久| 国产精品三级大全| 国产 精品1| 新久久久久国产一级毛片| 九草在线视频观看| 国产一区二区在线观看日韩| 人人澡人人妻人| 久久久久精品性色| 欧美成人午夜免费资源| 最近中文字幕2019免费版| 如日韩欧美国产精品一区二区三区| 成人国产av品久久久| 午夜福利在线观看免费完整高清在| 精品国产乱码久久久久久小说| 国产精品女同一区二区软件| 国产精品久久久久久精品古装| 成人综合一区亚洲| 天天操日日干夜夜撸| 久久久久久伊人网av| 少妇猛男粗大的猛烈进出视频| 欧美3d第一页| 亚洲,欧美精品.| 天天躁夜夜躁狠狠久久av| 亚洲精品色激情综合| 成人无遮挡网站| 日本午夜av视频| 自拍欧美九色日韩亚洲蝌蚪91| videossex国产| 香蕉精品网在线| 久久毛片免费看一区二区三区| 最近最新中文字幕大全免费视频 | 国产色婷婷99| 纵有疾风起免费观看全集完整版| √禁漫天堂资源中文www| 热99国产精品久久久久久7| 国产日韩欧美亚洲二区| 人体艺术视频欧美日本| 亚洲成国产人片在线观看| 精品国产国语对白av| 热re99久久精品国产66热6| 人妻系列 视频| 国产爽快片一区二区三区| 亚洲,欧美,日韩| 视频在线观看一区二区三区| 成人漫画全彩无遮挡| 久久精品夜色国产| 人妻一区二区av| 国产极品天堂在线| 校园人妻丝袜中文字幕| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 日本av免费视频播放| 国产精品女同一区二区软件| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区久久久樱花| 成人国产麻豆网| 黄色毛片三级朝国网站| 国产色爽女视频免费观看| 熟女电影av网| 多毛熟女@视频| 下体分泌物呈黄色| 午夜福利乱码中文字幕| 午夜日本视频在线| 天美传媒精品一区二区| 丝瓜视频免费看黄片| 成人亚洲精品一区在线观看| 日韩三级伦理在线观看| www日本在线高清视频| 国产日韩欧美在线精品| 久久久亚洲精品成人影院| 色哟哟·www| a 毛片基地| 日韩一区二区视频免费看| av网站免费在线观看视频| 少妇的逼好多水| 亚洲人与动物交配视频| 欧美人与善性xxx| 国产精品成人在线| 在线观看免费高清a一片| 成年av动漫网址| 老司机影院毛片| 亚洲伊人久久精品综合| 日本欧美国产在线视频| 久久毛片免费看一区二区三区| 日产精品乱码卡一卡2卡三| 9色porny在线观看| 高清毛片免费看| 亚洲av电影在线进入| 日本vs欧美在线观看视频| 丰满少妇做爰视频| 青春草视频在线免费观看| 人成视频在线观看免费观看| 9色porny在线观看| 日日啪夜夜爽| 男的添女的下面高潮视频| 91久久精品国产一区二区三区| 一级黄片播放器| 熟女av电影| 欧美精品一区二区免费开放| 丝袜美足系列| 日韩电影二区| 日产精品乱码卡一卡2卡三| 视频中文字幕在线观看| videos熟女内射| 波野结衣二区三区在线| 天天操日日干夜夜撸| 久久久久久伊人网av| 2021少妇久久久久久久久久久| 亚洲第一av免费看| av播播在线观看一区| 久久久久久久精品精品| 日本91视频免费播放| 久久人妻熟女aⅴ| 777米奇影视久久| 欧美日韩av久久| 亚洲,欧美精品.| 91aial.com中文字幕在线观看| xxxhd国产人妻xxx| 国产一区有黄有色的免费视频| 满18在线观看网站| 日韩成人av中文字幕在线观看| 纯流量卡能插随身wifi吗| 人人妻人人澡人人爽人人夜夜| 日韩大片免费观看网站| 久久99热6这里只有精品| 不卡视频在线观看欧美| 亚洲成国产人片在线观看| 久久久久精品性色| av有码第一页| 97在线视频观看| 黄网站色视频无遮挡免费观看| 精品人妻熟女毛片av久久网站| 成人国产麻豆网| 久久国内精品自在自线图片| 午夜福利,免费看| 观看av在线不卡| 大片免费播放器 马上看| 一个人免费看片子| 国产精品偷伦视频观看了| 国精品久久久久久国模美| 亚洲国产精品国产精品| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 内地一区二区视频在线| 精品人妻偷拍中文字幕| 国产综合精华液| 亚洲伊人色综图| 亚洲av日韩在线播放| www.熟女人妻精品国产 | 欧美bdsm另类| 国产成人aa在线观看| 伦精品一区二区三区| 免费播放大片免费观看视频在线观看| 亚洲国产精品成人久久小说| 成人免费观看视频高清| 欧美少妇被猛烈插入视频| 超碰97精品在线观看| 久久精品人人爽人人爽视色| www.熟女人妻精品国产 | 亚洲国产欧美在线一区| 黄色 视频免费看| 成人亚洲精品一区在线观看| 久久午夜综合久久蜜桃| 韩国精品一区二区三区 | 秋霞伦理黄片| 日韩不卡一区二区三区视频在线| a级毛片黄视频| 尾随美女入室| 少妇人妻 视频| 王馨瑶露胸无遮挡在线观看| 午夜免费男女啪啪视频观看| 99热网站在线观看| 丰满饥渴人妻一区二区三| 国产精品一区二区在线观看99| 国产精品人妻久久久影院| 亚洲精品成人av观看孕妇| 久久久久国产网址| 亚洲av福利一区| 秋霞在线观看毛片| 久久人妻熟女aⅴ| 久久热在线av| 久久精品熟女亚洲av麻豆精品| 男人操女人黄网站| 亚洲欧美一区二区三区国产| 99国产综合亚洲精品| 多毛熟女@视频| 中文字幕亚洲精品专区| 这个男人来自地球电影免费观看 | 丰满迷人的少妇在线观看| 内地一区二区视频在线| 国产黄频视频在线观看| 在现免费观看毛片| 波野结衣二区三区在线| 视频中文字幕在线观看| 午夜视频国产福利| 亚洲伊人久久精品综合| 蜜桃国产av成人99| 国产免费福利视频在线观看| 亚洲精品av麻豆狂野| 亚洲国产看品久久| 免费播放大片免费观看视频在线观看| 午夜激情av网站| 久久久久久久亚洲中文字幕| 日韩不卡一区二区三区视频在线| 9热在线视频观看99| 十八禁网站网址无遮挡| 91久久精品国产一区二区三区| 韩国精品一区二区三区 | 久久久久久人妻| 国产女主播在线喷水免费视频网站| 人人妻人人添人人爽欧美一区卜| 久久精品aⅴ一区二区三区四区 | 国产亚洲最大av| 午夜精品国产一区二区电影| 2022亚洲国产成人精品| 日本欧美国产在线视频| 久久女婷五月综合色啪小说| 免费大片18禁| 少妇的逼水好多| 一区二区av电影网| 欧美丝袜亚洲另类| 亚洲精品自拍成人| 一本大道久久a久久精品| 日韩在线高清观看一区二区三区| 亚洲av福利一区| 18禁动态无遮挡网站| 国产成人精品无人区| 精品少妇久久久久久888优播| 欧美97在线视频| 久久久久精品久久久久真实原创| 免费黄色在线免费观看| 男女下面插进去视频免费观看 | 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| 久久精品熟女亚洲av麻豆精品| 最新中文字幕久久久久| 水蜜桃什么品种好| 国产免费福利视频在线观看| 丝袜美足系列| 国产毛片在线视频| 国产精品三级大全| 日韩视频在线欧美| 99热网站在线观看| 丝瓜视频免费看黄片| 2022亚洲国产成人精品| 欧美 亚洲 国产 日韩一| 免费在线观看完整版高清| xxx大片免费视频| 晚上一个人看的免费电影| 永久免费av网站大全| 中文字幕av电影在线播放| 久久精品国产鲁丝片午夜精品| 久久久久久久久久久免费av| 免费观看性生交大片5| 欧美 日韩 精品 国产| 免费av不卡在线播放| 成人漫画全彩无遮挡| 国产免费又黄又爽又色| 亚洲综合色惰| 麻豆精品久久久久久蜜桃| 国产熟女欧美一区二区| 热re99久久国产66热| 久久av网站| 自拍欧美九色日韩亚洲蝌蚪91| 熟妇人妻不卡中文字幕| 亚洲熟女精品中文字幕| 日韩一区二区三区影片| 91午夜精品亚洲一区二区三区| 一本久久精品| 国产男女超爽视频在线观看| 天美传媒精品一区二区| 高清视频免费观看一区二区| www.熟女人妻精品国产 | 欧美性感艳星| 欧美变态另类bdsm刘玥| 午夜久久久在线观看| 99久久人妻综合| 国产精品成人在线| 天堂俺去俺来也www色官网| 永久网站在线| 一本久久精品| 人体艺术视频欧美日本| 99九九在线精品视频| 深夜精品福利| 成人影院久久| 人妻 亚洲 视频| 99久久中文字幕三级久久日本| 亚洲国产成人一精品久久久| 两性夫妻黄色片 | 欧美日韩综合久久久久久| 国产成人av激情在线播放| 成年动漫av网址| 国产精品国产三级国产av玫瑰| 中文字幕制服av| 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 婷婷色综合www| 国产精品.久久久| 日韩大片免费观看网站| 国产亚洲av片在线观看秒播厂| 欧美人与性动交α欧美精品济南到 | 又粗又硬又长又爽又黄的视频| 亚洲国产精品国产精品| 日韩伦理黄色片| 超碰97精品在线观看| 91午夜精品亚洲一区二区三区| 在现免费观看毛片| 亚洲av日韩在线播放| 精品久久久精品久久久| 黑丝袜美女国产一区| 天美传媒精品一区二区| 精品人妻熟女毛片av久久网站| 国产高清国产精品国产三级| 少妇被粗大的猛进出69影院 | 亚洲少妇的诱惑av| 亚洲国产av影院在线观看| 亚洲国产成人一精品久久久| 久久精品国产自在天天线| 韩国av在线不卡| 日韩一本色道免费dvd| 女性被躁到高潮视频| 少妇高潮的动态图| 亚洲,一卡二卡三卡| 人妻一区二区av| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 又大又黄又爽视频免费| 高清毛片免费看| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 国产黄色免费在线视频| 少妇人妻精品综合一区二区| 久久免费观看电影| 亚洲欧美一区二区三区国产| 国产黄色免费在线视频| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 国产老妇伦熟女老妇高清| 天堂中文最新版在线下载| av电影中文网址| 色网站视频免费| 久久午夜福利片| 十八禁网站网址无遮挡| 看免费av毛片| 久久久久国产网址| 美女福利国产在线| 国产一区二区三区综合在线观看 | 午夜免费男女啪啪视频观看| 十分钟在线观看高清视频www| 亚洲av在线观看美女高潮| 99热国产这里只有精品6| 婷婷色av中文字幕| 91aial.com中文字幕在线观看| 国产精品一二三区在线看| 满18在线观看网站| 欧美精品亚洲一区二区| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 99精国产麻豆久久婷婷| 欧美 亚洲 国产 日韩一| 精品熟女少妇av免费看| 男人爽女人下面视频在线观看| 久久99一区二区三区| 国产亚洲精品久久久com| 国产av精品麻豆| 亚洲婷婷狠狠爱综合网| 最近中文字幕2019免费版| 午夜老司机福利剧场| 成人亚洲欧美一区二区av| 精品国产国语对白av| 成人亚洲欧美一区二区av| 午夜老司机福利剧场| 九九在线视频观看精品| 男男h啪啪无遮挡| 亚洲成色77777| 国产精品久久久久久av不卡| 国产一区二区激情短视频 | 欧美成人精品欧美一级黄| 日本与韩国留学比较| 麻豆精品久久久久久蜜桃| 一区二区三区精品91| 一级黄片播放器| 日本与韩国留学比较| 成人二区视频| 搡女人真爽免费视频火全软件| 中文字幕免费在线视频6| 亚洲欧洲国产日韩| 国产日韩欧美亚洲二区| 免费不卡的大黄色大毛片视频在线观看| av在线老鸭窝| 大片电影免费在线观看免费| 午夜视频国产福利| 在线观看美女被高潮喷水网站| 亚洲性久久影院| 最近中文字幕高清免费大全6| 黄色一级大片看看| 咕卡用的链子| 大话2 男鬼变身卡| 国产精品一区www在线观看| 日韩av不卡免费在线播放| 麻豆乱淫一区二区| 五月伊人婷婷丁香| 如何舔出高潮| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 欧美性感艳星| 看十八女毛片水多多多| 99久久综合免费| 日本免费在线观看一区| 国产精品99久久99久久久不卡 | 大话2 男鬼变身卡| 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 日韩一区二区三区影片| 看非洲黑人一级黄片| 亚洲伊人色综图| 各种免费的搞黄视频| 国产淫语在线视频| 精品第一国产精品| 久久精品人人爽人人爽视色| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| av在线app专区| 啦啦啦在线观看免费高清www| 男女无遮挡免费网站观看| 多毛熟女@视频| 久久av网站| 免费观看无遮挡的男女| 精品国产露脸久久av麻豆| 成年人午夜在线观看视频| 国产精品 国内视频| 欧美成人午夜精品| 久久久久精品久久久久真实原创| 97在线人人人人妻| 日韩av免费高清视频| 夜夜爽夜夜爽视频| 国产成人免费观看mmmm| 老熟女久久久| 国产精品人妻久久久影院| 在线观看人妻少妇| 日韩中字成人| 久久久久久久国产电影| 中国三级夫妇交换| 人妻 亚洲 视频| 色视频在线一区二区三区| 国产在线免费精品| 欧美人与性动交α欧美软件 | 国产成人欧美| 美女国产视频在线观看| 日韩电影二区| 校园人妻丝袜中文字幕| 九草在线视频观看| 欧美 亚洲 国产 日韩一| a级毛片在线看网站| 成人二区视频| 十分钟在线观看高清视频www| h视频一区二区三区| 黄片播放在线免费| 免费av不卡在线播放| 色婷婷久久久亚洲欧美| 欧美亚洲 丝袜 人妻 在线| 纯流量卡能插随身wifi吗| 色吧在线观看| av视频免费观看在线观看| 精品少妇久久久久久888优播| 国产高清不卡午夜福利| 熟女人妻精品中文字幕| 日韩中字成人| 日本欧美视频一区| 国产综合精华液| 黑丝袜美女国产一区| 下体分泌物呈黄色| 观看av在线不卡| 久久久a久久爽久久v久久| 2022亚洲国产成人精品| 黄色 视频免费看| 我的女老师完整版在线观看| 一区二区日韩欧美中文字幕 | 考比视频在线观看| 最近中文字幕高清免费大全6| 精品国产露脸久久av麻豆| 欧美精品亚洲一区二区| 欧美bdsm另类| 精品国产一区二区三区四区第35| 视频中文字幕在线观看| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 日本wwww免费看| 国产成人精品一,二区| 91久久精品国产一区二区三区| 黄色一级大片看看| 男人爽女人下面视频在线观看| 亚洲美女黄色视频免费看| 久久精品国产a三级三级三级| 日韩av免费高清视频| 十八禁网站网址无遮挡| 日本欧美国产在线视频| 国产一区二区三区av在线| 丁香六月天网| 在线观看国产h片| 亚洲人成77777在线视频| 美女国产高潮福利片在线看| 如日韩欧美国产精品一区二区三区| 新久久久久国产一级毛片| 男女高潮啪啪啪动态图| 人人妻人人澡人人爽人人夜夜| 亚洲欧美中文字幕日韩二区| 一区在线观看完整版| 在线观看人妻少妇| 中文字幕最新亚洲高清| 大陆偷拍与自拍| 亚洲欧美日韩另类电影网站| 日韩制服骚丝袜av| 久久久精品免费免费高清| 一二三四中文在线观看免费高清| 成年美女黄网站色视频大全免费| 热re99久久精品国产66热6| 一级毛片 在线播放| 国产午夜精品一二区理论片| 卡戴珊不雅视频在线播放| 最近最新中文字幕大全免费视频 | 一本—道久久a久久精品蜜桃钙片| 亚洲人成网站在线观看播放| 王馨瑶露胸无遮挡在线观看| 欧美+日韩+精品| 最后的刺客免费高清国语| 国产极品天堂在线| 男女午夜视频在线观看 | 少妇高潮的动态图| 在线 av 中文字幕| 亚洲美女黄色视频免费看| 丝袜喷水一区| 校园人妻丝袜中文字幕| 国产免费一级a男人的天堂| 欧美 日韩 精品 国产| 一级片'在线观看视频| 在线天堂中文资源库| 曰老女人黄片| 成人黄色视频免费在线看| 久久国产精品男人的天堂亚洲 | 亚洲欧美一区二区三区黑人 | 少妇高潮的动态图| 亚洲欧美一区二区三区国产| 超色免费av| 97在线人人人人妻| 男女国产视频网站| 美女脱内裤让男人舔精品视频| 国产精品一二三区在线看| 一本色道久久久久久精品综合| 少妇的逼水好多| 欧美日韩国产mv在线观看视频| 视频在线观看一区二区三区| 久久精品国产a三级三级三级| 狂野欧美激情性xxxx在线观看| 免费av不卡在线播放| 人妻系列 视频| av片东京热男人的天堂| 18禁国产床啪视频网站| 99九九在线精品视频| 亚洲精品,欧美精品| 日本91视频免费播放| 午夜免费鲁丝| 亚洲国产精品一区二区三区在线| 999精品在线视频| 777米奇影视久久| 精品酒店卫生间| 少妇人妻精品综合一区二区| 99久久中文字幕三级久久日本| 在线精品无人区一区二区三| 亚洲国产色片| 菩萨蛮人人尽说江南好唐韦庄| 国产又色又爽无遮挡免| 夜夜骑夜夜射夜夜干| 免费观看a级毛片全部| 午夜福利乱码中文字幕| av国产久精品久网站免费入址| freevideosex欧美| 久久久久久久亚洲中文字幕| 国精品久久久久久国模美| 91午夜精品亚洲一区二区三区| 国产日韩欧美亚洲二区| 黄色怎么调成土黄色| 国产永久视频网站| videos熟女内射| 久久99热这里只频精品6学生| 22中文网久久字幕| 国产亚洲精品第一综合不卡 | 日本免费在线观看一区| 18禁动态无遮挡网站| av一本久久久久| av.在线天堂| 午夜精品国产一区二区电影| 久久ye,这里只有精品| 天堂中文最新版在线下载| 亚洲国产成人一精品久久久| 欧美精品av麻豆av| 肉色欧美久久久久久久蜜桃| 在线亚洲精品国产二区图片欧美| 亚洲欧洲精品一区二区精品久久久 | 9热在线视频观看99| 日本vs欧美在线观看视频| 91精品三级在线观看| 亚洲人与动物交配视频| 一本—道久久a久久精品蜜桃钙片| 九草在线视频观看| 欧美成人午夜精品| 中文精品一卡2卡3卡4更新| 女人久久www免费人成看片| 建设人人有责人人尽责人人享有的| 亚洲国产欧美在线一区| 欧美最新免费一区二区三区|