• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SIMULATION OF THE OIL SLICK MOVEMENT IN TIDAL WATERWAYS*

    2010-05-06 08:05:10WUZhaochun
    水動力學研究與進展 B輯 2010年1期

    WU Zhao-chun

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    School of Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai 200235, China, E-mail: sh_wzc@126.com

    WANG Dao-zeng

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    (Received November 8, 2009, Revised December 21, 2009)

    SIMULATION OF THE OIL SLICK MOVEMENT IN TIDAL WATERWAYS*

    WU Zhao-chun

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    School of Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai 200235, China, E-mail: sh_wzc@126.com

    WANG Dao-zeng

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    (Received November 8, 2009, Revised December 21, 2009)

    Based on particle approach and tidal flow model this article studies the behavior of the oil slick on the water surface in the Huangpu River, a tidal waterway in Shanghai. In order to track the oil slick motion, a two-dimensional oil trajectory model is used. The dynamical properties of spilled oil characterized by advection, oil spreading and turbulent diffusion are considered in the model. The simulation results consistent with the flume experimental data show that the model is applicable. Both simulation and experiment illustrate that the tidal flow has a great influence on the oil slick motion. The calculated results can be used as a reference for the response to oil spill accidents in rivers.

    particle approach, track of oil slick, numerical simulation

    1. Introduction

    The growing demand for crude oils and the shipping boom have led to a significant increase in oil spill accidents caused by operational discharges of ship and tanker collisions. The oil spill accident is very harmful to the aquatic environment and the health of mankind. Therefore, in recent years there has been an increasing concern over the research on the transport and fate of spilled oil.

    Oil pollution at sea has been receiving particular attention over the past years from scientists and governments as the consequence of a number of serious accidents involving the release of large amounts of oil at sea. However, the study of the behavior of the spilled oil in rivers, especially in tidal waterways is relatively limited.

    In China there are a lot of inland waterways. Many of them are tidal waterways, such as the Yangtze River, Pearl River and the Huangpu River. As heavy traffic waterways, the oil spill accident happening in these rivers is increasing rapidly and has caused great impact on the environment and industry activities. Two examples can be mentioned: the oil spill accisent of the tanker “DaQing 243” in 1997 in the Yangtze River, releasing thousands of tons of crude oil, and more recent accident of the vesse“ChangYang” in 2003, which spilled 85 t of fuel in the Huangpu River.

    Generally, the transport and fate of spilled oil can be affected by the physical, chemical and biological processes. In this study, as a short-term forecasting, we concentrate mainly on the oil slick movement on the water surface, therefore, only the dynamical features of the oil slick are considered.

    2. Mathematic models and computing methods

    2.1 Tidal flow models

    The fluid flow pattern on the water surface is important in the oil slick movement. In most cases, the flow in natural tidal waterways may be described as the shallow water flow for the water depth is much less than the other two dimensions of the flow domain. With the shallow water assumption the depthaveraged 2-D shallow water equations[1-3]in Cartesian coordinates are

    where h is the water depth,zb=f( x, y) is river bed elevation, ζ=h+zb,ζ is the water lever, εtis the viscosity coefficient, g is the acceleration due to gravity, t is the time, n is the roughness factor, uand v are the depth averaged velocity components of the water current along the x and y directions, respectively.

    The initial and boundary conditions are given as follows:

    (1) The initial velocity V0and the water depth h0are given.

    (2) On the channel wall, V=0 and ?h/?n =0, where n denotes the normal direction of wall.

    (4) On the upstream open boundary:u=uinlet(t) and?h/?n=0.

    The viscosity coefficienttε in Eqs.(2)-(3) is approximated by the following expression which is widely used in engineering[4]

    Many algorithms[5-14]have been developed to solve Eqs.(1)-(3). Among them, the ADI-QUICK method, water level correction algorithm, FEM and FAM are the main schemes used to solve the above equations. The authors presented a new combined scheme in Ref.[15], i.e., the combined MacCormack-finite analysis scheme. In this scheme, a single mesh FAM was used to solve momentum equations, while the MacCormack technique was used to treat the continuity equation. The numerical examples showed its good convergence. The hydraulic simulation for a section of the Huangpu River estuary was carried out to show its efficiency and applicability. The more details can be found in Ref.[15] and the numerical results of the flow field in the Huangpu River will be quoted from it directly and will be applied to the simulation of the oil slick motion.

    2.2 Track of oil slick movement on water surface

    According to the particle approach[16,17], the oil slick is divided into a number of small grids based on the quantity and initial area, and a set of plane coordinates are assigned to each grid. It is assumed that these grids spread following Fay’s model[18], advect with the surrounding water column and diffuse as a result of turbulence. By the above assumptions, the grid coordinates can be calculated at every time step, and then the shape and track of the oil slick can be determined.

    (1) Advection

    The advection velocity of each grid UPcan be calculated by the following express:

    where Utis the surface flow velocity, Uwis wind velocity at 10 m above the water surface,Ktis the current factor, taken as 1.0, Kwis the wind drift factor, usually adopted as 0.03.

    (2) Horizontal turbulent diffusion

    Table 1 Fay’s empirical formulas for instant and continuous oil spill

    is the turbulent diffusivity, h is water depth, V is the volume of oil spill,δt is the time step, Rnis the random number in the interval 0-1. The directional angle θ′ is assumed to be a uniformly distributed random angle in the interval 0π-2π:

    (3) Surface spreading

    According to Fay’s spread model, the second stage, known as the gravity-viscous spreading, is primary. Therefore, Fay’s spread model in the second stage is used. Uniform spreading velocity is assumed and is denoted as Uk. The initial shape of the oil slick is assumed to be circular and the final diameter in the first stage is taken as the initial diameter for the numerical process. Some empirical formulas[20]for instant and continuous oil spill in calm water are listed in Table 1.

    (4) Displacement of every grid point

    The displacement of each grid point at every time step can be expressed as

    where r0is initial location vector of each grid point. In the present article, the tracking grid number is 1000.

    3. The simulation for instant oil spill process

    Instant oil spill caused by vessels accident happens often by faulty operation or illegal emissions, so the leakage quantity in such an accident is relatively small. We take the Ekofisk crude oil[21]as an sample, and 500 Kg, 1000 Kg and 1500 Kg oil are respectively spilled to simulate the oil slick motion. As a short-term forecasting, the behavior of the spilled oil within initial hours is mainly considered, thus the computing time is 2 h.

    The numerical results for different tidal processes in the case of 500 Kg of spilled oil are demonstrated as follow.

    (1) The track of the oil slick motion during ebb tide

    The origin of the coordinate system and oil spill spot are chosen to be located in the middle of the upstream waterway. The time step is Δt =60s. The numerical results are demonstrated in Figs.1-5.

    Fig.1 Upstream velocity hydrograph

    Fig.2 Shape of oil slick after 1.5 h

    Fig.3 Shape of oil slick after 2 h

    Fig.4 Variation of.long axis of oil slick versus time

    Fig.5 The trajectory of oil slick during ebb tide

    From Figs.2-3 we can see that the oil slick is elongated into an oval shape under the action of water current. The oil slick drifts a distance of 3860 m during the ebb tide. A narrow-band elliptic shape is finally formed. Figure 5 shows the trajectory of the oil slick at different instants

    (2) The track of the oil slick motion during slack tide and rising tide

    Besides different tidal processes, other conditions are the same as above. The numerical results are demonstrated in Fig.6-10.

    Fig.6 Upstream velocity hydrograph

    Fig.7 Shape of oil slick after 1.5 h

    Fig.8 Shape of oil slick after 2 h

    Fig.9 Variation of. long axis of oil slick versus time

    Fig.10 Trajectory of oil slick during slack tide and rising tide

    The flow characteristic during the tidal process is the change of the velocity direction of the water current. In this case, the long axis of the oil slick experiences the elongation-compression-elongation process (see Fig.9). Oil spill drifts totally a distance of 2050 m. Because the oil slick goes back to upstream when the velocity of water current changes into negative one (see Figs.6 and10), the drafting distance of the oil spill between the beginning and the end is only 440 m.

    (3) The comparison of different leakage quantities

    For different amounts of spilled oil, due to similar hydrodynamics condition and the spreading model used in simulation, it is only just different inthe size of the oil slick (Figs.11-12). The calculation results show that the drifting distance is roughly the same.

    Fig.11 Variation of long axis with different leakage quantities during ebb tide

    Fig.12 Variation of long axis with different leakage quantities during slack tide and rising tide

    4. Simulation for continuous oil spill

    The leakage quantity of continuous oil spill depends on the damage in vessel accident. The maximum amount of oil released in the Huangpu River was about 200 t, but no accurate time period of spill accident was recorded. So an averaged leakage quantity is adopted in this study. 100 t/h, 50 t/h and 25 t/h of spilled oil are taken in the simulation examples respectively.

    According to the experimental research[16,20], there exist also three spreading stages during continuous oil spill. The oil spreading is quickly marched from the first stage into the second stage that lasts for a relatively long time. Therefore, Fay’s spread model in the second stage can also be used.

    Some numerical results for different combination of leakage quantity and tides are shown as follow:

    (1) Leakage quantity Q=100t/h during ebb tide.

    The calculation results show that (Fig.13), a narrow oil slick with 3900 m in length and 20 m-25 m in width is formed. The original diameter is 43 m for this example.

    Fig.13 Trajectory of the oil slick in 2 h during ebb tide

    (2) Leakage quantity Q=50t/h during slack tide and rising tide.

    A narrow oil band with a total 2060 m in length (including retraced segment) and 25 m in width is formed. Retracing process of the oil slick is demonstrated in Fig.14.

    Fig.14 Trajectory of oil slick in 2 h during slack tide and rising tide

    (3) Leakage quantity Q=25t/h during maximum ebb.

    The total length of the oil slick is about 6600 m long. Because of the existence of centrifugal force induced by the curvature of the waterway the process that oil slick moves to the shoreline is showed in Fig.15.

    Fig.15 Trajectory of oil slick in 2 h during maximum ebb

    5. The comparison of simulation with the flume experiment

    To study the behavior of the oil spill influenced by the tides in the Huangpu River, the flume experimental research[22,23]has been carried out in the Experomental Center of Fluis Mechanics at Shanghai University. The experimental leakage quantities for instant and continuous oil spill are respectively taken as 1 ml and 0.01 ml/s, corresponding real amount of spilled oil 100 m3and 0.01 m3/s.

    (1) The comparison during instant oil spill process

    The comparison of numerical results and experimental data are shown in Fig.16, in which T isthe tidal period, indicating that both the maximum scale of the oil slick and the pattern of the oil spreading are in good agreement. There exists only certain time deviation in corresponding moment when the largest size of the oil slick turns up. The cause of the error is that certain phase error for upstream velocity hydrograph between experiment and simulation exists.

    Fig.16 Comparison of numerical results with experimental data

    Different from the oil spreading in calm water, tidal processes have a great influence on the variation in the shape and size of the oil slick. In the initial time when the spilled oil enters into the water, the oil slick spreads rapidly under the action of gravity. As the film thickness decreases, the spreading under the action of gravity is abated and then gravity extension turns into shearing one. In this stage, the viscous force between water surface and the bottom of the oil slick becomes gradually the main driving force for the oil spreading. The oil slick experiences stretching and contracting periods during ebb slack and flood slack processes. Thus an oscillation phenomenon of the film size happens.

    (2) The comparison analysis during Continuous oil spill process

    Fig.17 Comparison of numerical results with experimental data

    The comparison made is shown in Fig.17. The similar reason mentioned above leads to a time deviation. Figure 17 shows that the film size is much larger than that in the case of instant oil spill. The main reason is that the oil spill which enters into the water column later will fill in water surface vacancy left by the oil slick drifted away early. At the same time, the surface spreading will be interacted between preceding and later spilled oil.

    6. Conclusion

    Based on the oil particles approach and tidal flow model, the oil slick movement on the water surface in the Huangpu River has been simulated. The good consistency between numerical results and the experimental data indicates that the presented hydrodynamic and spill model can replicate the behavior of the spilled oil motion on the water surface. Both the numerical results and the experimental data show that the tidal process has a great influence on the oil slick motion, e.g., the oil slick will contract during flood tide, and retracing process of the water current will lead to diminish pollution zone. Conversely, the oil slick will stretch during ebb tide to expand the scope of oil pollution. Therefore, various emergent responses to the oil spill accidents should be taken in regard to different tides. The numerical model combined with corresponding algorithms can effectively predict the track of the oil slick and its variation in the shape and size, and therefore the numerical results can be used as a reference for planning suitable response to spill accidents.

    [1] VREUGDENHIK C. B. Numerical methods for shallow-water flow[M]. New York: Kluwer Academic Publishers, 1998.

    [2] JIN La-hua, XU Feng-jun. Simulation for water environment and visualization technique[M]. Beijing: Chemical Industry Press, 2004 (in Chinese).

    [3] HUAI Wen-xin, ZHAO Ming-deng and TONG Han-yi. Numerical simulation for the flow in opening channel and estuary region[M]. Beijing: Science Press, 2005(in Chinese).

    [4] JIANG Chun-bo, LIANG Dong-fang and LI Yu-liang. A fractional step finite element method for shallow water flows[J]. Journal of Hydrodynamics, Ser. A, 2004, 19(4): 475-483(in Chinese).

    [5] HUA Xiu-jing, LU Yu-lin. Numerical simulation on 2-D shallow water tidal current by ADI-QUICK method[J]. Journal of Hydrodynamics, Ser. A, 1996, 11(1): 77-92(in Chinese).

    [6] HUAI Wei-xin, SHENG Y. P. and KOMATSU T. Hybrid finite analytic solutions of shallow watercirculation[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(9): 1081-1088.

    [7] XU Zu-xin, YIN Hai-long. 2-D real-time modeling of tidal flow in Huangpu River’s mainstream[J]. Journal of Hydrodynamics, Ser. A, 2003, 18(3): 372-378(in Chinese).

    [8] HUAI Wen-xin, KOMATSU T. and ZENG Xiao-hui. Numerical simulation of residual circulation due to bottom roughness variability under tidal flows in a semi-enclosed bay[J]. China Ocean Engineering, 2005, 19(4): 601-612.

    [9] PAN Cun-hong, DAI Shi-qiang and CHEN Shen-mei. Numerical simulation for 2D shallow water equations by using Godunov-type scheme with unstructured mesh[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(4): 475-480.

    [10] HUAI Wen-xin, ZENG Xiao-hui. Similarity solutions of vertical plane wall plume based on finite analytic method[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(4): 447-454.

    [11] ZHAO Ming-deng, LI Tai-ru and HUAI Wen-xin et al. Finite proximate method for convection-diffusion equation[J]. Journal of Hydrodynamics, 2008, 20(1): 47-53

    [12] AI Cong-fang, JIN Sheng. Three-dimensional nonhydrostatic model for free-surface flows with unstructured grid[J]. Journal of Hydrodynamics, 2008, 20(1): 108-116.

    [13] LU Lin, LI Yu-cheng and TENG Bin. Numerical simulation of turbulent free surface flow over obstruction[J]. Journal of Hydrodynamics, 2008, 20(4): 414-423.

    [14] ZHANG Ming-liang, SHEN Yong-ming. Threedimensional simulation of meandering river based on 3-D RNG k-ε turbulence model[J]. Journal of Hydrodynamics, 2008, 20(4): 448-455.

    [15] WU Zhao-chun, WANG Dao-zeng. Numerical solution for tidal flow in opening channel using combined MacCormack - finite analysis method[J]. Journal of Hydrodynamics, 2009, 21(4): 505-511.

    [16] LEE J. H. W., JAYAWARDENA A. W. and WANG Z. Y. Environmental hydraulics[M]. Rotterdam: Balkema, 1999.

    [17] LONG Shao-qiao, LOU An-gang and TAN Hai-tao et al. Comparision of two numerical methods for solving the model for oil spill particle trajectory on the sea[J]. Periodical of Ocean University of China, S1, 2006, 36(z1): 157-162(in Chinese).

    [18] HOULT D. P. Oil on the sea[M].New York: Plenum Press, 1969, 53-63.

    [19] FISCHER H. B., LIST E. J. and KOH R. C. Y. et al. Mixing in inland and coastal waters[M]. New York: Academic Press, 1979, 483.

    [20] XIN Wei-fang. Computational method for oil spill diffusion on the sea[J]. Environmental Protection in Transportation, 1984, (1): 6-13(in Chinese).

    [21] SEBASTIAO P., GUEDES C. S. Modeling the fate of oil spills at sea[J]. Spill Science and Technology Bulletin, 1995, 2(2/3): 121-131.

    [22] KOU Ying-zhao, SHAN QI Zon Guang. Continuous oil spill diffusion on the sea[J]. Environmental Protection in Transportation, 1985, (2): 18-23(in Chinese).

    [23] LIU Dong, LIN Wei-qin and ZHON Bao-chang, Characteristic experiment of spread and transport of oil spill in tidal river[J]. Journal of Hydrodynamics, Ser. A, 2006, 21(6): 744-751(in Chinese).

    10.1016/S1001-6058(09)60033-0

    * Project supported by the National Natural Science Foundation of China (Grant No. 10972134), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20050280008).

    Biography: WU Zhao-chun (1958-), Male, Ph. D. Candidate, Professor

    WANG Dao-zeng,

    E-mail: dzwang@staff.shu.edu.cn

    最好的美女福利视频网| 久久久国产精品麻豆| 亚洲片人在线观看| 亚洲成人中文字幕在线播放| 一进一出抽搐gif免费好疼| 小说图片视频综合网站| 91在线观看av| 国产高清三级在线| 精品午夜福利视频在线观看一区| 老司机午夜十八禁免费视频| 真人一进一出gif抽搐免费| 两个人视频免费观看高清| АⅤ资源中文在线天堂| 久久精品国产亚洲av香蕉五月| 午夜福利高清视频| 国产99白浆流出| 婷婷亚洲欧美| 午夜日韩欧美国产| 国产亚洲精品av在线| 色综合婷婷激情| 亚洲国产欧美网| 人人妻人人看人人澡| 国产激情偷乱视频一区二区| 老司机午夜十八禁免费视频| 一本久久中文字幕| 黄片大片在线免费观看| 久久6这里有精品| 一个人观看的视频www高清免费观看| 性色av乱码一区二区三区2| 国产黄色小视频在线观看| 国产精品自产拍在线观看55亚洲| 亚洲,欧美精品.| 亚洲激情在线av| 高清日韩中文字幕在线| 一区福利在线观看| 一a级毛片在线观看| 男人舔女人下体高潮全视频| 国内少妇人妻偷人精品xxx网站| 精品不卡国产一区二区三区| 伊人久久精品亚洲午夜| 国产精品1区2区在线观看.| 欧美日韩综合久久久久久 | 国产真人三级小视频在线观看| 久久精品人妻少妇| 日本五十路高清| 国产探花极品一区二区| 成人一区二区视频在线观看| 精品国内亚洲2022精品成人| 亚洲av中文字字幕乱码综合| 丁香六月欧美| 少妇的逼水好多| 午夜日韩欧美国产| 99久久精品一区二区三区| 美女被艹到高潮喷水动态| 美女被艹到高潮喷水动态| 中文资源天堂在线| 国产成+人综合+亚洲专区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲无线观看免费| 少妇的逼水好多| 夜夜躁狠狠躁天天躁| 亚洲人成网站在线播| 99久国产av精品| 在线免费观看不下载黄p国产 | 每晚都被弄得嗷嗷叫到高潮| 国产三级中文精品| 久久久久久人人人人人| 97碰自拍视频| 一a级毛片在线观看| 国产主播在线观看一区二区| 午夜福利18| 热99在线观看视频| 欧美黑人欧美精品刺激| 免费高清视频大片| 十八禁网站免费在线| 亚洲内射少妇av| 国产精品一区二区三区四区久久| 久久精品夜夜夜夜夜久久蜜豆| eeuss影院久久| 啦啦啦免费观看视频1| 中文字幕人成人乱码亚洲影| 男女下面进入的视频免费午夜| 欧美午夜高清在线| 日韩欧美三级三区| 老汉色av国产亚洲站长工具| 国产一区二区亚洲精品在线观看| a级毛片a级免费在线| 亚洲七黄色美女视频| 老鸭窝网址在线观看| 免费看十八禁软件| 久久久色成人| 18禁黄网站禁片午夜丰满| 国产麻豆成人av免费视频| 97超级碰碰碰精品色视频在线观看| 老司机午夜十八禁免费视频| 国产精品久久电影中文字幕| 级片在线观看| 人妻丰满熟妇av一区二区三区| 午夜免费男女啪啪视频观看 | 日本黄大片高清| 亚洲精品在线美女| 国产免费一级a男人的天堂| 在线观看av片永久免费下载| 少妇人妻一区二区三区视频| 日韩欧美一区二区三区在线观看| 长腿黑丝高跟| 欧美激情在线99| 男人的好看免费观看在线视频| 狂野欧美白嫩少妇大欣赏| 久久久久性生活片| 日本撒尿小便嘘嘘汇集6| 国产97色在线日韩免费| 成人18禁在线播放| 日本一本二区三区精品| av专区在线播放| 一本综合久久免费| 黄色成人免费大全| 一进一出抽搐gif免费好疼| 亚洲自拍偷在线| av国产免费在线观看| 久久亚洲精品不卡| 免费av毛片视频| 床上黄色一级片| 久久精品综合一区二区三区| av视频在线观看入口| 国产欧美日韩一区二区精品| 日本黄色片子视频| 久久久久精品国产欧美久久久| 国产av麻豆久久久久久久| 国产亚洲精品综合一区在线观看| 日韩国内少妇激情av| 国产精品一区二区三区四区免费观看 | 成人无遮挡网站| 18禁裸乳无遮挡免费网站照片| 精品熟女少妇八av免费久了| 久久草成人影院| 中文在线观看免费www的网站| 国产av一区在线观看免费| 真人做人爱边吃奶动态| 国产精品亚洲美女久久久| 国产老妇女一区| 一个人看视频在线观看www免费 | 免费观看精品视频网站| 91麻豆av在线| 两人在一起打扑克的视频| 成人鲁丝片一二三区免费| 少妇的丰满在线观看| 久久久国产成人精品二区| 成年人黄色毛片网站| 日本a在线网址| 久久精品影院6| 精品久久久久久久毛片微露脸| 中亚洲国语对白在线视频| bbb黄色大片| 国产精品永久免费网站| 久久久久久久亚洲中文字幕 | 日韩欧美在线二视频| 亚洲avbb在线观看| 国产 一区 欧美 日韩| 中文字幕高清在线视频| 日本熟妇午夜| ponron亚洲| 在线视频色国产色| 午夜免费观看网址| 午夜福利免费观看在线| www.www免费av| av片东京热男人的天堂| 中出人妻视频一区二区| 国产激情偷乱视频一区二区| 国产乱人伦免费视频| 亚洲精品在线观看二区| 宅男免费午夜| 天天添夜夜摸| 亚洲精品久久国产高清桃花| 免费在线观看亚洲国产| 日本一本二区三区精品| 老司机深夜福利视频在线观看| 三级国产精品欧美在线观看| 国产爱豆传媒在线观看| 国产伦精品一区二区三区视频9 | 亚洲欧美激情综合另类| 国产精品一区二区免费欧美| 老司机深夜福利视频在线观看| 老汉色∧v一级毛片| 少妇丰满av| 国产精品日韩av在线免费观看| 久久久久久久精品吃奶| 免费在线观看成人毛片| 亚洲不卡免费看| 国产伦一二天堂av在线观看| 真人做人爱边吃奶动态| 老鸭窝网址在线观看| 夜夜躁狠狠躁天天躁| 中文资源天堂在线| 久久亚洲精品不卡| 亚洲欧美日韩高清在线视频| 内地一区二区视频在线| 免费观看精品视频网站| 特级一级黄色大片| 成人特级黄色片久久久久久久| 美女大奶头视频| 久久99热这里只有精品18| 极品教师在线免费播放| 亚洲最大成人手机在线| 国产单亲对白刺激| 丁香六月欧美| 日韩中文字幕欧美一区二区| 亚洲自拍偷在线| 亚洲精品粉嫩美女一区| 俺也久久电影网| 女人被狂操c到高潮| 啦啦啦韩国在线观看视频| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av在线| 十八禁网站免费在线| 日本 欧美在线| 黄色片一级片一级黄色片| 女人被狂操c到高潮| 亚洲人成网站高清观看| 国产精品乱码一区二三区的特点| 精品人妻偷拍中文字幕| 亚洲,欧美精品.| 有码 亚洲区| 超碰av人人做人人爽久久 | 国产亚洲欧美98| 国产精品一区二区免费欧美| 色老头精品视频在线观看| 亚洲 欧美 日韩 在线 免费| 日韩精品青青久久久久久| 久久精品国产清高在天天线| 性色av乱码一区二区三区2| 国产成人av教育| 亚洲人成网站在线播| 亚洲国产日韩欧美精品在线观看 | 观看美女的网站| 久久久久九九精品影院| 国产69精品久久久久777片| 日韩大尺度精品在线看网址| 亚洲 欧美 日韩 在线 免费| 色噜噜av男人的天堂激情| 观看美女的网站| 岛国在线免费视频观看| 精品久久久久久久末码| 午夜激情福利司机影院| 男女那种视频在线观看| 99久久九九国产精品国产免费| 人人妻人人澡欧美一区二区| 美女高潮喷水抽搐中文字幕| 久久精品国产自在天天线| 午夜影院日韩av| 日韩欧美三级三区| 天美传媒精品一区二区| 一进一出抽搐动态| 级片在线观看| 熟女电影av网| 免费电影在线观看免费观看| 国产精品久久久久久人妻精品电影| 国产97色在线日韩免费| 精品一区二区三区人妻视频| 一a级毛片在线观看| 超碰av人人做人人爽久久 | 少妇人妻精品综合一区二区 | 久久人妻av系列| 真人做人爱边吃奶动态| 日本熟妇午夜| 欧美日本亚洲视频在线播放| 欧美一区二区国产精品久久精品| 久久久色成人| 最近最新中文字幕大全电影3| 网址你懂的国产日韩在线| 欧美在线黄色| 亚洲黑人精品在线| 午夜激情福利司机影院| 中文资源天堂在线| 老熟妇仑乱视频hdxx| 国产伦精品一区二区三区视频9 | 国产美女午夜福利| 在线播放国产精品三级| 亚洲一区二区三区不卡视频| 午夜福利在线在线| 国产精品日韩av在线免费观看| 亚洲国产色片| 淫妇啪啪啪对白视频| 亚洲成人久久性| 国产成年人精品一区二区| 性色avwww在线观看| 制服人妻中文乱码| 99视频精品全部免费 在线| 国产蜜桃级精品一区二区三区| 亚洲av熟女| e午夜精品久久久久久久| 看片在线看免费视频| 精品电影一区二区在线| 国产欧美日韩精品亚洲av| 51午夜福利影视在线观看| av片东京热男人的天堂| 老司机深夜福利视频在线观看| 日韩成人在线观看一区二区三区| 欧美性感艳星| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 亚洲成人久久性| 有码 亚洲区| 精品欧美国产一区二区三| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 国产欧美日韩一区二区三| 成人无遮挡网站| 日韩欧美国产在线观看| 一区二区三区激情视频| 久久婷婷人人爽人人干人人爱| 中国美女看黄片| 国产又黄又爽又无遮挡在线| 成年版毛片免费区| 一进一出好大好爽视频| 俺也久久电影网| 亚洲在线自拍视频| 久久久久久人人人人人| 国产黄a三级三级三级人| 一级黄片播放器| 国产精品99久久久久久久久| 97碰自拍视频| 欧美成人性av电影在线观看| 成人18禁在线播放| 动漫黄色视频在线观看| 国产av不卡久久| 很黄的视频免费| 波野结衣二区三区在线 | 免费看美女性在线毛片视频| 性欧美人与动物交配| 白带黄色成豆腐渣| 免费电影在线观看免费观看| 在线观看免费午夜福利视频| 欧美日本视频| 久久久久久久久大av| 欧美日韩福利视频一区二区| 亚洲av中文字字幕乱码综合| 国产野战对白在线观看| 岛国在线免费视频观看| 亚洲人成网站在线播| 亚洲精品在线美女| 欧美一区二区国产精品久久精品| 少妇的丰满在线观看| www日本在线高清视频| 日韩欧美三级三区| 久久九九热精品免费| 日本一本二区三区精品| 精品人妻1区二区| av视频在线观看入口| 精品久久久久久久久久免费视频| 一区二区三区激情视频| 五月玫瑰六月丁香| 黄色片一级片一级黄色片| 又黄又粗又硬又大视频| 久久久成人免费电影| 99久久无色码亚洲精品果冻| 国产精品 欧美亚洲| 成年版毛片免费区| 精品国产美女av久久久久小说| 久久久久久大精品| 欧美成人a在线观看| 国产在线精品亚洲第一网站| 国产精品乱码一区二三区的特点| 日韩精品青青久久久久久| 乱人视频在线观看| 色综合欧美亚洲国产小说| 免费无遮挡裸体视频| 99精品欧美一区二区三区四区| bbb黄色大片| 日本熟妇午夜| 3wmmmm亚洲av在线观看| 嫩草影院入口| 国产色爽女视频免费观看| 欧美三级亚洲精品| 亚洲av电影在线进入| 色尼玛亚洲综合影院| 久久精品91蜜桃| 国产亚洲欧美在线一区二区| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| eeuss影院久久| 1024手机看黄色片| 9191精品国产免费久久| 精品国产三级普通话版| 久久午夜亚洲精品久久| 久久久久久久久中文| 亚洲精品一区av在线观看| 天天躁日日操中文字幕| 窝窝影院91人妻| 少妇丰满av| 一本一本综合久久| 国产亚洲精品av在线| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片| 久久久久久久久中文| 免费av毛片视频| 国内精品久久久久久久电影| 国产成人a区在线观看| 国产野战对白在线观看| 18禁裸乳无遮挡免费网站照片| 久久久久久久久中文| 国产不卡一卡二| www.www免费av| 窝窝影院91人妻| 成人国产一区最新在线观看| 免费看美女性在线毛片视频| 亚洲天堂国产精品一区在线| 午夜免费成人在线视频| 亚洲精华国产精华精| 一级毛片高清免费大全| 日韩 欧美 亚洲 中文字幕| 成人午夜高清在线视频| 脱女人内裤的视频| 精品人妻1区二区| av视频在线观看入口| 午夜精品一区二区三区免费看| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 国产成人a区在线观看| 国产真实伦视频高清在线观看 | 一级毛片女人18水好多| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 淫妇啪啪啪对白视频| 人人妻人人澡欧美一区二区| 日韩高清综合在线| 波多野结衣巨乳人妻| www.色视频.com| 三级毛片av免费| 老司机深夜福利视频在线观看| 日本 av在线| 欧美日韩一级在线毛片| 内射极品少妇av片p| 婷婷六月久久综合丁香| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| 亚洲国产欧洲综合997久久,| 熟女少妇亚洲综合色aaa.| 色哟哟哟哟哟哟| 免费观看人在逋| 国产探花在线观看一区二区| 日本 av在线| x7x7x7水蜜桃| 亚洲人成网站在线播放欧美日韩| 欧美性感艳星| 精品久久久久久久久久免费视频| 91av网一区二区| 日韩有码中文字幕| 黄色成人免费大全| 18禁美女被吸乳视频| 久久久精品大字幕| 一区福利在线观看| 成人性生交大片免费视频hd| 变态另类成人亚洲欧美熟女| 久久久国产精品麻豆| 午夜久久久久精精品| 成人三级黄色视频| 热99re8久久精品国产| 中文资源天堂在线| 99精品欧美一区二区三区四区| 精品午夜福利视频在线观看一区| 一进一出抽搐gif免费好疼| 最近最新免费中文字幕在线| 看免费av毛片| 国产主播在线观看一区二区| 免费人成视频x8x8入口观看| 在线看三级毛片| 久久精品人妻少妇| 老鸭窝网址在线观看| 欧美精品啪啪一区二区三区| 久久精品影院6| 亚洲第一电影网av| 日韩成人在线观看一区二区三区| 男人和女人高潮做爰伦理| www日本在线高清视频| 九九热线精品视视频播放| 国内精品久久久久精免费| 九九久久精品国产亚洲av麻豆| 老司机午夜福利在线观看视频| 99国产极品粉嫩在线观看| 99精品久久久久人妻精品| 一区二区三区激情视频| 夜夜爽天天搞| 天天一区二区日本电影三级| 精品久久久久久久毛片微露脸| 看免费av毛片| 丰满的人妻完整版| 午夜福利成人在线免费观看| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 最新美女视频免费是黄的| 热99在线观看视频| 少妇的丰满在线观看| 亚洲成人精品中文字幕电影| 在线免费观看不下载黄p国产 | 波多野结衣高清无吗| 天天添夜夜摸| 少妇的逼水好多| 亚洲无线在线观看| 男女那种视频在线观看| 国产私拍福利视频在线观看| 亚洲久久久久久中文字幕| 丁香欧美五月| 亚洲欧美激情综合另类| 在线观看av片永久免费下载| 欧美xxxx黑人xx丫x性爽| av专区在线播放| 日本 av在线| 亚洲av免费高清在线观看| 国产精品1区2区在线观看.| 午夜福利免费观看在线| 国产在线精品亚洲第一网站| 精品乱码久久久久久99久播| av黄色大香蕉| 一区福利在线观看| 欧美色欧美亚洲另类二区| 国产精品影院久久| 老司机午夜十八禁免费视频| 国产三级中文精品| 国产麻豆成人av免费视频| 国产免费一级a男人的天堂| 欧美成狂野欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲av成人av| 亚洲在线观看片| 婷婷六月久久综合丁香| 蜜桃久久精品国产亚洲av| 丁香欧美五月| 久久精品国产99精品国产亚洲性色| 久久久久亚洲av毛片大全| 国产美女午夜福利| 好男人电影高清在线观看| 久99久视频精品免费| 精品人妻偷拍中文字幕| 18禁黄网站禁片午夜丰满| 亚洲专区中文字幕在线| 中文字幕精品亚洲无线码一区| 伊人久久大香线蕉亚洲五| 国产中年淑女户外野战色| 男女午夜视频在线观看| 免费在线观看亚洲国产| 国产精品影院久久| 国产真实乱freesex| 日本免费一区二区三区高清不卡| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 亚洲成人久久爱视频| 欧美+亚洲+日韩+国产| 午夜激情欧美在线| 欧美+亚洲+日韩+国产| 熟女人妻精品中文字幕| 日韩欧美国产一区二区入口| 国内精品久久久久久久电影| 2021天堂中文幕一二区在线观| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 亚洲精品456在线播放app | 真实男女啪啪啪动态图| 丰满人妻一区二区三区视频av | 亚洲精品在线美女| 久9热在线精品视频| 国产高清视频在线播放一区| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 欧美色视频一区免费| 午夜福利高清视频| 在线观看免费午夜福利视频| 亚洲专区中文字幕在线| 亚洲人成伊人成综合网2020| 人人妻人人澡欧美一区二区| www国产在线视频色| 国产精品香港三级国产av潘金莲| 国产精品 欧美亚洲| 午夜免费观看网址| 亚洲欧美日韩高清在线视频| 国产国拍精品亚洲av在线观看 | 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 人人妻人人澡欧美一区二区| 久久草成人影院| 九九久久精品国产亚洲av麻豆| 久久久国产成人精品二区| 精品人妻1区二区| 成年女人毛片免费观看观看9| avwww免费| 一本精品99久久精品77| 长腿黑丝高跟| 国产亚洲精品综合一区在线观看| 俄罗斯特黄特色一大片| 国产精品99久久久久久久久| 欧美激情在线99| 在线观看免费视频日本深夜| 国产欧美日韩一区二区精品| 97碰自拍视频| 国产v大片淫在线免费观看| 日本 av在线| 国产在线精品亚洲第一网站| 久久精品影院6| 亚洲一区二区三区不卡视频| 色播亚洲综合网| 757午夜福利合集在线观看| 久久精品91无色码中文字幕| 国产黄片美女视频| 嫁个100分男人电影在线观看| 国产99白浆流出| 少妇人妻精品综合一区二区 | 成人无遮挡网站| 精品国产超薄肉色丝袜足j| 国产美女午夜福利| 美女大奶头视频| 国产av一区在线观看免费| 亚洲18禁久久av| 色综合婷婷激情| 久久久久久久精品吃奶| 国产极品精品免费视频能看的|