• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Annihilators in Unit-Regular Rings

    2010-04-11 02:40:28CHENHuanyin

    CHEN Huan-yin

    (College of Science, Hangzhou Normal University, Hangzhou 310036, China)

    1 Introduction

    A ringRis unit-regular provided that for anyx∈R, there exists an invertibleu∈Rsuch thatx=xux(cf.[1]). The class of unit-regular rings is very large. For instance, the endomorphism ring of finitely dimensional vector space over a division ring is unit-regular. We say that a ringRhas stable range one (i.e., 1-fold stable ring, stable rank one) provided thataR+bR=Rwitha,b∈Rimplies that there exists ay∈Rsuch thata+by∈U(R)(cf.[2-5]). The concept of stable range one was initiated by Bass in his investigation of stability of the general linear group in algebraK-theory and was well known as the Bass’s first stable range condition. For example,K1(R)?U(R)/V(R) ifRis unit-regular. TheK2groups of such rings were also studied in the literatures. As is well known, a regular ringRis unit-regular if and only if it has stable range one, where a ringRis regular in case for anyx∈R, there exists ay∈Rsuch thatx=xyx. Also it is worth to note that a regular ringRis unit-regular if and only if for any finitely generated projective rightR-modulesA,BandC,A⊕B?A⊕C?B?C. That is, unit-regularity over regular rings is equivalent to cancellation problem for finitely generated projective right modules.

    LetRbe an associative ring with identity, and leta∈R. We user(a) and l(a) to stand for the sets {r∈R|aa=0} and {r∈R|ra=0}, respectively. As usual,r(a)(l(a)) is called the right (left) annihilator ofa∈R. Unit-regular rings have been extensively studied by many authors (cf. [6-8]). We prove, in this note, that every unit-regular ring can be characterized by means of annihilators.

    2 The Main Results

    Lemma1LetRbe a regular ring, and leta,b,d∈R. Then the following are equivalent:

    (1)aR+bR=dR.

    (2) l(a)∩l(b)=l(d).

    Proof(1)?(2) Assume thataR+bR=dR. Thend=ax+byfor somex,y∈R; hence, l(a)∩l(b)?l(d). For anyz∈l(d),zd=0, and soza=zb=0. Thus,z∈l(a)∩l(b). Hence, we conclude that l(a)∩l(b)=l(d).

    (2)?(1) Assume that l(a)∩l(b)=l(d). SinceRis regular, there exists ac∈Rsuch thataR+bR=cR. Writed=dxdandc=cyc. As 1-dx∈l(d), (1-dx)a=(1-dx)b=0. Thus,a=dxaandb=dxb. Hence,aR+bR?dR. As (1-cy)c=0, we see that (1-cy)a=(1-cy)b=0. That is, 1-cy∈l(a)∩l(b). This implies that 1-cy∈l(d), and sod=cyd∈aR+bR. Hence,aR+bR=dR, as required.

    LetRbe a regular ring, and leta,b,d∈R. Analogously, we deduce thatRa+Rb=Rdif and only ifr(a)∩r(b)=r(d).

    Theorem1LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Whenever l(a)∩l(b)=l(d), there existsy∈Rsuch that l(a)∩l(b)=l(a+by).

    (3) Wheneverr(a)∩r(b)=r(d), there existsz∈Rsuch thatr(a)∩r(b)=r(a+zb).

    Proof(1)?(2) Suppose thatRis unit-regular. Whenever l(a)∩l(b)=l(d), it follows from Lemma 1 thataR+bR=dR. Thus,ax+by′=d,a=ds,b=dtfor somex,y′,s,t∈R. Hence,dsx+dty′=d. Letw=sx+ty′-1. Thensx+ty′-w=1 withdw=0. Clearly,Ris unit-regular; whence,u:=s+(ty′-w)r∈U(R) for somer∈R. As a result, we derive thatdu=ds+dty′r=a+by′r. This infers that l(d)=l(a+by′r), i.e., l(a)∩l(b)=l(a+by), wherey=y′r.

    (2)?(1) Assume thataR+bR=R. Then l(a)∩l(b)=l(1) from Lemma 1. By hypothesis, there exists ay∈Rsuch that l(a+by)=l(1)=0. SinceRis regular, we have ac∈Rsuch thata+by=(a+by)c(a+by); hence, 1-(a+by)c∈l(a+by)=0. Thus,a+by∈Ris right invertible. Givenx′y′=1, theny′R+(1-y′x′)R=R. By the proceeding discussion, we can findz′,v′∈Rsuch thaty′+(1-y′x′)z′=u′ andu′v′=1. Thus, 1=x′y′=x′(y′+(1-y′x′)z′)=x′u′, and sox′=(x′u′)v′=v′. Hence,v′u′=1. This infers thatx′∈U(R), and theny′∈U(R). So,y′x′=1 fromy′x′y′x′=y′x′. That is,Ris directly finite. Consequently,a+by∈U(R), i.e.,Ris unit-regular.

    (1)?(3) Analogously, we deduce thatRis unit-regular if and only ifr(a)∩r(b)=r(d) implies that there existsz∈Rsuch thatr(a)∩r(b)=r(a+zb).

    Corollary1LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Whenever l(a)∩l(b)=0, there existsy∈Rsuch that l(a+by)=0.

    (3) Wheneverr(a)∩r(b)=0, there existsz∈Rsuch thatr(a+zb)=0.

    Proof(1)?(2) Whenever l(a)∩l(b)=0, then l(a)∩l(b)=l(1). By virtue of Theorem 1, there exists ay∈Rsuch that l(a)∩l(b)=l(a+by), and so l(a+by)=0, as required.

    (2)?(1) GivenaR+bR=R, then l(a)∩l(b)=l(1) from Lemma 1. By hypothesis, we can find ay∈Rsuch that l(a+by)∩l(0)=0=l(1). By using Lemma 1 again, (a+by)R+0×R=R. This implies thata+by∈Ris right invertible. Similarly to Theorem 1,Ris directly finite, and thereforeRis unit-regular.

    (1)?(3) is proved in the same manner.

    Leta,b∈EndZ(Z) be defined by left multiplication by 2 and 5, respectively. We note thatr(a)∩r(b)=0, whiler(a+by)≠0 for anyy∈R. In this case,EndZ(Z) is not unit-regular.

    Theorem2LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Whenever l(a)∩l(b)=l(d), there existu∈U(R),y∈Rsuch thatau+by=d.

    (3) Wheneverr(a)∩r(b)=r(d), there existu∈U(R),y∈Rsuch thatua+yb=d.

    Proof(1)?(2) Whenever l(a)∩l(b)=l(d), by virtue of Theorem 1, l(a+by)=l(d) for ay∈R. In light of Lemma 1, (a+by)R=dR. Writea+by=dsand (a+by)t=d. Clearly,Rhas stable range one. It follows fromst+(1-st)=1 thatu:=s+(1-st)z∈U(R). Hence,du=ds+d(1-st)z=a+by. Thereforeau-1+byu-1=d, as needed.

    (2)?(1) Whenever l(a)∩l(b)=0, we get l(a)∩l(b)=l(1). Hence, there existsy∈Rsuch thata+by∈U(R). This implies thatr(a+by)=0. Thus,Ris unit-regular by Corollary 1.

    (1)?(3) is symmetric.

    Corollary2LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Whenever l(a)∩l(b)=0, there existsy∈Rsuch thata+by∈U(R).

    (3) Wheneverr(a)∩r(b)=0, there existsz∈Rsuch thata+zb∈U(R).

    Proof(1)?(2) l(a)∩l(b)=0 if and only if l(a)∩l(b)=l(1). In light of Theorem 2, we are through.

    (1)?(3) is similar to the preceding proof.

    Lemma2LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Wheneverx=xyx, there exists somea∈Rsuch that 1+xa,y+a∈U(R).

    ProofAs in the proof of [9, Proposition 2.5].

    Recall that a ringRsatisfies unit 1-stable range provided thataR+bR=Rwitha,b∈Rimplies that there exists au∈U(R) such thata+bu∈U(R). As is well known, a ringRsatisfies unit 1-stable range if and only if for anyx,y∈R, there exists au∈U(R) such that 1+x(y-u)∈U(R) (cf. [10]). This fact should be contract to the following: a regular ringRis unit-regular if and only if wheneverx=xyx, there exists au∈U(R) such that 1+x(y-u)∈U(R).

    Theorem3LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Wheneverx=xyx, there exist ae∈l(x) and au∈U(R) such thaty=e+u.

    (3) Wheneverx=xyx, there exist ae∈r(x) and au∈U(R) such thaty=e+u.

    Proof(1)?(3) Suppose thatx=xyx. Obviously,Rhas stable range one. Sinceyx+(1-yx)=1, we can find az∈Rsuch thatu:=y+(1-yx)z∈U(R). Thus,y=(yx-1)z+u. Lete=(yx-1)z. Theny=e+u, wheree∈r(x) andu∈U(R).

    (3)?(1) Given any regularx∈R, there exists ay∈Rsuch thatx=xyx. Hence, there exist ae∈r(x) and au∈U(R) such thaty=e+u. Leta=-e. Theny+a∈U(R) and 1+xa=1∈U(R). In light of Lemma 2,Ris unit-regular.

    (1)?(2) is symmetric.

    Lemma3LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Whenever l(a)=l(b), there existsu∈U(R) such thata=bu.

    (3) Wheneverr(a)=r(b), there existsu∈U(R) such thata=ub.

    Proof(1)?(2) Given l(a)=l(b), then l(a)∩l(0)=l(b). By virtue of Theorem 2, there existu∈U(R),y∈Rsuch thatau+by=b. Hence,a+0×yu-1=bu-1, and soa=bu-1, as desired.

    (2)?(1) For anya∈R, there exists ac∈Rsuch thata=aca. It is easy to verify that l(a)=l(ac). By hypothesis, there exists au∈U(R) such thata=acu. Hence,au-1a=aca=a. ThereforeRis unit-regular.

    (1)?(3) is obtained by symmetry.

    Furthermore, we can derive the following.

    Theorem4LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Whenever l(a)=l(b), there existsu∈U(R) such thata=bua.

    (3) Wheneverr(a)=r(b), there existsu∈U(R) such thata=aub.

    Proof(1)?(2) Suppose that l(a)=l(b). AsRis regular, there existsx∈Rsuch thata=axa. Obviously, l(a)=l(ax). Hence, l(ax)=l(b). By virtue of Lemma 3, we have au∈U(R) such thatb=axu; hence,ax=bu-1. Thereforea=axa=bu-1a, as desired.

    (2)?(1) For anya∈R, there exists ax∈Rsuch thata=axa. It is easy to verify that l(a)=l(ax). By hypothesis, there exists au∈U(R) such thatax=auax. Hence,a=axa=auaxa=aua. ThereforeRis unit-regular.

    (1)?(3) follows by symmetry.

    Corollary3LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Wheneverφ:Ra?Rb, there existsu∈U(R) such thata=φ(a)ua.

    (3) For any idempotentse,f∈R,φ:eR?fRimplies that there existsu∈U(R) such thate=φ(e)ue.

    Proof(1)?(2) Suppose thatφ:Ra?Rb. AsRis regular, there exists ax∈Rsuch thata=axa. Thus,φ(a)=φ(axa)=aφ(xa)?aR. On the other hand, we have ay∈Rsuch thatφ(a)=φ(a)yφ(a); hence,φ(a)=φ(φ(a)ya). Sinceφis aR-isomorphism, we geta=φ(a)y. Thus,aR?φ(a)R. ThereforeaR=φ(a)R. In light of Lemma 1, we have l(a)=l(φ(a)). According to Theorem 4, there exists au∈U(R) such thata=φ(a)ua, as required.

    (2)?(3) is trivial.

    (3)?(1) For anya∈R, there exists ax∈Rsuch thata=axaandx=xax. It is easy to verify thatφ:Rxa?Raxgiven byφ(rxa)=(rxa)x. Obviously,xa,ax∈Rare idempotents. By hypothesis, there exists au∈U(R) such thatxa=φ(xa)ua=xaxua. Thereforea=axa=a(xaxua)=aua, i.e.,a∈Ris unit-regular. As a result,Ris unit-regular.

    Corollary4LetRbe a regular ring. Then the following are equivalent:

    (1)Ris unit-regular.

    (2) Wheneverφ:aR?bR, there existsu∈U(R) such thata=auφ(a).

    (3) For any idempotentse,f∈R,φ:Re?Rfimplies that there existsu∈U(R) such thate=euφ(e).

    ProofThis is proved in the same manner.

    [1] Marks G. A criterion for unit-regularity[J]. Acta Math Hungra,2006,111:311-312.

    [2] Ara P. Strongly π-regular ring have stable range one[J]. Proc Amer Math Soc,1996,124:3293-3298.

    [3] Camillo V, Yu Huaping. Stable range one for rings with many idempotents[J]. Trans Amer Math Soc,1995,347:3141-3147.

    [4] Chen Huanyin. Exchange rings with artinian primitive factors[J]. Algebra Represent Theory,1999(2):201-207.

    [5] Chen Huanyin. Exchange rings with stable range one[J]. Czechoslovak Math J,2007,57(2):579-590.

    [6] Camillo V P, Khurana D. A characterization of unit regular rings[J]. Comm Algebra,2001,29:2293-2295.

    [7] Goodearl K R. Von neumann regular rings[M]. Malabar, Fla: Krieger Publishing Co,1991.

    [8] Tuganbaev A A. Rings close to regular[M]. Dordrecht, Boston, London: Kluwer Academic Publishers,2002.

    [9] Wei Jiaqun. Unit-regularity and stable range conditions[J]. Comm Algebra,2005,33:1937-1946.

    [10] Chen Huanyin. Rings with stable range conditions[J]. Comm Algebra,1998,26:3653-3668.

    久久ye,这里只有精品| 一级黄色大片毛片| 18禁观看日本| 黄片小视频在线播放| 亚洲九九香蕉| 麻豆av在线久日| 成年人黄色毛片网站| 精品久久蜜臀av无| 国产1区2区3区精品| 国产精品久久久久久精品电影小说| 久久久久久久国产电影| 亚洲成av片中文字幕在线观看| 久久人妻熟女aⅴ| 电影成人av| 久久久国产一区二区| 淫妇啪啪啪对白视频| 激情在线观看视频在线高清 | 亚洲成人免费电影在线观看| 91成人精品电影| 亚洲精品一二三| 色精品久久人妻99蜜桃| 国产精品一区二区在线不卡| 亚洲三区欧美一区| 99国产精品免费福利视频| 99riav亚洲国产免费| 国产男女内射视频| 在线观看免费视频日本深夜| 午夜福利,免费看| 一夜夜www| 亚洲人成电影免费在线| 日日摸夜夜添夜夜添小说| 成年人午夜在线观看视频| 蜜桃国产av成人99| 国产一区二区激情短视频| 久久午夜亚洲精品久久| 精品国内亚洲2022精品成人 | 免费日韩欧美在线观看| videos熟女内射| 国产男女超爽视频在线观看| 精品一区二区三区四区五区乱码| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 超碰97精品在线观看| 精品乱码久久久久久99久播| 久久午夜亚洲精品久久| 色综合婷婷激情| 自线自在国产av| 国产一区二区激情短视频| 美女主播在线视频| 午夜91福利影院| 午夜免费成人在线视频| av有码第一页| 国产成人一区二区三区免费视频网站| 99久久99久久久精品蜜桃| 天天躁夜夜躁狠狠躁躁| 久久国产精品大桥未久av| 国产成人av教育| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 叶爱在线成人免费视频播放| 成人国产av品久久久| 十八禁网站网址无遮挡| 99热国产这里只有精品6| 精品一区二区三区av网在线观看 | 国产免费福利视频在线观看| 国产精品 欧美亚洲| 国产精品久久久久久精品电影小说| 免费少妇av软件| 日本a在线网址| 欧美成人免费av一区二区三区 | 国产精品亚洲一级av第二区| 国产不卡av网站在线观看| 一边摸一边抽搐一进一小说 | 亚洲欧美日韩另类电影网站| 蜜桃在线观看..| 久久久久国内视频| 黄色怎么调成土黄色| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| 三级毛片av免费| 热re99久久国产66热| 每晚都被弄得嗷嗷叫到高潮| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 少妇 在线观看| 91麻豆精品激情在线观看国产 | 大型av网站在线播放| 国产激情久久老熟女| 97人妻天天添夜夜摸| 午夜福利乱码中文字幕| 老鸭窝网址在线观看| 欧美一级毛片孕妇| 曰老女人黄片| 国产av一区二区精品久久| 丝袜人妻中文字幕| 国产1区2区3区精品| 好男人电影高清在线观看| 成在线人永久免费视频| 国产精品免费大片| 12—13女人毛片做爰片一| 性高湖久久久久久久久免费观看| 成人三级做爰电影| 国产亚洲一区二区精品| 国产一区二区三区在线臀色熟女 | 操出白浆在线播放| 又黄又粗又硬又大视频| 91麻豆精品激情在线观看国产 | 久久天躁狠狠躁夜夜2o2o| av天堂久久9| 免费在线观看影片大全网站| 亚洲av日韩精品久久久久久密| 亚洲国产av影院在线观看| 国产亚洲精品一区二区www | 黄片大片在线免费观看| 精品卡一卡二卡四卡免费| 久久久国产欧美日韩av| 电影成人av| 黑人欧美特级aaaaaa片| 国产深夜福利视频在线观看| 啪啪无遮挡十八禁网站| 窝窝影院91人妻| 日本五十路高清| 精品国产一区二区三区久久久樱花| 可以免费在线观看a视频的电影网站| 色老头精品视频在线观看| 国产精品久久久人人做人人爽| 精品福利永久在线观看| av一本久久久久| 超碰97精品在线观看| 色94色欧美一区二区| 欧美黄色淫秽网站| 国产精品一区二区精品视频观看| 美女高潮到喷水免费观看| 国产97色在线日韩免费| 激情视频va一区二区三区| 大香蕉久久网| 夜夜夜夜夜久久久久| 一本大道久久a久久精品| 国产xxxxx性猛交| 久久亚洲真实| 热re99久久国产66热| tube8黄色片| 亚洲av欧美aⅴ国产| 两个人看的免费小视频| 12—13女人毛片做爰片一| 午夜福利免费观看在线| 日韩一卡2卡3卡4卡2021年| 一区二区三区乱码不卡18| 午夜福利视频在线观看免费| 免费看十八禁软件| 亚洲av片天天在线观看| 国产欧美日韩一区二区三| 日本av免费视频播放| 中文字幕高清在线视频| 亚洲国产毛片av蜜桃av| 麻豆av在线久日| 日本av手机在线免费观看| 18禁观看日本| 一级,二级,三级黄色视频| av国产精品久久久久影院| 午夜免费成人在线视频| 国产精品偷伦视频观看了| 少妇猛男粗大的猛烈进出视频| 欧美av亚洲av综合av国产av| 少妇裸体淫交视频免费看高清 | 久久久久久久久久久久大奶| 啦啦啦在线免费观看视频4| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 美女国产高潮福利片在线看| 性高湖久久久久久久久免费观看| 我的亚洲天堂| 久久久久久久国产电影| 一边摸一边抽搐一进一小说 | 国产精品影院久久| 中亚洲国语对白在线视频| 国产99久久九九免费精品| 免费黄频网站在线观看国产| 后天国语完整版免费观看| 精品少妇内射三级| 美女午夜性视频免费| 国产黄色免费在线视频| 最近最新中文字幕大全电影3 | 一本综合久久免费| 99国产精品免费福利视频| 国产97色在线日韩免费| 国产高清视频在线播放一区| 少妇裸体淫交视频免费看高清 | 一区在线观看完整版| 香蕉久久夜色| 在线天堂中文资源库| 久久久久国产一级毛片高清牌| 激情视频va一区二区三区| 99国产综合亚洲精品| 高清av免费在线| 999久久久精品免费观看国产| 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 欧美变态另类bdsm刘玥| 国产成人免费观看mmmm| 老司机靠b影院| 18禁美女被吸乳视频| 久久久久久久久免费视频了| 新久久久久国产一级毛片| 99riav亚洲国产免费| 久久精品国产综合久久久| 考比视频在线观看| 可以免费在线观看a视频的电影网站| 日本黄色视频三级网站网址 | 日韩中文字幕视频在线看片| 欧美日韩黄片免| 黄频高清免费视频| 99国产精品99久久久久| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 999久久久国产精品视频| 亚洲欧美一区二区三区黑人| 男男h啪啪无遮挡| h视频一区二区三区| 一进一出抽搐动态| 日韩中文字幕欧美一区二区| 男女下面插进去视频免费观看| 国产高清国产精品国产三级| 国产野战对白在线观看| 亚洲五月婷婷丁香| www日本在线高清视频| 欧美av亚洲av综合av国产av| 久久九九热精品免费| 99国产精品99久久久久| 日韩成人在线观看一区二区三区| 日韩人妻精品一区2区三区| 美女福利国产在线| 精品少妇黑人巨大在线播放| 法律面前人人平等表现在哪些方面| 男人舔女人的私密视频| 久久九九热精品免费| 国产精品熟女久久久久浪| 亚洲精品粉嫩美女一区| 欧美中文综合在线视频| 亚洲国产毛片av蜜桃av| 日韩一卡2卡3卡4卡2021年| 建设人人有责人人尽责人人享有的| 国产有黄有色有爽视频| 午夜日韩欧美国产| 日韩三级视频一区二区三区| 久久人妻av系列| 天天躁狠狠躁夜夜躁狠狠躁| 99热国产这里只有精品6| 久热爱精品视频在线9| 99精国产麻豆久久婷婷| 精品高清国产在线一区| 黄色视频不卡| 伦理电影免费视频| 男女无遮挡免费网站观看| 国产麻豆69| 国产视频一区二区在线看| 香蕉丝袜av| 久久青草综合色| 国产主播在线观看一区二区| 久久久久国产一级毛片高清牌| 18禁观看日本| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文字幕日韩| 久久精品91无色码中文字幕| 国产精品国产高清国产av | 极品人妻少妇av视频| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 国产亚洲精品一区二区www | 成人国产av品久久久| 免费在线观看黄色视频的| 久热爱精品视频在线9| 免费观看人在逋| 精品国内亚洲2022精品成人 | 国产精品.久久久| 男女高潮啪啪啪动态图| 成年动漫av网址| 亚洲伊人久久精品综合| 黑人巨大精品欧美一区二区蜜桃| 美女主播在线视频| 黄色 视频免费看| 午夜福利在线观看吧| 又黄又粗又硬又大视频| 国产精品av久久久久免费| 啦啦啦中文免费视频观看日本| 两个人免费观看高清视频| 可以免费在线观看a视频的电影网站| 999久久久国产精品视频| 在线观看免费日韩欧美大片| 午夜两性在线视频| 最近最新中文字幕大全免费视频| 美国免费a级毛片| 久久久水蜜桃国产精品网| 国产精品 欧美亚洲| tube8黄色片| 国产精品秋霞免费鲁丝片| 亚洲精品在线美女| 中文欧美无线码| 9热在线视频观看99| 国产有黄有色有爽视频| 99九九在线精品视频| 在线天堂中文资源库| 国产一区二区 视频在线| 久久久精品免费免费高清| 可以免费在线观看a视频的电影网站| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 国产成人欧美| 国产欧美日韩一区二区精品| 久久婷婷成人综合色麻豆| 午夜福利在线观看吧| 国产精品国产高清国产av | 自拍欧美九色日韩亚洲蝌蚪91| 日本五十路高清| 99热国产这里只有精品6| 另类精品久久| 日本av免费视频播放| 亚洲欧美激情在线| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| 久久久久久久精品吃奶| 成年版毛片免费区| 啪啪无遮挡十八禁网站| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看| 男男h啪啪无遮挡| 日本a在线网址| 欧美乱码精品一区二区三区| 久久中文字幕一级| 亚洲自偷自拍图片 自拍| 国产一区二区三区在线臀色熟女 | 9色porny在线观看| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看 | 2018国产大陆天天弄谢| 午夜福利乱码中文字幕| 久久久精品94久久精品| 国产不卡av网站在线观看| svipshipincom国产片| 久久狼人影院| 法律面前人人平等表现在哪些方面| 巨乳人妻的诱惑在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美av亚洲av综合av国产av| 亚洲综合色网址| 自线自在国产av| 精品国产乱码久久久久久小说| 亚洲精品成人av观看孕妇| 国产成人精品无人区| 欧美性长视频在线观看| 国产福利在线免费观看视频| 成年版毛片免费区| 免费看十八禁软件| 国产亚洲一区二区精品| 一区在线观看完整版| 国产成人欧美| 麻豆国产av国片精品| 欧美亚洲日本最大视频资源| 欧美乱妇无乱码| 亚洲成人免费电影在线观看| 如日韩欧美国产精品一区二区三区| 黄色成人免费大全| 日韩大码丰满熟妇| 热re99久久精品国产66热6| 欧美亚洲 丝袜 人妻 在线| 久久国产精品影院| 免费人妻精品一区二区三区视频| 欧美成人午夜精品| 亚洲一区二区三区欧美精品| 亚洲欧美日韩另类电影网站| 国产精品成人在线| 老熟妇仑乱视频hdxx| 别揉我奶头~嗯~啊~动态视频| 国产成人欧美| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| e午夜精品久久久久久久| 日本五十路高清| av片东京热男人的天堂| 精品亚洲成国产av| av又黄又爽大尺度在线免费看| 国产又爽黄色视频| 国产成人啪精品午夜网站| 久久久精品免费免费高清| 丰满人妻熟妇乱又伦精品不卡| 午夜福利一区二区在线看| 亚洲精品国产色婷婷电影| 少妇被粗大的猛进出69影院| 天堂8中文在线网| 99国产精品免费福利视频| 亚洲精品久久午夜乱码| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 亚洲精品中文字幕一二三四区 | 男人操女人黄网站| 好男人电影高清在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费成人在线视频| 777米奇影视久久| 国产又色又爽无遮挡免费看| 国产片内射在线| 国产欧美日韩一区二区三| 两个人看的免费小视频| 大香蕉久久网| av电影中文网址| 在线看a的网站| 国产精品久久久久久精品电影小说| 日韩人妻精品一区2区三区| 国产视频一区二区在线看| 欧美精品一区二区免费开放| 久久人人97超碰香蕉20202| 99久久精品国产亚洲精品| 日韩成人在线观看一区二区三区| 法律面前人人平等表现在哪些方面| 久久毛片免费看一区二区三区| 精品第一国产精品| 欧美激情极品国产一区二区三区| 欧美乱码精品一区二区三区| 人成视频在线观看免费观看| 国产亚洲一区二区精品| 视频区图区小说| 91成人精品电影| 高清av免费在线| 久久天堂一区二区三区四区| 99精品在免费线老司机午夜| 丝袜美腿诱惑在线| 欧美精品亚洲一区二区| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| 99热网站在线观看| 在线观看免费视频网站a站| 久久ye,这里只有精品| www.999成人在线观看| 日日爽夜夜爽网站| 日韩欧美免费精品| 少妇 在线观看| tocl精华| 蜜桃国产av成人99| e午夜精品久久久久久久| 美女午夜性视频免费| 国产片内射在线| 久久久久精品人妻al黑| netflix在线观看网站| 99国产综合亚洲精品| 亚洲成人手机| 午夜福利乱码中文字幕| 亚洲第一欧美日韩一区二区三区 | 亚洲七黄色美女视频| 一区二区三区乱码不卡18| 90打野战视频偷拍视频| 777米奇影视久久| 一区二区三区乱码不卡18| 国产精品九九99| 午夜成年电影在线免费观看| 国产野战对白在线观看| 国产成人一区二区三区免费视频网站| 婷婷成人精品国产| 超色免费av| 国产精品98久久久久久宅男小说| 国产亚洲精品久久久久5区| 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| 久久久久久久久免费视频了| a级片在线免费高清观看视频| 多毛熟女@视频| av欧美777| 色综合欧美亚洲国产小说| 另类亚洲欧美激情| 看免费av毛片| 精品免费久久久久久久清纯 | 久久久欧美国产精品| 精品国内亚洲2022精品成人 | 18在线观看网站| 午夜视频精品福利| 91麻豆av在线| 亚洲成av片中文字幕在线观看| 9191精品国产免费久久| av网站免费在线观看视频| 精品国产超薄肉色丝袜足j| 无人区码免费观看不卡 | 亚洲欧美日韩高清在线视频 | 一二三四在线观看免费中文在| 制服诱惑二区| 无遮挡黄片免费观看| 一级毛片电影观看| 国产三级黄色录像| 757午夜福利合集在线观看| 大香蕉久久成人网| 男女午夜视频在线观看| 欧美精品av麻豆av| videosex国产| av免费在线观看网站| 亚洲熟女精品中文字幕| 欧美精品高潮呻吟av久久| 久久ye,这里只有精品| 亚洲av日韩精品久久久久久密| 757午夜福利合集在线观看| 国产色视频综合| 男人舔女人的私密视频| 国产男女内射视频| 欧美激情极品国产一区二区三区| 岛国在线观看网站| 成人黄色视频免费在线看| 精品亚洲成国产av| 制服人妻中文乱码| 色94色欧美一区二区| 老司机在亚洲福利影院| 99精品久久久久人妻精品| 搡老岳熟女国产| 国产成人av激情在线播放| 国内毛片毛片毛片毛片毛片| 97人妻天天添夜夜摸| av福利片在线| 伊人久久大香线蕉亚洲五| 精品午夜福利视频在线观看一区 | 成人18禁在线播放| 成人免费观看视频高清| 成年版毛片免费区| 一进一出抽搐动态| 久久久精品免费免费高清| 91精品国产国语对白视频| 精品福利永久在线观看| 亚洲全国av大片| 亚洲国产中文字幕在线视频| 欧美激情极品国产一区二区三区| a级毛片黄视频| 99香蕉大伊视频| 亚洲第一av免费看| 怎么达到女性高潮| 亚洲一码二码三码区别大吗| 久久久久久人人人人人| 国产精品久久电影中文字幕 | 久久久久久久精品吃奶| 中文字幕制服av| 国产男女内射视频| videosex国产| 亚洲欧美日韩另类电影网站| aaaaa片日本免费| 国产一卡二卡三卡精品| 搡老熟女国产l中国老女人| 又大又爽又粗| 免费看a级黄色片| 成人18禁高潮啪啪吃奶动态图| 俄罗斯特黄特色一大片| 亚洲精品在线美女| 777米奇影视久久| 日韩三级视频一区二区三区| 欧美日韩精品网址| 亚洲国产av新网站| 欧美老熟妇乱子伦牲交| 老司机深夜福利视频在线观看| 制服诱惑二区| av在线播放免费不卡| 国产成人免费无遮挡视频| 精品免费久久久久久久清纯 | 成人免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩熟女老妇一区二区性免费视频| 一本久久精品| 久久天躁狠狠躁夜夜2o2o| 欧美亚洲日本最大视频资源| 美女主播在线视频| 狠狠精品人妻久久久久久综合| 久久这里只有精品19| 免费看a级黄色片| 欧美一级毛片孕妇| 久久精品国产亚洲av香蕉五月 | 少妇猛男粗大的猛烈进出视频| 极品教师在线免费播放| 免费日韩欧美在线观看| 母亲3免费完整高清在线观看| 黄网站色视频无遮挡免费观看| 男人操女人黄网站| 亚洲伊人色综图| 亚洲综合色网址| 国产精品免费一区二区三区在线 | 欧美日韩亚洲国产一区二区在线观看 | 色综合婷婷激情| 亚洲精品中文字幕一二三四区 | 视频在线观看一区二区三区| 日本五十路高清| 50天的宝宝边吃奶边哭怎么回事| 久久99一区二区三区| 欧美+亚洲+日韩+国产| 制服人妻中文乱码| 亚洲七黄色美女视频| 久久人人97超碰香蕉20202| 国产aⅴ精品一区二区三区波| 久久人妻福利社区极品人妻图片| 亚洲国产欧美日韩在线播放| 亚洲欧洲日产国产| 国内毛片毛片毛片毛片毛片| 悠悠久久av| 亚洲成国产人片在线观看| 欧美黑人精品巨大| 日本av手机在线免费观看| 欧美激情高清一区二区三区| 亚洲专区国产一区二区| 一区在线观看完整版| 免费看a级黄色片| 国产激情久久老熟女| 国产免费av片在线观看野外av| 欧美成人免费av一区二区三区 | 一本综合久久免费| 亚洲性夜色夜夜综合| 岛国在线观看网站| 成年人黄色毛片网站| 99国产极品粉嫩在线观看| 免费久久久久久久精品成人欧美视频| 99精品欧美一区二区三区四区| 久久精品国产综合久久久| 操出白浆在线播放| 18禁国产床啪视频网站|