• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In、Sc摻雜對SrTiO3電子結(jié)構(gòu)和光學(xué)性質(zhì)的影響

    2010-03-06 04:44:34江妮張志勇
    物理化學(xué)學(xué)報 2010年3期
    關(guān)鍵詞:張志勇信息科學(xué)西北大學(xué)

    江妮 張志勇

    (西北大學(xué)信息科學(xué)與技術(shù)學(xué)院,西安 710127)

    Strontium titanate(SrTiO3),a typical perovskite material,has attracted much attention due to its potential applications in the field of oxide devices[1-9].It can be used as a substrate for the growth of high temperature superconductor thin films[1],as grain boundary barrier layer capacitors[2]and oxygen gas sensors[3-4], and as a high permittivity material with potential application in dynamic random access memory[5].In particular,its conductivity can be tuned by controlled doping with impurity atoms[6-9],which has important applications in fabricating devices with multilayer structures such as semiconductor/insulator/semiconductor (S/I/S)and metal/insulator/metal(M/I/M)junctions[10].

    The behavior of n-type doped SrTiO3has been widely studied in an attempt to understand the rich variations in physical properties arising from carrier doping[11-18].However,the achievement of p-type doped SrTiO3is rarely documented.Until now,only Sc-doped and In-doped SrTiO3are confirmed to be p-type doping[19-21].Higuchi et al.[19]reported the electronic structure of a ptype SrTiO3single crystal in which the acceptor ion Sc3+was introduced into the Ti4+site.Dai et al.[20]reported that SrTiO3exhibited p-type conductivity when doped by the substitution of In for Ti.Guo et al.[21]further explored the optical properties of ptype SrInxTi1-xO3(x=0.1 and 0.2)films prepared by laser molecular beam epitaxy under different oxygen pressures.In addition, many of the properties such as the structure stability,transport properties,and optical absorption spectra for p-type doped SrTiO3thin films are not known.

    In this paper,we perform the first-principles calculation based on the density functional theory(DFT)[22]to investigate the effect of In and Sc p-type doping on the electronic structure and optical properties of SrTiO3.

    1 Theoretical model and computational method

    1.1 Theoretical model

    SrTiO3has an ideal cubic perovskite-type structure at room temperature.It belongs to the space group Pm3m(Oh),with the Sr atom sitting at the origin point,Ti at the body centre,and three oxygen atoms at the three face centres,and its lattice constant is a=b=c=0.3905 nm.The unit cell contains one formula unit of SrTiO3.In order to study fractional substitution,it is necessary to consider a cell larger than the basic unit.Thus we construct a supercell of eight unit cells consisting of 40 atoms in the basis.Replacing any one of the Ti atoms by In(or Sc)atom in the supercell will correspond to the formula SrIn0.125Ti0.875O3(or SrSc0.125Ti0.875O3).

    1.2 Computational method

    In our computation,the interaction between nuclei and electrons is approximated with Vanderbilt ultra-soft pseudo-potential[23]treating 4s,4p,and 5s electrons of Sr,3s,3p,3d,and 4s electrons of Ti,2s and 2p electrons of O,4d,5s and 5p electrons of In,and 3s,3p,3d,and 4s electrons of Sc as the valence electrons.The Perdew and Wang 91 parametrization[24]is taken as the exchange-correlation potential in the generalized-gradient approximation(GGA).Plane wave basis with kinetic energy cutoff of 420 eV is used to represent wave functions.Brillouin zone integration is performed with a 6×6×6 Monkhorst-Pack[25]k-points mesh.Full relaxation is performed for the constructed supercells by using the Broyden-Fletcher-Goldfarb-Shanno(BFGS)algorithm[26]to minimize energy respect to atomic position.Each calculation is considered converged when the maximum root-meansquare convergent tolerance is less than 5.0×10-6eV·atom-1,that is,the maximum ionic Hellmann-Feynman force being within 0.1 eV·nm-1,the maximum ionic displacement being within 5.0×10-5nm and the maximum stress being within 0.02 GPa. Then the electronic structure and optical properties are calculated based on the optimized supercell model.

    The scissor approximation is adopted in the optical calculation to compensate the underestimation of the calculated band gap.

    2 Results and discussion

    2.1 Stability and lattice properties

    The binding intensity and structural stability of crystal are related to its binding energy.The bigger the binding energy,the more stable the crystal structure.In this paper,the binding energies for SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3are calculated by the following formulas[27]:

    where Etotal(SrTiO3)and Etotal(SrM0.125Ti0.875O3)represent the total energies of the SrTiO3and SrM0.125Ti0.875O4supercells,respectively.Eisolate(X)denotes the total energy of an isolated X atom and n is the formula number of SrTiO3contained in each supercell.

    By analysis of the calculated binding energies of the three compounds listed in Table1,we conclude that the optimized SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3systems are stable, because their binding energies are negative.On the other hand, the doped SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3have bigger binding energy values than the undoped SrTiO3itself,which indicates that the structure stability of SrTiO3is weakened after doping.These structure stability changes for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are originated from the electronic structure changes through doping,and we will discuss this in the Mulliken population analysis section.Note that the crystal structures of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are still the cubic perovskite-type structure with the space group Pm3m(Oh).

    In addition,the calculated lattice constants are 0.3951 nm for SrIn0.125Ti0.875O3,larger than that of undoped SrTiO3(0.3924 nm), which is in good agreement with the experiment results[20]that thelattice constants of SrIn0.1Ti0.9O3films increase after doping. The same lattice expansion tendency is also observed in SrSc0.125Ti0.875O3.However,because of the absence of experimental result on the lattice parameters of SrSc0.125Ti0.875O3,further experimental work is needed for comparison with our numerical results.

    Table 1 Optimized structure parameters and binding energies(Eb)for SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3

    Further insight into the effect of p-type doping on the electronic structure of SrTiO3can be obtained from the atomic relaxation around the impurity atom as listed in Table 2.The partial geometries around the impurity In atom,which are taken from the structural optimized SrIn0.125Ti0.875O3system,are shown in Fig.1.

    The introducing of In impurity leads to a local lattice expansion in the SrIn0.125Ti0.875O3.The closest atoms with respect to the In impurity are six O*atoms which rearrange their positions immediately after the doping has occurred.That is,the six nearest O*atoms around In atom shift away from In by 0.0025 nm and the InO6*octahedron exhibits a small structure relaxation.This is due to the fact that the effective radius of In3+(0.094 nm)is larger than the radius of Ti4+(0.0745 nm)[20],the partial substitution of In for Ti induces a structure relaxation.The same tendency is also observed for SrSc0.125Ti0.875O3after doping.However,the six nearest O*atoms around Sc atom move away from Sc by 0.0083 nm,much larger than that in SrIn0.125Ti0.875O3.Furthermore,in the case of the first nearest neighbor(NN)Ti*O6with respect to the InO6*octahedron in SrIn0.125Ti0.875O3,it possesses a slightly distorted Ti*O6octahedron.The bond length of Ti*—Oaalong the aaxis is smaller than those in the bc plane.So does the first NN Ti*O6with respect to the ScO6octahedron in SrSc0.125Ti0.875O3.At the same time,it is noted that the second NN Ti**O6undergoes little relaxations after doping and the third NN Ti#O6has almost no change in both SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3systems compared with the corresponding one in the undoped SrTiO3system.Hence,replacing a Ti atom by one In atom(or Sc atom) in the SrTiO3parent merely results in local structural changes around the dopant sites.

    Fig.1 Partial geometry of the structural optimized SrIn0.125Ti0.875O3system

    2.2 Electronic structures

    In this part,the electronic structures of SrTiO3,SrIn0.125Ti0.875O3, and SrSc0.125Ti0.875O3will be discussed and compared with each other.Three indicators will be used to reveal the effect of In and Sc doping on the electronic structure of SrTiO3,which are the total density of state(DOS),partial density of state(PDOS),and population analysis.Each of these tools can demonstrate some aspects of structure features.

    2.2.1 DOS

    The DOS and PDOS of the undoped SrTiO3are calculated first for comparison and the results are shown in Fig.2(a).For the sake of clarity,only the relevant Ti 3d,O 2p,and Sr 5p PDOS are shown and this will be adopted in the subsequent figures.It is obvious that the structure of SrTiO3has corner-shared TiO6octahedron where the Ti 3d and O 2p interaction is found,which dominate the main electronic properties of SrTiO3.The top of valance bands(VBs)predominately consists of O 2p states and the most prominent unoccupied energy bands in the bottom most of conduction bands(CBs)are mainly composed of the Ti 3d states.Overlooking from the DOS,it can be observed that there is strong orbital hybridization between the Ti 3d and O 2p states. That is to say,Ti—O bond is covalent.Correspondingly no over-lap of PDOS between Sr atoms and O atoms means the high ionicity of Sr—O bonds.

    Table 2 Key bond lengths in SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3

    Fig.2 DOS and PDOSs(a)and band structure(b)of undoped SrTiO3The Fermi level is set to zero on the energy scale,which will be adopted below unless otherwise stated.

    Moreover,as shown in Fig.2(b),the undoped SrTiO3is an indirect gap insulator with the top of valence band at R point and the bottom of conduction band at Γ point.The calculated value of the indirect band gap at R→Γ is 1.7 eV,which is smaller than the experimental value of about 3.2 eV[28].This is typically underestimated by the density functional theory[29-30].Thus,a scissor approximation value of 1.5 eV is adopted in the optical calculation to compensate the underestimation of the calculated band gap.

    Fig.3showsthetotalDOSsofSrIn0.125Ti0.875O3andSrSc0.125Ti0.875O3. Because the In doping introduces the p-type carriers into the SrIn0.125Ti0.875O3system,the Fermi level shifts into the valence bands(VBs),which is in agreement well with the experimental results[20]that In3+acts as acceptor ions in the Indoped SrTiO3films and the SrIn0.1Ti0.9O3is a p-type semiconductor.Particularly,the DOS of SrIn0.125Ti0.875O3shifts significantly towards high energies and the optical band gap is broadened by about 0.35 eV due to In doping compared with the DOS reported in Fig.2.This is well consistent with the experimental results[20]that the band gap of SrIn0.1Ti0.9O3is 0.4 eV larger than that of undoped SrTiO3.Moreover,one additional peak with a bandwidth of about 1.20 eV appears in the bottom of VBs for SrIn0.125Ti0.875O3.

    In the case of Sc-doped SrSc0.125Ti0.875O3,the Fermi level shifts downwards into the VBs and SrSc0.125Ti0.875O3exhibits p-type degenerate semiconductor feature,which agree well the experimental results[31]that Sc3+acts as acceptor ions in SrTi1-xScxO3and the Fermi level shifts to the VBs side with increasing Sc3+ions. Meanwhile,an optical band gap widening of 0.30 eV associated with Sc doping has been observed for SrSc0.125Ti0.875O3.This fact is consistent with the experimental results that the band gap of SrTi1-xScxO3increases with increasing Sc doping concentration[32]. The broadened optical band gap originates from two aspects.On the one hand,the Burstein-Moss shift due to the high concentration of carriers makes the optical absorption edge shifts towards high energies and the optical transparency window is broadened[33].On the other hand,interactions among hole charges result in a many-body effect,which causes the optical band gap to becomenarrow[34].However,theeffect of Burstein-Moss on the band gap is more pronounced than that of the many-body effect,so the band gap broadens after doping.

    2.2.2 PDOS

    In subsequent discussions on the effect of p-type doping on the SrTiO3system,we restrict ourselves to the PDOS of the doped systems.

    Firstly,the orbital decomposed PDOSs of impurity In atom in SrIn0.125Ti0.875O3and Sc atom in SrSc0.125Ti0.875O3are presented in Fig.4(a).It is clear that the PDOSs of In and Sc do not contribute to the bottom most of CBs but contribute only to the top of VBs. The value of PDOS for In near the Fermi level(marked by the arrow in Fig.4(a))in the energy rang of-0.50 to 0.00 eV is significantly larger than that of Sc atom in SrSc0.125Ti0.875O3.This indicates that In is probably better than Sc for p-type doping in SrTiO3.

    Secondly,the orbital decomposed PDOSs of atoms near the In and Sc impurities are plotted in Fig.4(b)and(c),respectively.In the case of SrIn0.125Ti0.875O3,it is found that there is strong interaction between impurity In and its first NN Ti*O6.The PDOS of Ti*3d states at the bottom of CBs is highly dispersive and shows no localization characteristics.With increasing distance between In and its neighboring TiO6,the PDOS of Ti**3d states is less dispersive than that of Ti*.The PDOS of Ti#atom is almost the same as that in undoped SrTiO3.Besides,the In impurity charge potential has great effect on the six O*atoms in the InO6.The PDOS of O*2p states at the bottom of CBs is different from that of other O atoms,which are not in the InO6.The same results are observed in SrSc0.125Ti0.875O3.These conclusions for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are in good agreement with the structure relaxation analysis in section 2.1 that the partial substitution of In for Ti(or Sc for Ti)in the SrTiO3parent merely results in local structural changes around the dopant sites.Moreover,by analysis the PDOS in Fig.4(a,b),it is evident that an additional peak appears in the bottom of VBs for SrIn0.125Ti0.875O3,to which the In 5s and O 2p states make contribution.

    Fig.3 DOSs of SrIn0.125Ti0.875O3(a)and SrSc0.125Ti0.875O3(b)

    Fig.4 PDOSs of impurity In atom in SrIn0.125Ti0.875O3and Sc atom in SrSc0.125Ti0.875O3(a),surrounding atoms of In(b)and neighboring atoms of Sc(c)

    2.2.3 Mulliken population analysis

    More investigation of the effect of In and Sc doping on the electronic structure of SrTiO3can be obtained from Mulliken population analysis listed in Table 3.For undoped SrTiO3,the net charge of Sr(1.87e)is close to its+2e formal charges,whereas O atom is with-0.80e negative charges and Ti atom carries 0.53e positive charges,which are much smaller than their-2e and+4e formal charges,respectively.This indicates that there is a high degree of covalency in the Ti—O bond while ionicity in the Sr—O bond,which agrees well with the DOS analysis for SrTiO3in section 2.2.1.

    After doping,there are considerable electron charge density redistributionsneartheimpurityatom.InthecaseofSrIn0.125Ti0.875O3, the electron density of the O*atoms near the impurity In atom increases obviously and the electronegativity of O*atoms is strengthened.While the net charges of Ti*and Ti**decrease to the values of 0.50e and 0.52e,respectively.This is due to the fact that the net charge of In atom(1.26e)is much larger than that of the replaced Ti atom(0.53e),and In atom transfers more electrons to O*atoms.Correspondingly,Ti*and Ti**provide less electrons to O*atoms.Hence there is a high degree of ionicity in the In—O bond and the covalency of Ti—O bond is weakened after doping,which result in the structure stability change of SrIn0.125Ti0.875O3.For SrSc0.125Ti0.875O3,the impurity Sc atom loses only partial valence electrons with 0.46e positive charges,smaller than the replaced Ti atom(0.53e),implying that the covalent Sc—O bond is weaker than that of Ti—O bond.Correspondingly, Ti*and Ti**atoms transfer more electrons to O*atoms and the net charges of Ti*and Ti**increase to the values of 0.56e and 0.54e,respectively.

    2.3 Optical properties

    Next we discuss the effect of In and Sc doping on the optical properties of SrTiO3.The linear response of a system due to an external electromagnetic field with a small wave vector can be described with the complex dielectric function ε(ω)=ε1(ω)+ iε2(ω).The imaginary part of the dielectric function ε2(ω)is calculated from the momentum matrix elements between the occupied and unoccupied wave functions[35]as follows:

    where ?ω is the energy of the incident photon,V is the unit cell volume,p is the momentum operator,|kn>is a crystal wavefunction,and f(kn)is the Fermi distribution function.The real part of the dielectric function ε1(ω)is evaluated from the imaginary part ε2(ω)by the Kramers-Kronig relationship.

    where M is the principal value of the integral.The other optical constants like refractive index n(ω),extinction coefficient k(ω), reflectivity R(ω),and absorption coefficient I(ω)now immediately are calculated in terms of the components of the complex dielectric function as follows:

    Accordingly the transmittance T(ω)can be obtained by the following equation:

    Fig.5 shows the absorption spectra for SrTiO3,SrIn0.125Ti0.875O3, and SrSc0.125Ti0.875O3.After doping,a noticeable blue-shift of ab-sorption spectra edge is observed for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3,which is in good agreement with the above calculated optical band gap widening for them.In addition,because of the Drude-type behavior of the free-carrier excitation[12],a new weak absorption appears in the energy region of 1.25 to 2.00 eV for the two p-type doping systems.

    Table 3 Mulliken population analysis for SrTiO3, SrIn0.125Ti0.875O3,and SrSc0.125Ti0.87O3

    Fig.5 Absorption spectra of SrTiO3(a),SrIn0.125Ti0.875O3(b), and SrSc0.125Ti0.875O3(c)

    At the same time,as shown in Fig.6,the optical transmittance of SrIn0.125Ti0.875O3has a significant improvement after In doping and the transmittance is higher than 85%in a wavelength range from 350 to 625 nm,which agree well with the experimental results[21]thatSrIn0.1Ti0.9O3thinfilmsarehighlytransparentwiththe transmittance higher than 80%in most of the visible spectrum. For SrSc0.125Ti0.875O3,its optical transmittance is similar to that of SrIn0.125Ti0.875O3.

    The increasing of the high transparency of the two p-type doping compounds originates from two factors.On one hand,to being optically transparent,it is desirable to have a wider band gap than the photon energy of the visible lights.Owing to the ptype doping,there is an optical band gap widening of 0.35 and 0.30 eV for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3,respectively. Therefore,the electron transition occurring above 3.55 eV in SrIn0.125Ti0.875O3(3.50 eV in SrSc0.125Ti0.875O3)should be more beneficial than the band gap of 3.20 eV[28]in SrTiO3.On the other hand, the PDOS of impurity atom is low in the Fermi level(see Fig.4 (a)),which leads to the small transition probability and weak absorption.

    Fig.6 Optical transmittances of SrTiO3(a),SrIn0.125Ti0.875O3(b),and SrSc0.125Ti0.875O3(c)

    3 Conclusions

    In conclusion,we have investigated the structure stability, electronic structure,and optical properties of In and Sc p-type doped SrTiO3by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the DFT.Our calculation results are in good agreement with the experimental data.From these calculations,we have obtained the results as follows.

    (1)The structures of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are still stable after doping,but their stabilities are lower than that of undoped SrTiO3.The partial substitution of In for Ti(or Sc for Ti) in the SrTiO3parent merely results in local structural changes around the dopant sites.

    (2)Owing to the p-type doping,the Fermi level shifts into VBs for both SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3systems and the two systems display p-type degenerate semiconductor features. At the same time,the optical band gap of SrIn0.125Ti0.875O3is broadened by about 0.35 eV due to In doping and an optical band gap widening of 0.30 eV associated with Sc doping has been observed for SrSc0.125Ti0.875O3.

    (3)A noticeable blue-shift of absorption spectra edge is observed for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3and a new absorption appears in the energy region of 1.25 to 2.00 eV for the two p-type doping systems.Furthermore,the optical transmittances of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3have a significant improvement after doping,and the transmittances are higher than 85%in the wavelength range from 350 to 625 nm. The wide band gap,small transition probability,and weak absorption due to the PDOS of impurity in the Fermi level result in the significant optical transparency.

    1 Eom,C.B.;Marshall,A.F.;Laderman,S.S.;Jacowitz,R.D.; Geballe,T.H.Science,1990,249:1549

    2 Shen,H.;Song,Y.;Gu,H.;Wang,P.;Xi,Y.Mater.Lett.,2002, 56:802

    3 Hara,T.;Ishiguro,T.Sens.Actuator B-Chem.,2009,136:489

    4 Hara,T.;Ishiguro,T.;Wakiyab,N.;Shinozakic,K.Mater.Sci. Eng.B,2009,161:142

    5 Lee,S.W.;Kwon,O.S.;Han,J.H.;Hwang,C.S.Appl.Phys.Lett., 2008,92:222903

    6 Fix,T.;Bali,R.;Stelmashenko,N.;Blamire,M.G.Solid State Commun.,2008,146:428

    7 Zhu,X.B.;Liu,S.M.;Hao,H.R.;Li,X.H.;Song,W.H.;Sun,Y. P.Physica C,2005,418:59

    8 Higuchi,T.;Tsukamoto,T.;Kobayashi,K.;Ishiwata,Y.;Fujisawa, M.;Yokoya,T.;Yamaguchi,S.;Shin,S.Phys.Rev.B,2000,61: 12860

    9 Marina,O.A.;Canfield,N.L.;Stevenson,J.W.Solid State Ionics, 2002,149:21

    10 Wang,H.H.,Chen,F.;Dai,S.Y.;Zhao,T.;Lu,H.B.;Cui,D.F.; Zhou,Y.L.;Chen,Z.H.;Yang,G.Z.Appl.Phys.Lett.,2001,78: 1676

    11 Wang,H.H.;Cui,D.F.;Dai,S.Y.;Lu,H.B.;Zhou,Y.L.;Chen, Z.H.;Yang,G.Z.J.Appl.Phys.,2001,90:4664

    12 Higuchi,T.;Tsukamoto,T.;Taguchi,Y.;Tokur,Y.;Shin,S. Physica B,2004,351:310

    13 Ma,J.Y.;Bi,C.Z.;Fang,X.;Zhao,H.Y.;Kamran,M.;Qiu,X.G. Physica C,2007,463-465:107

    14 Takizawa,M.;Maekawa,K.;Wadati,H.;Yoshida,T.;Fujimori,A.; Kumigashira,H.;Oshima,M.Phys.Rev.B,2009,79:113103

    15 Blennow,P.;Hagen,A.;Hansen,K.K.;Wallenberg,L.R.; Mogensen,M.Solid State Ionics,2008,179:2047

    16 Page,K.;Kolodiazhnyi,T.;Proffen,T.;Cheetham,A.K.;Seshadri, R.Phys.Rev.Lett.,2008,101:205502

    17 Guo,X.G.;Chen,X.S.;Sun,Y.L.;Sun,L.Z.;Zhou,X.H.;Lu, W.Phys.Lett.A,2003,317:501

    18 Evarestov,R.A.;Piskunov,S.;Kotomin,E.A.;Borstel,G.Phys. Rev.B,2003,67:064101

    19 Hihuchi,T.;Tsukamoto,T.;Sata,N.;Ishigame,M.;Tezuka,Y.; Shin,S.Phys.Rev.B,1998,57:6978

    20 Dai,S.;Lu,H.;Chen,F.;Chen,Z.;Ren,Z.Y.;Ng,D.H.L.Appl. Phys.Lett.,2002,80:3545

    21 Guo,H.;Liu,L.;Fei,Y.;Xiang,W.;Lu,H.;Dai,S.;Zhou,Y.; Chen,Z.J.Appl.Phys.,2003,94:4558

    22 Hohenberg,P.;Kohn,W.Phys.Rev.B,1964,136:864

    23 Vanderbilt,D.Phys.Rev.B,1990,41:7892

    24 Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.; Pederson,M.R.;Singh,D.J.;Fiolhais,C.Phys.Rev.B,1992,46: 6671

    25 Monkhorst,H.J.;Pack,J.D.Phys.Rev.B,1976,13:5188

    26 Pfrommer,B.G.;Cote,M.;Louie,S.G.;Cohen,M.L.J.Comput. Phys.,1997,131:233

    27 Xiao,B.;Feng,J.;Zhou,C.T.;Xing,J.D.;Xie,X.J.;Chen,Y.H. Chem.Phys.Lett.,2008,459:129

    28 Van Benthem,K.;Elsassser,C.;French,R.H.J.Appl.Phys.,2001, 90:6156

    29 Sham,L.J.;Schluter,M.Phys.Rev.Lett.,1983,51:1888

    30 Zhang,F.C.;Zhang,Z.Y.;Zhang,W.H.;Yan,J.F.;Yun,J.N. Acta Phys.-Chim.Sin.,2009,25:61 [張富春,張志勇,張威虎,閆軍鋒,贠江妮.物理化學(xué)學(xué)報,2009,25:61]

    31 Higuchi,T.;Tsukamoto,T.;Yamaguchi,S.;Kobayashi,K.;Sata, N.;Ishigame,M.;Shin,S.Nucl.Instrum.Methods Phys.Res.Sect. B-Beam Interact.Mater.Atoms,2003,199:255

    32 Higuchi,T.;Tsukamoto,T.;Sata,N.;Ishigame,M.;Kobayashi,K.; Yamaguchi,S.;Shin,S.Solid State Ionics,2002,154-155:735

    33 Burstein,E.Phys.Rev.,1954,93:632

    34 Mahan,G.D.J.Appl.Phys.,1980,51:2634

    35 Saha,S.;Sinha,T.P.;Mookerjee,A.Phys.Rev.B,2000,62:8828

    猜你喜歡
    張志勇信息科學(xué)西北大學(xué)
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    第四次出獄之后
    方圓(2022年12期)2022-09-15 00:58:22
    第四次出獄后,他相信自己不會再碰毒品了
    方圓(2022年13期)2022-09-14 15:08:02
    西北大學(xué)木香文學(xué)社
    山西大同大學(xué)量子信息科學(xué)研究所簡介
    三元重要不等式的推廣及應(yīng)用
    《西北大學(xué)學(xué)報》(自然科學(xué)版)征稿簡則
    Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect?
    《我們》、《疑惑》
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計探究
    午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 国产精品.久久久| 国产在线视频一区二区| 人成视频在线观看免费观看| 国产精品成人在线| 精品午夜福利视频在线观看一区 | av超薄肉色丝袜交足视频| 嫁个100分男人电影在线观看| 波多野结衣一区麻豆| 成人国语在线视频| 精品国产乱子伦一区二区三区| 亚洲成人手机| 动漫黄色视频在线观看| 久久狼人影院| 人人妻人人澡人人爽人人夜夜| 亚洲黑人精品在线| 性少妇av在线| 亚洲精品久久午夜乱码| 亚洲午夜精品一区,二区,三区| 蜜桃国产av成人99| 欧美变态另类bdsm刘玥| 在线看a的网站| 母亲3免费完整高清在线观看| 久久久国产成人免费| 国产区一区二久久| 一级毛片精品| 动漫黄色视频在线观看| 黑人猛操日本美女一级片| 久久精品亚洲熟妇少妇任你| 久久精品国产a三级三级三级| 午夜福利一区二区在线看| 成人免费观看视频高清| 日本av免费视频播放| 久久久久国产一级毛片高清牌| 黑人欧美特级aaaaaa片| 国产精品一区二区精品视频观看| 亚洲国产毛片av蜜桃av| 91精品三级在线观看| 满18在线观看网站| 人人妻人人澡人人看| 高清在线国产一区| 超碰成人久久| 十八禁高潮呻吟视频| 日韩欧美三级三区| 最近最新免费中文字幕在线| 成年女人毛片免费观看观看9 | 亚洲色图 男人天堂 中文字幕| av网站在线播放免费| 丰满人妻熟妇乱又伦精品不卡| 丰满少妇做爰视频| 免费在线观看影片大全网站| 99精品欧美一区二区三区四区| 亚洲七黄色美女视频| 亚洲人成电影免费在线| 国产成人av激情在线播放| 欧美激情久久久久久爽电影 | 国产欧美日韩精品亚洲av| 天天操日日干夜夜撸| cao死你这个sao货| 五月开心婷婷网| 色综合欧美亚洲国产小说| 欧美乱妇无乱码| 亚洲国产欧美一区二区综合| 在线观看免费日韩欧美大片| 18禁黄网站禁片午夜丰满| 国产激情久久老熟女| 国产日韩一区二区三区精品不卡| 久久热在线av| 午夜免费鲁丝| 色视频在线一区二区三区| 国产成人免费无遮挡视频| 一区二区三区国产精品乱码| 高清欧美精品videossex| 91成人精品电影| 中文字幕另类日韩欧美亚洲嫩草| 国产精品免费大片| 黑人巨大精品欧美一区二区mp4| 久久久欧美国产精品| 免费看十八禁软件| 丰满迷人的少妇在线观看| 国产亚洲一区二区精品| 亚洲熟妇熟女久久| 亚洲伊人久久精品综合| 欧美精品啪啪一区二区三区| 午夜福利乱码中文字幕| 如日韩欧美国产精品一区二区三区| 两个人看的免费小视频| 男人舔女人的私密视频| 性色av乱码一区二区三区2| 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 日韩 欧美 亚洲 中文字幕| 高清黄色对白视频在线免费看| 成人三级做爰电影| 黄网站色视频无遮挡免费观看| 人人妻人人爽人人添夜夜欢视频| 日本撒尿小便嘘嘘汇集6| 一区二区三区乱码不卡18| 在线观看人妻少妇| 欧美精品一区二区大全| 我的亚洲天堂| av线在线观看网站| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 欧美日韩亚洲高清精品| 国产免费现黄频在线看| 国产男女内射视频| 亚洲欧美日韩另类电影网站| 欧美激情极品国产一区二区三区| 精品午夜福利视频在线观看一区 | avwww免费| 视频在线观看一区二区三区| 亚洲精品av麻豆狂野| 成人国产一区最新在线观看| 香蕉丝袜av| 亚洲国产欧美在线一区| 999久久久精品免费观看国产| 国产一区二区三区综合在线观看| 亚洲人成伊人成综合网2020| 欧美日韩精品网址| 岛国毛片在线播放| 一级片'在线观看视频| 一二三四在线观看免费中文在| 久久中文看片网| 国产av又大| 国产1区2区3区精品| 精品亚洲乱码少妇综合久久| 大型av网站在线播放| 久久ye,这里只有精品| 蜜桃国产av成人99| 欧美激情高清一区二区三区| 国产精品一区二区在线不卡| 老熟女久久久| 国产精品久久久久久人妻精品电影 | 精品第一国产精品| 免费看a级黄色片| 亚洲国产精品一区二区三区在线| 亚洲精品久久午夜乱码| 97在线人人人人妻| 国产免费福利视频在线观看| 国产精品欧美亚洲77777| 不卡一级毛片| 91av网站免费观看| 两个人看的免费小视频| tube8黄色片| 麻豆av在线久日| 日本av手机在线免费观看| 十八禁高潮呻吟视频| 高清黄色对白视频在线免费看| 正在播放国产对白刺激| 乱人伦中国视频| 成年人黄色毛片网站| 啦啦啦视频在线资源免费观看| 国产日韩欧美亚洲二区| 日韩人妻精品一区2区三区| 黄片播放在线免费| 国产精品久久久av美女十八| 在线观看免费日韩欧美大片| 精品国产国语对白av| avwww免费| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美网| 91成人精品电影| 日韩人妻精品一区2区三区| 看免费av毛片| 精品视频人人做人人爽| 青草久久国产| 色老头精品视频在线观看| 亚洲精品一二三| 无人区码免费观看不卡 | 亚洲五月婷婷丁香| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 777米奇影视久久| 激情视频va一区二区三区| 国产精品.久久久| 老司机福利观看| 另类精品久久| 欧美日韩亚洲综合一区二区三区_| 2018国产大陆天天弄谢| 蜜桃国产av成人99| 一级片免费观看大全| 午夜免费鲁丝| 久久久精品免费免费高清| 如日韩欧美国产精品一区二区三区| netflix在线观看网站| 男女无遮挡免费网站观看| 中文欧美无线码| av电影中文网址| 久久久欧美国产精品| 国产精品秋霞免费鲁丝片| 在线观看舔阴道视频| 国产淫语在线视频| 成人黄色视频免费在线看| 夜夜骑夜夜射夜夜干| 一进一出好大好爽视频| 18禁裸乳无遮挡动漫免费视频| 久热爱精品视频在线9| 日韩三级视频一区二区三区| www.精华液| 亚洲专区中文字幕在线| 18在线观看网站| 中文字幕高清在线视频| 亚洲视频免费观看视频| 亚洲第一欧美日韩一区二区三区 | 亚洲av欧美aⅴ国产| 99精品在免费线老司机午夜| 精品一区二区三卡| 午夜老司机福利片| 曰老女人黄片| 国产精品自产拍在线观看55亚洲 | 757午夜福利合集在线观看| 国产精品二区激情视频| 久久久精品94久久精品| 国产日韩欧美亚洲二区| 在线观看免费午夜福利视频| 国产精品久久久久久精品电影小说| 99在线人妻在线中文字幕 | 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 亚洲精品国产色婷婷电影| 日本五十路高清| 久久久久国内视频| 丁香六月欧美| 午夜免费成人在线视频| 免费观看人在逋| 国产精品美女特级片免费视频播放器 | 日韩视频在线欧美| 国产有黄有色有爽视频| 国产一区二区在线观看av| 亚洲av片天天在线观看| 好男人电影高清在线观看| 亚洲av日韩精品久久久久久密| 国产精品成人在线| 91老司机精品| 一区二区三区激情视频| 男女无遮挡免费网站观看| 久久久久久久久久久久大奶| 美女扒开内裤让男人捅视频| 在线观看人妻少妇| 日本一区二区免费在线视频| 久久久精品区二区三区| 久久99一区二区三区| 国产av国产精品国产| 精品人妻在线不人妻| 国产成人av教育| 侵犯人妻中文字幕一二三四区| 一个人免费在线观看的高清视频| 日本av手机在线免费观看| 精品视频人人做人人爽| 日本wwww免费看| 日韩中文字幕欧美一区二区| 欧美精品一区二区大全| 免费在线观看视频国产中文字幕亚洲| 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂| 精品一区二区三卡| 久久精品国产99精品国产亚洲性色 | 国产不卡av网站在线观看| 两人在一起打扑克的视频| 欧美日韩黄片免| 久久久久久久精品吃奶| 久久精品亚洲精品国产色婷小说| www.999成人在线观看| 国产精品免费大片| 久久国产精品男人的天堂亚洲| 99香蕉大伊视频| 手机成人av网站| 日韩熟女老妇一区二区性免费视频| 欧美国产精品一级二级三级| 午夜福利视频在线观看免费| 色婷婷av一区二区三区视频| 不卡一级毛片| 久久精品亚洲av国产电影网| 欧美精品亚洲一区二区| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码| 纯流量卡能插随身wifi吗| 久久精品成人免费网站| 色老头精品视频在线观看| 免费高清在线观看日韩| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 国产精品国产高清国产av | 99热网站在线观看| 老汉色∧v一级毛片| 麻豆av在线久日| 欧美性长视频在线观看| 免费观看av网站的网址| 咕卡用的链子| 精品国产一区二区三区久久久樱花| 国产激情久久老熟女| 激情视频va一区二区三区| 精品国产超薄肉色丝袜足j| 久久天堂一区二区三区四区| 久久九九热精品免费| 啦啦啦在线免费观看视频4| 女人高潮潮喷娇喘18禁视频| 欧美精品人与动牲交sv欧美| 成人三级做爰电影| 超碰97精品在线观看| 久久久精品免费免费高清| 老司机午夜十八禁免费视频| 久热爱精品视频在线9| 久久av网站| 精品一区二区三区四区五区乱码| 久久精品亚洲精品国产色婷小说| 777久久人妻少妇嫩草av网站| 国产免费av片在线观看野外av| 亚洲五月婷婷丁香| 黑人欧美特级aaaaaa片| 国产高清视频在线播放一区| 亚洲性夜色夜夜综合| 老司机福利观看| 日韩中文字幕欧美一区二区| 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 欧美精品啪啪一区二区三区| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 久久国产亚洲av麻豆专区| 日韩 欧美 亚洲 中文字幕| 超色免费av| 黑人操中国人逼视频| 亚洲国产看品久久| 18禁美女被吸乳视频| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 久久青草综合色| 国产不卡一卡二| 国产精品成人在线| 国产高清国产精品国产三级| 超碰97精品在线观看| 亚洲性夜色夜夜综合| 男女高潮啪啪啪动态图| 欧美 日韩 精品 国产| 国产亚洲精品久久久久5区| 欧美精品av麻豆av| 老熟女久久久| 免费看十八禁软件| 亚洲中文日韩欧美视频| 成年动漫av网址| 69精品国产乱码久久久| 久久精品亚洲精品国产色婷小说| 他把我摸到了高潮在线观看 | 另类精品久久| 国产福利在线免费观看视频| 精品第一国产精品| 侵犯人妻中文字幕一二三四区| 99精品欧美一区二区三区四区| 亚洲伊人久久精品综合| 757午夜福利合集在线观看| 国产伦理片在线播放av一区| 国产一区二区在线观看av| 国产精品99久久99久久久不卡| 国产精品九九99| 一级片'在线观看视频| 亚洲国产成人一精品久久久| 久久99一区二区三区| 精品国内亚洲2022精品成人 | 国产视频一区二区在线看| 午夜福利在线免费观看网站| 久久久久精品国产欧美久久久| 乱人伦中国视频| 一区二区三区精品91| 成人永久免费在线观看视频 | 亚洲精品一卡2卡三卡4卡5卡| 人成视频在线观看免费观看| 变态另类成人亚洲欧美熟女 | 国产成人欧美| 欧美精品一区二区免费开放| 久久久久久久大尺度免费视频| 最黄视频免费看| 丝袜在线中文字幕| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三区在线| 热99re8久久精品国产| 91字幕亚洲| 一区二区av电影网| 午夜免费成人在线视频| 久久久久视频综合| 国产淫语在线视频| 成人影院久久| 精品人妻熟女毛片av久久网站| 免费在线观看日本一区| 美女高潮到喷水免费观看| 窝窝影院91人妻| 国产午夜精品久久久久久| 国产精品电影一区二区三区 | 精品免费久久久久久久清纯 | 搡老岳熟女国产| 久久免费观看电影| 美国免费a级毛片| 久久久久精品人妻al黑| 午夜激情久久久久久久| 欧美 日韩 精品 国产| 欧美精品人与动牲交sv欧美| 人人澡人人妻人| 国产不卡一卡二| 日韩有码中文字幕| 一级a爱视频在线免费观看| 国产一区二区三区在线臀色熟女 | 久久中文字幕人妻熟女| 精品第一国产精品| 国产又爽黄色视频| 三级毛片av免费| 精品国产亚洲在线| 最近最新中文字幕大全免费视频| 国产1区2区3区精品| 18禁国产床啪视频网站| 一级片'在线观看视频| 99国产极品粉嫩在线观看| 成人手机av| 97人妻天天添夜夜摸| 中文字幕另类日韩欧美亚洲嫩草| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说 | 捣出白浆h1v1| 丰满少妇做爰视频| 69av精品久久久久久 | 一进一出抽搐动态| 精品亚洲成国产av| 国产亚洲午夜精品一区二区久久| 宅男免费午夜| 精品国内亚洲2022精品成人 | 国产精品久久久久久人妻精品电影 | 久久久国产精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 免费观看av网站的网址| 少妇 在线观看| 桃红色精品国产亚洲av| 欧美 日韩 精品 国产| 国产一区二区在线观看av| 免费黄频网站在线观看国产| 91麻豆av在线| 国产不卡av网站在线观看| 亚洲精品久久午夜乱码| 99精国产麻豆久久婷婷| 97人妻天天添夜夜摸| 成人手机av| 蜜桃国产av成人99| 国产成人免费观看mmmm| 午夜福利乱码中文字幕| 亚洲欧美日韩高清在线视频 | 男女免费视频国产| 精品卡一卡二卡四卡免费| 性色av乱码一区二区三区2| 亚洲色图av天堂| 免费人妻精品一区二区三区视频| 91字幕亚洲| 国产单亲对白刺激| 精品亚洲成国产av| 亚洲人成伊人成综合网2020| 一区二区三区国产精品乱码| 一本久久精品| 国产在线视频一区二区| 国产日韩一区二区三区精品不卡| 国产一卡二卡三卡精品| www.熟女人妻精品国产| 在线永久观看黄色视频| 黄色丝袜av网址大全| 一进一出好大好爽视频| 伦理电影免费视频| 亚洲精品一二三| 免费久久久久久久精品成人欧美视频| 色在线成人网| 女人精品久久久久毛片| 波多野结衣av一区二区av| 精品久久蜜臀av无| 日韩视频在线欧美| 法律面前人人平等表现在哪些方面| 男女无遮挡免费网站观看| 777米奇影视久久| 午夜福利乱码中文字幕| 国产单亲对白刺激| 亚洲 国产 在线| 亚洲精华国产精华精| 欧美激情久久久久久爽电影 | 亚洲av国产av综合av卡| 欧美性长视频在线观看| 国产精品一区二区在线观看99| 亚洲欧美日韩高清在线视频 | 伦理电影免费视频| 99re在线观看精品视频| 在线av久久热| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 欧美乱码精品一区二区三区| 欧美黑人欧美精品刺激| 搡老乐熟女国产| 精品国产一区二区三区四区第35| 亚洲第一欧美日韩一区二区三区 | 露出奶头的视频| 日日夜夜操网爽| 天堂动漫精品| 久久国产精品人妻蜜桃| av视频免费观看在线观看| 欧美一级毛片孕妇| 亚洲美女黄片视频| 久久久国产欧美日韩av| 亚洲人成电影观看| 久久久久久免费高清国产稀缺| 高清毛片免费观看视频网站 | 99国产精品免费福利视频| 亚洲精品久久午夜乱码| 久久毛片免费看一区二区三区| www.精华液| 亚洲第一av免费看| 久久久久久亚洲精品国产蜜桃av| 国产深夜福利视频在线观看| 久9热在线精品视频| 久久久久久久大尺度免费视频| 99香蕉大伊视频| 老熟妇仑乱视频hdxx| 国产国语露脸激情在线看| 999久久久国产精品视频| 无人区码免费观看不卡 | 国产成人一区二区三区免费视频网站| 久久久久久久国产电影| 人人妻人人澡人人看| 丝瓜视频免费看黄片| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 国产麻豆69| 色在线成人网| 午夜激情久久久久久久| 在线天堂中文资源库| 岛国在线观看网站| 精品熟女少妇八av免费久了| 精品一品国产午夜福利视频| 久久国产亚洲av麻豆专区| 久久亚洲真实| 亚洲av成人不卡在线观看播放网| 午夜成年电影在线免费观看| 国产精品九九99| 老司机在亚洲福利影院| 国产欧美日韩综合在线一区二区| 久热这里只有精品99| 亚洲成人手机| 1024视频免费在线观看| 日韩欧美国产一区二区入口| 成人影院久久| 久久人妻福利社区极品人妻图片| 国产亚洲一区二区精品| 精品久久蜜臀av无| 在线天堂中文资源库| 手机成人av网站| 精品熟女少妇八av免费久了| 久久久精品免费免费高清| 大片免费播放器 马上看| 中国美女看黄片| 女人高潮潮喷娇喘18禁视频| 久久热在线av| 久久精品国产亚洲av高清一级| 美女视频免费永久观看网站| 熟女少妇亚洲综合色aaa.| 日韩熟女老妇一区二区性免费视频| 国产精品98久久久久久宅男小说| 午夜老司机福利片| 国产91精品成人一区二区三区 | 男女边摸边吃奶| 人人妻,人人澡人人爽秒播| 久久人妻av系列| 51午夜福利影视在线观看| 欧美日韩亚洲高清精品| 免费av中文字幕在线| 黄色视频,在线免费观看| 激情视频va一区二区三区| 亚洲精品乱久久久久久| 成年人免费黄色播放视频| 亚洲午夜精品一区,二区,三区| 视频区图区小说| 蜜桃在线观看..| 欧美 亚洲 国产 日韩一| 亚洲一卡2卡3卡4卡5卡精品中文| 国产又色又爽无遮挡免费看| 热re99久久国产66热| 黄片大片在线免费观看| 啦啦啦免费观看视频1| 久久国产亚洲av麻豆专区| 丝袜人妻中文字幕| 丝袜喷水一区| 啦啦啦中文免费视频观看日本| av超薄肉色丝袜交足视频| 女人高潮潮喷娇喘18禁视频| 淫妇啪啪啪对白视频| 国产福利在线免费观看视频| 丝瓜视频免费看黄片| 黑人欧美特级aaaaaa片| 大型av网站在线播放| 乱人伦中国视频| 黄色a级毛片大全视频| 啪啪无遮挡十八禁网站| 国产日韩欧美亚洲二区| 久久99热这里只频精品6学生| 国产精品 国内视频| 色在线成人网| 中文字幕av电影在线播放| 99riav亚洲国产免费| 日本欧美视频一区| 美女福利国产在线| 久久性视频一级片| 久久狼人影院| 欧美乱码精品一区二区三区| 免费观看a级毛片全部| 80岁老熟妇乱子伦牲交| 国产亚洲精品一区二区www | 一区二区三区国产精品乱码| 亚洲五月婷婷丁香| 国产淫语在线视频|