• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In、Sc摻雜對SrTiO3電子結(jié)構(gòu)和光學(xué)性質(zhì)的影響

    2010-03-06 04:44:34江妮張志勇
    物理化學(xué)學(xué)報 2010年3期
    關(guān)鍵詞:張志勇信息科學(xué)西北大學(xué)

    江妮 張志勇

    (西北大學(xué)信息科學(xué)與技術(shù)學(xué)院,西安 710127)

    Strontium titanate(SrTiO3),a typical perovskite material,has attracted much attention due to its potential applications in the field of oxide devices[1-9].It can be used as a substrate for the growth of high temperature superconductor thin films[1],as grain boundary barrier layer capacitors[2]and oxygen gas sensors[3-4], and as a high permittivity material with potential application in dynamic random access memory[5].In particular,its conductivity can be tuned by controlled doping with impurity atoms[6-9],which has important applications in fabricating devices with multilayer structures such as semiconductor/insulator/semiconductor (S/I/S)and metal/insulator/metal(M/I/M)junctions[10].

    The behavior of n-type doped SrTiO3has been widely studied in an attempt to understand the rich variations in physical properties arising from carrier doping[11-18].However,the achievement of p-type doped SrTiO3is rarely documented.Until now,only Sc-doped and In-doped SrTiO3are confirmed to be p-type doping[19-21].Higuchi et al.[19]reported the electronic structure of a ptype SrTiO3single crystal in which the acceptor ion Sc3+was introduced into the Ti4+site.Dai et al.[20]reported that SrTiO3exhibited p-type conductivity when doped by the substitution of In for Ti.Guo et al.[21]further explored the optical properties of ptype SrInxTi1-xO3(x=0.1 and 0.2)films prepared by laser molecular beam epitaxy under different oxygen pressures.In addition, many of the properties such as the structure stability,transport properties,and optical absorption spectra for p-type doped SrTiO3thin films are not known.

    In this paper,we perform the first-principles calculation based on the density functional theory(DFT)[22]to investigate the effect of In and Sc p-type doping on the electronic structure and optical properties of SrTiO3.

    1 Theoretical model and computational method

    1.1 Theoretical model

    SrTiO3has an ideal cubic perovskite-type structure at room temperature.It belongs to the space group Pm3m(Oh),with the Sr atom sitting at the origin point,Ti at the body centre,and three oxygen atoms at the three face centres,and its lattice constant is a=b=c=0.3905 nm.The unit cell contains one formula unit of SrTiO3.In order to study fractional substitution,it is necessary to consider a cell larger than the basic unit.Thus we construct a supercell of eight unit cells consisting of 40 atoms in the basis.Replacing any one of the Ti atoms by In(or Sc)atom in the supercell will correspond to the formula SrIn0.125Ti0.875O3(or SrSc0.125Ti0.875O3).

    1.2 Computational method

    In our computation,the interaction between nuclei and electrons is approximated with Vanderbilt ultra-soft pseudo-potential[23]treating 4s,4p,and 5s electrons of Sr,3s,3p,3d,and 4s electrons of Ti,2s and 2p electrons of O,4d,5s and 5p electrons of In,and 3s,3p,3d,and 4s electrons of Sc as the valence electrons.The Perdew and Wang 91 parametrization[24]is taken as the exchange-correlation potential in the generalized-gradient approximation(GGA).Plane wave basis with kinetic energy cutoff of 420 eV is used to represent wave functions.Brillouin zone integration is performed with a 6×6×6 Monkhorst-Pack[25]k-points mesh.Full relaxation is performed for the constructed supercells by using the Broyden-Fletcher-Goldfarb-Shanno(BFGS)algorithm[26]to minimize energy respect to atomic position.Each calculation is considered converged when the maximum root-meansquare convergent tolerance is less than 5.0×10-6eV·atom-1,that is,the maximum ionic Hellmann-Feynman force being within 0.1 eV·nm-1,the maximum ionic displacement being within 5.0×10-5nm and the maximum stress being within 0.02 GPa. Then the electronic structure and optical properties are calculated based on the optimized supercell model.

    The scissor approximation is adopted in the optical calculation to compensate the underestimation of the calculated band gap.

    2 Results and discussion

    2.1 Stability and lattice properties

    The binding intensity and structural stability of crystal are related to its binding energy.The bigger the binding energy,the more stable the crystal structure.In this paper,the binding energies for SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3are calculated by the following formulas[27]:

    where Etotal(SrTiO3)and Etotal(SrM0.125Ti0.875O3)represent the total energies of the SrTiO3and SrM0.125Ti0.875O4supercells,respectively.Eisolate(X)denotes the total energy of an isolated X atom and n is the formula number of SrTiO3contained in each supercell.

    By analysis of the calculated binding energies of the three compounds listed in Table1,we conclude that the optimized SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3systems are stable, because their binding energies are negative.On the other hand, the doped SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3have bigger binding energy values than the undoped SrTiO3itself,which indicates that the structure stability of SrTiO3is weakened after doping.These structure stability changes for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are originated from the electronic structure changes through doping,and we will discuss this in the Mulliken population analysis section.Note that the crystal structures of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are still the cubic perovskite-type structure with the space group Pm3m(Oh).

    In addition,the calculated lattice constants are 0.3951 nm for SrIn0.125Ti0.875O3,larger than that of undoped SrTiO3(0.3924 nm), which is in good agreement with the experiment results[20]that thelattice constants of SrIn0.1Ti0.9O3films increase after doping. The same lattice expansion tendency is also observed in SrSc0.125Ti0.875O3.However,because of the absence of experimental result on the lattice parameters of SrSc0.125Ti0.875O3,further experimental work is needed for comparison with our numerical results.

    Table 1 Optimized structure parameters and binding energies(Eb)for SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3

    Further insight into the effect of p-type doping on the electronic structure of SrTiO3can be obtained from the atomic relaxation around the impurity atom as listed in Table 2.The partial geometries around the impurity In atom,which are taken from the structural optimized SrIn0.125Ti0.875O3system,are shown in Fig.1.

    The introducing of In impurity leads to a local lattice expansion in the SrIn0.125Ti0.875O3.The closest atoms with respect to the In impurity are six O*atoms which rearrange their positions immediately after the doping has occurred.That is,the six nearest O*atoms around In atom shift away from In by 0.0025 nm and the InO6*octahedron exhibits a small structure relaxation.This is due to the fact that the effective radius of In3+(0.094 nm)is larger than the radius of Ti4+(0.0745 nm)[20],the partial substitution of In for Ti induces a structure relaxation.The same tendency is also observed for SrSc0.125Ti0.875O3after doping.However,the six nearest O*atoms around Sc atom move away from Sc by 0.0083 nm,much larger than that in SrIn0.125Ti0.875O3.Furthermore,in the case of the first nearest neighbor(NN)Ti*O6with respect to the InO6*octahedron in SrIn0.125Ti0.875O3,it possesses a slightly distorted Ti*O6octahedron.The bond length of Ti*—Oaalong the aaxis is smaller than those in the bc plane.So does the first NN Ti*O6with respect to the ScO6octahedron in SrSc0.125Ti0.875O3.At the same time,it is noted that the second NN Ti**O6undergoes little relaxations after doping and the third NN Ti#O6has almost no change in both SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3systems compared with the corresponding one in the undoped SrTiO3system.Hence,replacing a Ti atom by one In atom(or Sc atom) in the SrTiO3parent merely results in local structural changes around the dopant sites.

    Fig.1 Partial geometry of the structural optimized SrIn0.125Ti0.875O3system

    2.2 Electronic structures

    In this part,the electronic structures of SrTiO3,SrIn0.125Ti0.875O3, and SrSc0.125Ti0.875O3will be discussed and compared with each other.Three indicators will be used to reveal the effect of In and Sc doping on the electronic structure of SrTiO3,which are the total density of state(DOS),partial density of state(PDOS),and population analysis.Each of these tools can demonstrate some aspects of structure features.

    2.2.1 DOS

    The DOS and PDOS of the undoped SrTiO3are calculated first for comparison and the results are shown in Fig.2(a).For the sake of clarity,only the relevant Ti 3d,O 2p,and Sr 5p PDOS are shown and this will be adopted in the subsequent figures.It is obvious that the structure of SrTiO3has corner-shared TiO6octahedron where the Ti 3d and O 2p interaction is found,which dominate the main electronic properties of SrTiO3.The top of valance bands(VBs)predominately consists of O 2p states and the most prominent unoccupied energy bands in the bottom most of conduction bands(CBs)are mainly composed of the Ti 3d states.Overlooking from the DOS,it can be observed that there is strong orbital hybridization between the Ti 3d and O 2p states. That is to say,Ti—O bond is covalent.Correspondingly no over-lap of PDOS between Sr atoms and O atoms means the high ionicity of Sr—O bonds.

    Table 2 Key bond lengths in SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3

    Fig.2 DOS and PDOSs(a)and band structure(b)of undoped SrTiO3The Fermi level is set to zero on the energy scale,which will be adopted below unless otherwise stated.

    Moreover,as shown in Fig.2(b),the undoped SrTiO3is an indirect gap insulator with the top of valence band at R point and the bottom of conduction band at Γ point.The calculated value of the indirect band gap at R→Γ is 1.7 eV,which is smaller than the experimental value of about 3.2 eV[28].This is typically underestimated by the density functional theory[29-30].Thus,a scissor approximation value of 1.5 eV is adopted in the optical calculation to compensate the underestimation of the calculated band gap.

    Fig.3showsthetotalDOSsofSrIn0.125Ti0.875O3andSrSc0.125Ti0.875O3. Because the In doping introduces the p-type carriers into the SrIn0.125Ti0.875O3system,the Fermi level shifts into the valence bands(VBs),which is in agreement well with the experimental results[20]that In3+acts as acceptor ions in the Indoped SrTiO3films and the SrIn0.1Ti0.9O3is a p-type semiconductor.Particularly,the DOS of SrIn0.125Ti0.875O3shifts significantly towards high energies and the optical band gap is broadened by about 0.35 eV due to In doping compared with the DOS reported in Fig.2.This is well consistent with the experimental results[20]that the band gap of SrIn0.1Ti0.9O3is 0.4 eV larger than that of undoped SrTiO3.Moreover,one additional peak with a bandwidth of about 1.20 eV appears in the bottom of VBs for SrIn0.125Ti0.875O3.

    In the case of Sc-doped SrSc0.125Ti0.875O3,the Fermi level shifts downwards into the VBs and SrSc0.125Ti0.875O3exhibits p-type degenerate semiconductor feature,which agree well the experimental results[31]that Sc3+acts as acceptor ions in SrTi1-xScxO3and the Fermi level shifts to the VBs side with increasing Sc3+ions. Meanwhile,an optical band gap widening of 0.30 eV associated with Sc doping has been observed for SrSc0.125Ti0.875O3.This fact is consistent with the experimental results that the band gap of SrTi1-xScxO3increases with increasing Sc doping concentration[32]. The broadened optical band gap originates from two aspects.On the one hand,the Burstein-Moss shift due to the high concentration of carriers makes the optical absorption edge shifts towards high energies and the optical transparency window is broadened[33].On the other hand,interactions among hole charges result in a many-body effect,which causes the optical band gap to becomenarrow[34].However,theeffect of Burstein-Moss on the band gap is more pronounced than that of the many-body effect,so the band gap broadens after doping.

    2.2.2 PDOS

    In subsequent discussions on the effect of p-type doping on the SrTiO3system,we restrict ourselves to the PDOS of the doped systems.

    Firstly,the orbital decomposed PDOSs of impurity In atom in SrIn0.125Ti0.875O3and Sc atom in SrSc0.125Ti0.875O3are presented in Fig.4(a).It is clear that the PDOSs of In and Sc do not contribute to the bottom most of CBs but contribute only to the top of VBs. The value of PDOS for In near the Fermi level(marked by the arrow in Fig.4(a))in the energy rang of-0.50 to 0.00 eV is significantly larger than that of Sc atom in SrSc0.125Ti0.875O3.This indicates that In is probably better than Sc for p-type doping in SrTiO3.

    Secondly,the orbital decomposed PDOSs of atoms near the In and Sc impurities are plotted in Fig.4(b)and(c),respectively.In the case of SrIn0.125Ti0.875O3,it is found that there is strong interaction between impurity In and its first NN Ti*O6.The PDOS of Ti*3d states at the bottom of CBs is highly dispersive and shows no localization characteristics.With increasing distance between In and its neighboring TiO6,the PDOS of Ti**3d states is less dispersive than that of Ti*.The PDOS of Ti#atom is almost the same as that in undoped SrTiO3.Besides,the In impurity charge potential has great effect on the six O*atoms in the InO6.The PDOS of O*2p states at the bottom of CBs is different from that of other O atoms,which are not in the InO6.The same results are observed in SrSc0.125Ti0.875O3.These conclusions for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are in good agreement with the structure relaxation analysis in section 2.1 that the partial substitution of In for Ti(or Sc for Ti)in the SrTiO3parent merely results in local structural changes around the dopant sites.Moreover,by analysis the PDOS in Fig.4(a,b),it is evident that an additional peak appears in the bottom of VBs for SrIn0.125Ti0.875O3,to which the In 5s and O 2p states make contribution.

    Fig.3 DOSs of SrIn0.125Ti0.875O3(a)and SrSc0.125Ti0.875O3(b)

    Fig.4 PDOSs of impurity In atom in SrIn0.125Ti0.875O3and Sc atom in SrSc0.125Ti0.875O3(a),surrounding atoms of In(b)and neighboring atoms of Sc(c)

    2.2.3 Mulliken population analysis

    More investigation of the effect of In and Sc doping on the electronic structure of SrTiO3can be obtained from Mulliken population analysis listed in Table 3.For undoped SrTiO3,the net charge of Sr(1.87e)is close to its+2e formal charges,whereas O atom is with-0.80e negative charges and Ti atom carries 0.53e positive charges,which are much smaller than their-2e and+4e formal charges,respectively.This indicates that there is a high degree of covalency in the Ti—O bond while ionicity in the Sr—O bond,which agrees well with the DOS analysis for SrTiO3in section 2.2.1.

    After doping,there are considerable electron charge density redistributionsneartheimpurityatom.InthecaseofSrIn0.125Ti0.875O3, the electron density of the O*atoms near the impurity In atom increases obviously and the electronegativity of O*atoms is strengthened.While the net charges of Ti*and Ti**decrease to the values of 0.50e and 0.52e,respectively.This is due to the fact that the net charge of In atom(1.26e)is much larger than that of the replaced Ti atom(0.53e),and In atom transfers more electrons to O*atoms.Correspondingly,Ti*and Ti**provide less electrons to O*atoms.Hence there is a high degree of ionicity in the In—O bond and the covalency of Ti—O bond is weakened after doping,which result in the structure stability change of SrIn0.125Ti0.875O3.For SrSc0.125Ti0.875O3,the impurity Sc atom loses only partial valence electrons with 0.46e positive charges,smaller than the replaced Ti atom(0.53e),implying that the covalent Sc—O bond is weaker than that of Ti—O bond.Correspondingly, Ti*and Ti**atoms transfer more electrons to O*atoms and the net charges of Ti*and Ti**increase to the values of 0.56e and 0.54e,respectively.

    2.3 Optical properties

    Next we discuss the effect of In and Sc doping on the optical properties of SrTiO3.The linear response of a system due to an external electromagnetic field with a small wave vector can be described with the complex dielectric function ε(ω)=ε1(ω)+ iε2(ω).The imaginary part of the dielectric function ε2(ω)is calculated from the momentum matrix elements between the occupied and unoccupied wave functions[35]as follows:

    where ?ω is the energy of the incident photon,V is the unit cell volume,p is the momentum operator,|kn>is a crystal wavefunction,and f(kn)is the Fermi distribution function.The real part of the dielectric function ε1(ω)is evaluated from the imaginary part ε2(ω)by the Kramers-Kronig relationship.

    where M is the principal value of the integral.The other optical constants like refractive index n(ω),extinction coefficient k(ω), reflectivity R(ω),and absorption coefficient I(ω)now immediately are calculated in terms of the components of the complex dielectric function as follows:

    Accordingly the transmittance T(ω)can be obtained by the following equation:

    Fig.5 shows the absorption spectra for SrTiO3,SrIn0.125Ti0.875O3, and SrSc0.125Ti0.875O3.After doping,a noticeable blue-shift of ab-sorption spectra edge is observed for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3,which is in good agreement with the above calculated optical band gap widening for them.In addition,because of the Drude-type behavior of the free-carrier excitation[12],a new weak absorption appears in the energy region of 1.25 to 2.00 eV for the two p-type doping systems.

    Table 3 Mulliken population analysis for SrTiO3, SrIn0.125Ti0.875O3,and SrSc0.125Ti0.87O3

    Fig.5 Absorption spectra of SrTiO3(a),SrIn0.125Ti0.875O3(b), and SrSc0.125Ti0.875O3(c)

    At the same time,as shown in Fig.6,the optical transmittance of SrIn0.125Ti0.875O3has a significant improvement after In doping and the transmittance is higher than 85%in a wavelength range from 350 to 625 nm,which agree well with the experimental results[21]thatSrIn0.1Ti0.9O3thinfilmsarehighlytransparentwiththe transmittance higher than 80%in most of the visible spectrum. For SrSc0.125Ti0.875O3,its optical transmittance is similar to that of SrIn0.125Ti0.875O3.

    The increasing of the high transparency of the two p-type doping compounds originates from two factors.On one hand,to being optically transparent,it is desirable to have a wider band gap than the photon energy of the visible lights.Owing to the ptype doping,there is an optical band gap widening of 0.35 and 0.30 eV for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3,respectively. Therefore,the electron transition occurring above 3.55 eV in SrIn0.125Ti0.875O3(3.50 eV in SrSc0.125Ti0.875O3)should be more beneficial than the band gap of 3.20 eV[28]in SrTiO3.On the other hand, the PDOS of impurity atom is low in the Fermi level(see Fig.4 (a)),which leads to the small transition probability and weak absorption.

    Fig.6 Optical transmittances of SrTiO3(a),SrIn0.125Ti0.875O3(b),and SrSc0.125Ti0.875O3(c)

    3 Conclusions

    In conclusion,we have investigated the structure stability, electronic structure,and optical properties of In and Sc p-type doped SrTiO3by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the DFT.Our calculation results are in good agreement with the experimental data.From these calculations,we have obtained the results as follows.

    (1)The structures of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are still stable after doping,but their stabilities are lower than that of undoped SrTiO3.The partial substitution of In for Ti(or Sc for Ti) in the SrTiO3parent merely results in local structural changes around the dopant sites.

    (2)Owing to the p-type doping,the Fermi level shifts into VBs for both SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3systems and the two systems display p-type degenerate semiconductor features. At the same time,the optical band gap of SrIn0.125Ti0.875O3is broadened by about 0.35 eV due to In doping and an optical band gap widening of 0.30 eV associated with Sc doping has been observed for SrSc0.125Ti0.875O3.

    (3)A noticeable blue-shift of absorption spectra edge is observed for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3and a new absorption appears in the energy region of 1.25 to 2.00 eV for the two p-type doping systems.Furthermore,the optical transmittances of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3have a significant improvement after doping,and the transmittances are higher than 85%in the wavelength range from 350 to 625 nm. The wide band gap,small transition probability,and weak absorption due to the PDOS of impurity in the Fermi level result in the significant optical transparency.

    1 Eom,C.B.;Marshall,A.F.;Laderman,S.S.;Jacowitz,R.D.; Geballe,T.H.Science,1990,249:1549

    2 Shen,H.;Song,Y.;Gu,H.;Wang,P.;Xi,Y.Mater.Lett.,2002, 56:802

    3 Hara,T.;Ishiguro,T.Sens.Actuator B-Chem.,2009,136:489

    4 Hara,T.;Ishiguro,T.;Wakiyab,N.;Shinozakic,K.Mater.Sci. Eng.B,2009,161:142

    5 Lee,S.W.;Kwon,O.S.;Han,J.H.;Hwang,C.S.Appl.Phys.Lett., 2008,92:222903

    6 Fix,T.;Bali,R.;Stelmashenko,N.;Blamire,M.G.Solid State Commun.,2008,146:428

    7 Zhu,X.B.;Liu,S.M.;Hao,H.R.;Li,X.H.;Song,W.H.;Sun,Y. P.Physica C,2005,418:59

    8 Higuchi,T.;Tsukamoto,T.;Kobayashi,K.;Ishiwata,Y.;Fujisawa, M.;Yokoya,T.;Yamaguchi,S.;Shin,S.Phys.Rev.B,2000,61: 12860

    9 Marina,O.A.;Canfield,N.L.;Stevenson,J.W.Solid State Ionics, 2002,149:21

    10 Wang,H.H.,Chen,F.;Dai,S.Y.;Zhao,T.;Lu,H.B.;Cui,D.F.; Zhou,Y.L.;Chen,Z.H.;Yang,G.Z.Appl.Phys.Lett.,2001,78: 1676

    11 Wang,H.H.;Cui,D.F.;Dai,S.Y.;Lu,H.B.;Zhou,Y.L.;Chen, Z.H.;Yang,G.Z.J.Appl.Phys.,2001,90:4664

    12 Higuchi,T.;Tsukamoto,T.;Taguchi,Y.;Tokur,Y.;Shin,S. Physica B,2004,351:310

    13 Ma,J.Y.;Bi,C.Z.;Fang,X.;Zhao,H.Y.;Kamran,M.;Qiu,X.G. Physica C,2007,463-465:107

    14 Takizawa,M.;Maekawa,K.;Wadati,H.;Yoshida,T.;Fujimori,A.; Kumigashira,H.;Oshima,M.Phys.Rev.B,2009,79:113103

    15 Blennow,P.;Hagen,A.;Hansen,K.K.;Wallenberg,L.R.; Mogensen,M.Solid State Ionics,2008,179:2047

    16 Page,K.;Kolodiazhnyi,T.;Proffen,T.;Cheetham,A.K.;Seshadri, R.Phys.Rev.Lett.,2008,101:205502

    17 Guo,X.G.;Chen,X.S.;Sun,Y.L.;Sun,L.Z.;Zhou,X.H.;Lu, W.Phys.Lett.A,2003,317:501

    18 Evarestov,R.A.;Piskunov,S.;Kotomin,E.A.;Borstel,G.Phys. Rev.B,2003,67:064101

    19 Hihuchi,T.;Tsukamoto,T.;Sata,N.;Ishigame,M.;Tezuka,Y.; Shin,S.Phys.Rev.B,1998,57:6978

    20 Dai,S.;Lu,H.;Chen,F.;Chen,Z.;Ren,Z.Y.;Ng,D.H.L.Appl. Phys.Lett.,2002,80:3545

    21 Guo,H.;Liu,L.;Fei,Y.;Xiang,W.;Lu,H.;Dai,S.;Zhou,Y.; Chen,Z.J.Appl.Phys.,2003,94:4558

    22 Hohenberg,P.;Kohn,W.Phys.Rev.B,1964,136:864

    23 Vanderbilt,D.Phys.Rev.B,1990,41:7892

    24 Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.; Pederson,M.R.;Singh,D.J.;Fiolhais,C.Phys.Rev.B,1992,46: 6671

    25 Monkhorst,H.J.;Pack,J.D.Phys.Rev.B,1976,13:5188

    26 Pfrommer,B.G.;Cote,M.;Louie,S.G.;Cohen,M.L.J.Comput. Phys.,1997,131:233

    27 Xiao,B.;Feng,J.;Zhou,C.T.;Xing,J.D.;Xie,X.J.;Chen,Y.H. Chem.Phys.Lett.,2008,459:129

    28 Van Benthem,K.;Elsassser,C.;French,R.H.J.Appl.Phys.,2001, 90:6156

    29 Sham,L.J.;Schluter,M.Phys.Rev.Lett.,1983,51:1888

    30 Zhang,F.C.;Zhang,Z.Y.;Zhang,W.H.;Yan,J.F.;Yun,J.N. Acta Phys.-Chim.Sin.,2009,25:61 [張富春,張志勇,張威虎,閆軍鋒,贠江妮.物理化學(xué)學(xué)報,2009,25:61]

    31 Higuchi,T.;Tsukamoto,T.;Yamaguchi,S.;Kobayashi,K.;Sata, N.;Ishigame,M.;Shin,S.Nucl.Instrum.Methods Phys.Res.Sect. B-Beam Interact.Mater.Atoms,2003,199:255

    32 Higuchi,T.;Tsukamoto,T.;Sata,N.;Ishigame,M.;Kobayashi,K.; Yamaguchi,S.;Shin,S.Solid State Ionics,2002,154-155:735

    33 Burstein,E.Phys.Rev.,1954,93:632

    34 Mahan,G.D.J.Appl.Phys.,1980,51:2634

    35 Saha,S.;Sinha,T.P.;Mookerjee,A.Phys.Rev.B,2000,62:8828

    猜你喜歡
    張志勇信息科學(xué)西北大學(xué)
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    第四次出獄之后
    方圓(2022年12期)2022-09-15 00:58:22
    第四次出獄后,他相信自己不會再碰毒品了
    方圓(2022年13期)2022-09-14 15:08:02
    西北大學(xué)木香文學(xué)社
    山西大同大學(xué)量子信息科學(xué)研究所簡介
    三元重要不等式的推廣及應(yīng)用
    《西北大學(xué)學(xué)報》(自然科學(xué)版)征稿簡則
    Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect?
    《我們》、《疑惑》
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計探究
    欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码 | 下体分泌物呈黄色| 精品少妇久久久久久888优播| 校园人妻丝袜中文字幕| 一区二区三区四区激情视频| 啦啦啦在线免费观看视频4| 在线观看免费高清a一片| 在线观看国产h片| 在线观看三级黄色| 成人国语在线视频| 又粗又硬又长又爽又黄的视频| www.熟女人妻精品国产| 天堂8中文在线网| 久久 成人 亚洲| 国产精品久久久久成人av| 久久久久国产精品人妻一区二区| 久久久久久人人人人人| 国产成人系列免费观看| 午夜福利,免费看| 成人亚洲欧美一区二区av| 一级毛片黄色毛片免费观看视频| 狠狠婷婷综合久久久久久88av| 日韩 欧美 亚洲 中文字幕| 欧美av亚洲av综合av国产av | 午夜老司机福利片| 中文字幕人妻熟女乱码| 精品久久久久久电影网| 国产一区亚洲一区在线观看| 美女扒开内裤让男人捅视频| 亚洲精品国产一区二区精华液| 多毛熟女@视频| 久久久精品94久久精品| 欧美少妇被猛烈插入视频| 久久综合国产亚洲精品| 最近中文字幕高清免费大全6| 久久青草综合色| 大片免费播放器 马上看| 精品国产国语对白av| 不卡av一区二区三区| 曰老女人黄片| 亚洲av综合色区一区| 久久人人97超碰香蕉20202| 一个人免费看片子| 欧美黑人精品巨大| 国产在线视频一区二区| 国产成人精品在线电影| 男女之事视频高清在线观看 | 热99久久久久精品小说推荐| 欧美日本中文国产一区发布| 国产av码专区亚洲av| 一级片免费观看大全| 制服诱惑二区| 日韩中文字幕视频在线看片| 欧美精品av麻豆av| 国精品久久久久久国模美| 日韩免费高清中文字幕av| 下体分泌物呈黄色| 免费黄色在线免费观看| 性色av一级| 三上悠亚av全集在线观看| 欧美av亚洲av综合av国产av | 亚洲综合色网址| 久久午夜综合久久蜜桃| 国精品久久久久久国模美| 蜜桃国产av成人99| 老司机影院毛片| 久久这里只有精品19| 毛片一级片免费看久久久久| 国产成人系列免费观看| 亚洲av欧美aⅴ国产| 黑人猛操日本美女一级片| 在线免费观看不下载黄p国产| 免费黄网站久久成人精品| 亚洲图色成人| 国产日韩欧美亚洲二区| 亚洲熟女毛片儿| 久久人人爽人人片av| 高清欧美精品videossex| 国产一级毛片在线| videosex国产| 极品人妻少妇av视频| 精品国产国语对白av| 精品亚洲成国产av| 电影成人av| 男女高潮啪啪啪动态图| 妹子高潮喷水视频| 亚洲成色77777| 久久久精品国产亚洲av高清涩受| 咕卡用的链子| 国产午夜精品一二区理论片| 免费观看a级毛片全部| 啦啦啦在线免费观看视频4| www.自偷自拍.com| 最近最新中文字幕大全免费视频 | 97人妻天天添夜夜摸| 精品一区二区三卡| 大陆偷拍与自拍| 成年美女黄网站色视频大全免费| 91国产中文字幕| e午夜精品久久久久久久| 成人影院久久| 一级毛片我不卡| 亚洲av综合色区一区| 久久精品aⅴ一区二区三区四区| 99精国产麻豆久久婷婷| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区国产| 美女高潮到喷水免费观看| 色婷婷av一区二区三区视频| 九色亚洲精品在线播放| 女人久久www免费人成看片| 免费不卡黄色视频| 久久精品亚洲熟妇少妇任你| 亚洲第一青青草原| 99精品久久久久人妻精品| 91精品伊人久久大香线蕉| 亚洲成人免费av在线播放| 精品免费久久久久久久清纯 | 水蜜桃什么品种好| 黄片小视频在线播放| 日韩伦理黄色片| 亚洲国产最新在线播放| 国产av一区二区精品久久| 91aial.com中文字幕在线观看| 免费观看性生交大片5| 韩国精品一区二区三区| 一级,二级,三级黄色视频| 天堂8中文在线网| 男人舔女人的私密视频| 亚洲精品aⅴ在线观看| 久久影院123| 国产精品蜜桃在线观看| 成年美女黄网站色视频大全免费| 人人澡人人妻人| 狠狠精品人妻久久久久久综合| 99国产综合亚洲精品| 大片电影免费在线观看免费| 老司机靠b影院| 国产精品一区二区在线观看99| 国产精品亚洲av一区麻豆 | 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 久热这里只有精品99| 欧美日韩成人在线一区二区| 国产在视频线精品| 久久久欧美国产精品| 观看av在线不卡| 99久久99久久久精品蜜桃| 国产又爽黄色视频| 日本色播在线视频| 中文乱码字字幕精品一区二区三区| 免费看不卡的av| 中文欧美无线码| 在线观看免费高清a一片| 亚洲欧美色中文字幕在线| 国产黄色免费在线视频| 日日摸夜夜添夜夜爱| 国产精品久久久av美女十八| 欧美日韩视频精品一区| 超碰成人久久| 黄色视频不卡| 777米奇影视久久| 韩国av在线不卡| 国产一区二区激情短视频 | 亚洲伊人久久精品综合| 少妇人妻精品综合一区二区| 黑丝袜美女国产一区| √禁漫天堂资源中文www| 欧美亚洲日本最大视频资源| 中文天堂在线官网| 男男h啪啪无遮挡| 搡老岳熟女国产| 十八禁人妻一区二区| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| 操美女的视频在线观看| 在线观看www视频免费| 人人妻人人澡人人爽人人夜夜| 一边亲一边摸免费视频| 欧美 日韩 精品 国产| 久久人妻熟女aⅴ| 亚洲av电影在线观看一区二区三区| 久久久久久久国产电影| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 亚洲精品,欧美精品| 久久精品国产综合久久久| 久久精品熟女亚洲av麻豆精品| 国产精品一国产av| 亚洲国产精品成人久久小说| 久久久国产精品麻豆| 亚洲国产中文字幕在线视频| 日日啪夜夜爽| 国产一区二区三区av在线| 国语对白做爰xxxⅹ性视频网站| 国产精品国产av在线观看| 亚洲美女视频黄频| 热re99久久精品国产66热6| 色网站视频免费| 激情五月婷婷亚洲| tube8黄色片| 免费人妻精品一区二区三区视频| 超碰成人久久| 亚洲成色77777| 精品一区在线观看国产| 91成人精品电影| 在线观看免费日韩欧美大片| netflix在线观看网站| 80岁老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆 | 国产97色在线日韩免费| 国产精品蜜桃在线观看| 又大又爽又粗| 在现免费观看毛片| 黑丝袜美女国产一区| 成人影院久久| 精品一区二区三卡| 桃花免费在线播放| 啦啦啦啦在线视频资源| 欧美精品一区二区大全| 热re99久久国产66热| 少妇被粗大的猛进出69影院| 亚洲国产欧美在线一区| 亚洲伊人色综图| 亚洲一区二区三区欧美精品| 日本欧美国产在线视频| 在线天堂中文资源库| 午夜久久久在线观看| 嫩草影视91久久| 亚洲精品视频女| 一区二区三区乱码不卡18| 亚洲第一青青草原| 国产精品 欧美亚洲| 99久久人妻综合| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 一本一本久久a久久精品综合妖精| 成年女人毛片免费观看观看9 | 欧美av亚洲av综合av国产av | 精品亚洲乱码少妇综合久久| 91aial.com中文字幕在线观看| 五月天丁香电影| 大香蕉久久网| 国产精品一区二区在线不卡| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 国产精品嫩草影院av在线观看| 十八禁网站网址无遮挡| 欧美精品av麻豆av| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 18禁动态无遮挡网站| 日韩av在线免费看完整版不卡| 咕卡用的链子| 久久女婷五月综合色啪小说| 免费观看性生交大片5| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 在线亚洲精品国产二区图片欧美| 亚洲av国产av综合av卡| 国产精品99久久99久久久不卡 | 免费日韩欧美在线观看| 黑丝袜美女国产一区| 午夜免费鲁丝| 国产日韩欧美在线精品| 国产97色在线日韩免费| 人人妻,人人澡人人爽秒播 | 欧美中文综合在线视频| 国产又爽黄色视频| 少妇的丰满在线观看| 久久久久久久国产电影| 美女主播在线视频| 老司机靠b影院| 麻豆av在线久日| 亚洲自偷自拍图片 自拍| 欧美激情极品国产一区二区三区| 综合色丁香网| 国产毛片在线视频| 久久影院123| 久久精品熟女亚洲av麻豆精品| 免费不卡黄色视频| 亚洲国产精品国产精品| 少妇人妻 视频| 亚洲av综合色区一区| 一级,二级,三级黄色视频| 免费在线观看视频国产中文字幕亚洲 | 老司机在亚洲福利影院| 制服丝袜香蕉在线| 2021少妇久久久久久久久久久| 色94色欧美一区二区| 91老司机精品| 热99久久久久精品小说推荐| 黑人猛操日本美女一级片| 午夜影院在线不卡| 久久久久视频综合| 午夜福利视频在线观看免费| 成人国语在线视频| 丝袜喷水一区| 日韩大片免费观看网站| 久久久国产欧美日韩av| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 最近中文字幕2019免费版| 日韩制服骚丝袜av| 在线 av 中文字幕| 亚洲成人国产一区在线观看 | 国产成人精品久久久久久| 多毛熟女@视频| 国产一级毛片在线| 夫妻性生交免费视频一级片| 汤姆久久久久久久影院中文字幕| 爱豆传媒免费全集在线观看| 美国免费a级毛片| 国产成人欧美| 精品国产乱码久久久久久男人| 亚洲国产中文字幕在线视频| 久久久久久免费高清国产稀缺| 亚洲精品美女久久av网站| 69精品国产乱码久久久| 妹子高潮喷水视频| 波多野结衣一区麻豆| 天堂俺去俺来也www色官网| 久久天躁狠狠躁夜夜2o2o | 午夜福利乱码中文字幕| 国产男女内射视频| 成人午夜精彩视频在线观看| 国产亚洲午夜精品一区二区久久| 国产日韩欧美亚洲二区| 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| 成人国产av品久久久| 美女扒开内裤让男人捅视频| 在线观看www视频免费| 最近中文字幕2019免费版| 国产片内射在线| 亚洲伊人色综图| 黄频高清免费视频| 午夜老司机福利片| 大片免费播放器 马上看| 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| √禁漫天堂资源中文www| 在线观看人妻少妇| 亚洲一码二码三码区别大吗| 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆| 精品国产乱码久久久久久男人| www.熟女人妻精品国产| 久久久久久久大尺度免费视频| 国产熟女欧美一区二区| 欧美精品av麻豆av| 国产在线一区二区三区精| 亚洲精品日韩在线中文字幕| 2021少妇久久久久久久久久久| 久久av网站| 久久久久视频综合| 999精品在线视频| 亚洲第一区二区三区不卡| 丰满迷人的少妇在线观看| 亚洲少妇的诱惑av| 免费高清在线观看视频在线观看| 热re99久久国产66热| 国产精品久久久人人做人人爽| 亚洲色图 男人天堂 中文字幕| 在现免费观看毛片| 九草在线视频观看| 欧美国产精品一级二级三级| 一区二区三区激情视频| 国产午夜精品一二区理论片| 少妇的丰满在线观看| 一边摸一边做爽爽视频免费| 黄色视频不卡| 一级毛片电影观看| 蜜桃国产av成人99| 免费观看av网站的网址| 免费av中文字幕在线| 晚上一个人看的免费电影| 天天添夜夜摸| 国产视频首页在线观看| 亚洲国产精品国产精品| 免费高清在线观看视频在线观看| 午夜福利视频精品| 国产精品国产av在线观看| 七月丁香在线播放| 国产精品免费视频内射| 岛国毛片在线播放| 欧美日韩视频精品一区| 大片免费播放器 马上看| 少妇精品久久久久久久| 日韩av在线免费看完整版不卡| 精品一品国产午夜福利视频| 黑人猛操日本美女一级片| 国产成人午夜福利电影在线观看| 人人澡人人妻人| 日本黄色日本黄色录像| 嫩草影院入口| 欧美日韩一区二区视频在线观看视频在线| 男人爽女人下面视频在线观看| 男的添女的下面高潮视频| 久热爱精品视频在线9| 午夜日本视频在线| 激情视频va一区二区三区| 国产精品无大码| 中文字幕亚洲精品专区| 色婷婷av一区二区三区视频| 在线观看一区二区三区激情| svipshipincom国产片| 亚洲精品一二三| 人人妻人人添人人爽欧美一区卜| videosex国产| 在现免费观看毛片| 日韩大码丰满熟妇| 中文字幕亚洲精品专区| 成人国产av品久久久| 中文字幕人妻熟女乱码| 国产野战对白在线观看| 国产男女内射视频| 国产成人一区二区在线| av卡一久久| 欧美激情高清一区二区三区 | 国产一区二区三区av在线| 纯流量卡能插随身wifi吗| 亚洲伊人久久精品综合| 精品一区二区三卡| 亚洲国产精品一区三区| 大香蕉久久网| 2021少妇久久久久久久久久久| 欧美精品人与动牲交sv欧美| 婷婷色av中文字幕| 亚洲伊人久久精品综合| 国产精品香港三级国产av潘金莲 | 亚洲欧美激情在线| a级毛片在线看网站| 性色av一级| 操出白浆在线播放| 国产精品久久久av美女十八| 国产人伦9x9x在线观看| 五月开心婷婷网| 亚洲国产最新在线播放| 老鸭窝网址在线观看| 丰满饥渴人妻一区二区三| 99香蕉大伊视频| 精品亚洲成a人片在线观看| 久久99精品国语久久久| 国产精品免费视频内射| 观看av在线不卡| 男女午夜视频在线观看| 免费av中文字幕在线| 欧美人与善性xxx| 久久 成人 亚洲| 中文字幕人妻丝袜制服| 午夜日韩欧美国产| 五月开心婷婷网| 香蕉国产在线看| 自拍欧美九色日韩亚洲蝌蚪91| 妹子高潮喷水视频| 香蕉国产在线看| 久久久久网色| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区免费开放| 久久久久久免费高清国产稀缺| 黄片无遮挡物在线观看| 中文乱码字字幕精品一区二区三区| 看免费成人av毛片| 欧美久久黑人一区二区| 日本欧美视频一区| 一级片'在线观看视频| 一级爰片在线观看| 国产极品粉嫩免费观看在线| 美女国产高潮福利片在线看| 色网站视频免费| 午夜久久久在线观看| av视频免费观看在线观看| 在线观看免费午夜福利视频| 国产欧美日韩一区二区三区在线| 看非洲黑人一级黄片| 激情视频va一区二区三区| 欧美亚洲 丝袜 人妻 在线| 午夜激情av网站| 纵有疾风起免费观看全集完整版| 婷婷色综合www| av.在线天堂| 日韩欧美精品免费久久| 国产有黄有色有爽视频| netflix在线观看网站| 亚洲av电影在线进入| 在线观看免费高清a一片| 国产在线免费精品| 日日爽夜夜爽网站| 国产一区二区三区综合在线观看| 亚洲av电影在线观看一区二区三区| 亚洲视频免费观看视频| 国产片内射在线| 欧美老熟妇乱子伦牲交| av一本久久久久| 热99久久久久精品小说推荐| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| 男女国产视频网站| 亚洲欧美成人精品一区二区| 亚洲国产精品一区三区| 人妻一区二区av| 王馨瑶露胸无遮挡在线观看| 色精品久久人妻99蜜桃| 熟妇人妻不卡中文字幕| 欧美另类一区| 成人免费观看视频高清| 9热在线视频观看99| 波多野结衣一区麻豆| 搡老岳熟女国产| 色视频在线一区二区三区| 国产伦人伦偷精品视频| 天堂俺去俺来也www色官网| 桃花免费在线播放| 欧美黄色片欧美黄色片| 无限看片的www在线观看| 又大又爽又粗| 男女午夜视频在线观看| 丰满迷人的少妇在线观看| 人体艺术视频欧美日本| 亚洲欧美激情在线| 中国三级夫妇交换| 在线精品无人区一区二区三| 老司机亚洲免费影院| 一区在线观看完整版| 精品一区二区三卡| 日日摸夜夜添夜夜爱| 母亲3免费完整高清在线观看| 男人舔女人的私密视频| www.熟女人妻精品国产| 夫妻性生交免费视频一级片| 国产日韩欧美视频二区| av片东京热男人的天堂| 人妻一区二区av| 2021少妇久久久久久久久久久| 如日韩欧美国产精品一区二区三区| 一级爰片在线观看| 免费观看性生交大片5| 纵有疾风起免费观看全集完整版| 天天躁夜夜躁狠狠躁躁| 久久久精品94久久精品| 大陆偷拍与自拍| 国产亚洲一区二区精品| av又黄又爽大尺度在线免费看| 老汉色av国产亚洲站长工具| av女优亚洲男人天堂| 又大又黄又爽视频免费| 国产淫语在线视频| 午夜福利视频精品| 亚洲精品久久久久久婷婷小说| 国产亚洲精品第一综合不卡| 久久综合国产亚洲精品| 性高湖久久久久久久久免费观看| 亚洲欧美清纯卡通| 日韩av不卡免费在线播放| 精品亚洲乱码少妇综合久久| 精品一区在线观看国产| 亚洲国产日韩一区二区| 美国免费a级毛片| 国产黄色免费在线视频| 午夜福利视频在线观看免费| 亚洲精品久久午夜乱码| 老鸭窝网址在线观看| 国产乱人偷精品视频| 久久综合国产亚洲精品| 午夜福利网站1000一区二区三区| 熟妇人妻不卡中文字幕| 久久久久人妻精品一区果冻| 51午夜福利影视在线观看| 久久久久久久国产电影| 国产高清国产精品国产三级| 天堂中文最新版在线下载| 纯流量卡能插随身wifi吗| 久久久精品94久久精品| 中文字幕另类日韩欧美亚洲嫩草| 国产成人欧美| 欧美少妇被猛烈插入视频| 国产有黄有色有爽视频| 国产精品蜜桃在线观看| 激情五月婷婷亚洲| 国产伦人伦偷精品视频| 亚洲专区中文字幕在线 | 日韩一区二区视频免费看| 久久精品国产综合久久久| 国产一区二区三区av在线| h视频一区二区三区| 丰满少妇做爰视频| av免费观看日本| 午夜免费男女啪啪视频观看| 日韩免费高清中文字幕av| 中文字幕人妻熟女乱码| 国产精品国产av在线观看| 国产精品久久久久成人av| 99热国产这里只有精品6| 亚洲成人国产一区在线观看 | 日韩一区二区视频免费看| 黄色 视频免费看| 一级毛片电影观看| 肉色欧美久久久久久久蜜桃| 中文字幕亚洲精品专区| 久久午夜综合久久蜜桃| 成人毛片60女人毛片免费| 亚洲av成人不卡在线观看播放网 | 国产片内射在线| 51午夜福利影视在线观看| www.自偷自拍.com| 观看美女的网站|