• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧化鈦-氧化石墨插層結(jié)構(gòu)及其光催化性能

    2010-03-06 04:44:32賀蘊(yùn)秋陳小剛胡棟虎李林江季伶俐
    物理化學(xué)學(xué)報(bào) 2010年3期
    關(guān)鍵詞:氧化鈦插層材料科學(xué)

    張 瓊 賀蘊(yùn)秋 陳小剛 胡棟虎 李林江 尹 婷 季伶俐

    (同濟(jì)大學(xué)材料科學(xué)與工程學(xué)院,上海 200092)

    Titanium dioxide(TiO2)has attracted great attention as an ideal photocatalyst,due to its many merits such as high efficiency,low cost,safety,chemical stability and friendly to environment[1-3],which has been widely used in the purification of environmental air and water samples,deodorization,and antibatcterial and self-cleaning coatings[4-6].The photocatalytic activity of TiO2depends on its crystal phase,crystallite size and crystallinity.It is known that anatase-form of TiO2crystallite with small crystallite size and high crystallinity exhibits better photocatalytic property[7].The overall efficiency of photon utilization by TiO2is however limited by electron-hole recombination,photon scattering and so on[8].

    In recent years,great efforts have been made to develop carbon nanotubes(CNTs)/TiO2or C60/TiO2nanocomposite[9-13].The coupling of TiO2with CNTs or C60has been shown to provide a synergistic effect which can enhance the overall efficiency of a photocatalytic process.Gao et al.[10]prepared CNTs/TiO2nanocomposite by a surfactant wrapping sol-gel method,and evaluated its activity towards the photocatalytic degradation of a model organic substance(methylene blue)in aqueous suspensions.Results show that CNTs/TiO2nanocomposite owns a twice rate enhancement with respect to TiO2alone.Oh et al.[11]synthesized two kinds of nanocarbon/TiO2composite photocatalysts,employing CNTs and C60as nanocarbon sources and titanium(IV) n-butoxide(TNB)as titanium dioxide source.CNTs/TiO2nanocomposite owns much better efficiency,because it showed homogenous distributions with only individual CNTs,covered with TiO2and without any aggregates between each other.Gao summarized several reasons for the superior photocatalytic properties of nanocarbon/TiO2composite:(I)the higher surface area of the composite providing a higher adsorption capacity of reactive species;(II)the formation of nanocarbon/TiO2heterojunctions could reduce the recombination rate of photoinduced electrons and holes;(III)the possible shift of the apparent Fermi level to more positive values of the nanocarbon/TiO2nanocomposite as compared to pure TiO2,therefore allowing the utilization of longer wavelength photons;(IV)the absorption of photons by the bare nanocarbon surface injecting electrons into the TiO2conduction band and triggering the for-mation of reacting radicals(superoxide and hydroxyl radicals).

    Graphite oxide(GO)is a non-stoichiometric material in which the lamellar structure of graphite is conserved[14].It is obtained through the reaction of graphite with strong oxidants such as potassium permanganate in concentrated sulfuric acid[15].The process of strong oxidation makes many oxygen-containing groups such as carboxyl(C=O),hydroxyl(C—OH),epoxide(C—O—C) covalently attached to its layers[16].In addition,the spatial distribution of functional groups on the carbon skeleton is also different.The epoxide and hydroxyl groups are near each other, and the carboxyl is more likely to be located at the edges of graphite oxide.These oxygen-containing groups embedded in carbon sheets in GO lamellae make the interlayer distance increase from 0.335 nm of the starting graphite to 0.7-1.0 nm[17]and also enable it to exhibit rich intercalation chemistry[18].

    Much interest has been focused on nano-scale materials based on layered GO and conducting polymers[19-23]since the resulting nanocomposite could possess physical properties derived synergistically from both components,such as enhancement in electrical conductivity and mechanical strength[15].Higashika et al.[22]firstly prepared aniline-GO composite,and polyaniline-GO composite was successfully synthesized by using an in-situ polymerization method.However,Bissessur et al.[15]demonstrated that polyanilines could be directly inserted into GO without preparation of precursor intercalation compounds.Thesynthetic methodology for the insertion could be extended to other conductive polymers such as polypyrrole[23].

    In this study,TiO2-graphite oxide(TiO2-GO)composite has been successfully prepared at low temperature(80℃)with graphite oxide(GO)and titanium sulfate(Ti(SO4)2)as initial reactants. Plenty of oxygen-containing groups located in the interlayer of GO were consumed during the nucleation and growth of TiO2crystallites,which means GO has been partly reduced.In addition,the activity of TiO2-GO towards the photocatalytic degradation of methyl orange in aqueous suspensions is much more efficient than that of Degussa P25 powder.In the end,we also discuss the synthesis mechanism and the main reasons responsible for the superior photocatalytic properties of TiO2-GO.

    1 Experimental

    1.1 Materials

    Reagents included concentrated sulfuric acid,lithium hydroxide,sodium hydroxide,potassium hydroxide were of analytic purity except titanium sulfate(chemical pure),purchased from Sinopharm Chemical Reagent Co.,Ltd.(SCRC)and without further purification before utilization.High purity deionized water made ourselves was used as solvent.GO was prepared by modified Hummer method,the previous work carried out by our group[24].P25 powders were purchased from Evonik Degussa.

    1.2 Preparation of TiO2-GO

    4.8 g Ti(SO4)2was added into 180 mL of 1.25 mol·L-1H2SO4solution to reach a Ti(SO4)2acid solution.

    GO was exfoliated by two methods.First one,exfoliating GO by H2O,a colloidal solution of GO was obtained by mixing 10 mL GO with 10 mL H2O and sonicating for 30 min.Second one was specialized by exfoliating GO by different alkalies. Like-wise,a colloidal solution GO was obtained by neutralizing 10 mL of GO with 10 mL of 0.2 mol·L-1alkaline solution (KOH,NaOH and LiOH)and sonicating for 30 min.

    Exfoliated GO solution was added immediately into Ti(SO4)2acid solution which was preheated to 80℃in hot water bath. The resulting solution was stirred at 80℃for 2 h,and the dark precipitate of TiO2-GO was filtered out,washed with deionized water repeatedly and dried at 80℃for 12 h.

    1.3 Photocatalytic experiments

    The photocatalytic activity of the as-prepared samples was characterized under UV light irradiation using methyl orange (MO)as a target.The process was as following:50 mg of sample was dispersed in 50 mL of aqueous MO solution with concentration of 20 mg·L-1.Fresh air was bubbled for the purpose of stirring and oxygen supply.High pressure Hg lamp(250 W, λ≥365 nm)was used as a UV source.Suspensions were collected every 15 min to monitor the degradation of MO.The transmittance(Ti)of the centrifuged suspensions was measured at 483 nm.Absorbance(Ai)was obtained by Lambert-Beer law (Ai=2-lgTi).And then photocatalytic rate(Di)was available according the following equation:

    where A0is the absorbance of MO solution at 483 nm before exposing under UV light.

    1.4 Characterization

    Powder X-ray diffraction(XRD)patterns were recorded on a Rigaku D/Max-rB12KW X-ray diffractometer in the diffraction angle range(2θ)from 5°to 60°at a rate of5(°)·min-1using Cu Kαradiation(λ=0.15418 nm).Fourier transform infrared(FT-IR) spectroscopy was recorded on a Bruker VECTOR22 FTIR spectrometer using KBr pellets.Chemical bonding between the functional groups and carbon atoms was confirmed by X-ray photoelectron spectroscopy(XPS,PHI 5000C ESCA System).The room temperature photoluminescence(PL)was measured by a 970CRT-luminescence spectrophotometer,using the 338 nm excitation line of a Xe lamp.The morphology of the as-prepared samples was observed using a field emission scanning electron microscope(FE-SEM,Quanta 200 FEG).

    2 Results and discussion

    2.1 XRD analysis

    Fig.1(a-d)shows XRD data of TiO2-GO nanocomposite,in which GO as an intercalation matrix is exfoliated by different alkali or H2O.TiO2crystallites in the intercalated structure consist of mixed anatase and rutile phase,in which anatase phase shows more content.In this figure,(101),(004),(200)crystal surface diffraction peaks that marked with a square shape are assigned to anatase,and the other four characteristic diffraction peaks of (110),(101),(111),(211)which marked with a round shape are assigned to rutile phase.The average crystal size of TiO2in TiO2-GO under different conditions is about 9 nm,in which there is no recognizable difference,as shown in Table 1.Furthermore,a very slight diffraction peak at 2θ=11°belongs to (002)crystal of GO.Compared to(002)diffraction peak of GO in Fig.2(e),the diffraction peak intensity of TiO2-GO at 2θ=11° is obviously reduced,and the X ray diffraction peak of GO(100) crystal at 2θ=42°is totally disappeared.The faint diffraction peak of GO which still existed in the XRD pattern shows that asmall quantity of GO was not exfoliated thoroughly,which may not play a part in the intercalating process of TiO2-GO.Finally, compared with the products that GO exfoliated by H2O and by different alkalies,the diffraction peak of GO(002)in the former situation is much more apparent,which indicates that alkali has an ability to exfoliate GO more effectively.To conclude,these results explained that layered GO pretreated with alkaline solution had been exfoliated to a great extent,and then the nucleation and growth of TiO2crystallites took place in the lamellar structure of GO,finally formed TiO2-GO nanocomposite.

    Table 1 Average crystal size of TiO2-GO and GO samples under different conditions

    In addition,Fig.1(f)depicts XRD patterns of TiO2-GO nanocomposite which was stored for 8 months and reused for 3 times.The average crystal size of TiO2in TiO2-GO is 9.3 nm. Compared with Fig.1(e),no changes can be found,which confirms that the crystal structure of TiO2-GO remains stable even stored for 8 months and reused for 3 times.

    2.2 FT-IR analysis

    To determine functional groups existed in TiO2-GO,FT-IR spectroscopy was performed.Fig.2(A)shows FT-IR spectra of TiO2-GO samples a-d in Table 1.FT-IR spectra of GO(e)and sample b are depicted in Fig.2(B).

    Fig.1 XRD patterns of TiO2-GO and GO samplesGO exfoliated by(a)0.2 mol·L-1KOH,(b)0.2 mol·L-1NaOH,(c)0.2 mol·L-1LiOH,(d)H2O;(e)GO;(f)sample b stored for 8 months,reused for 3 times; GO:graphite oxide

    Fig.2 FT-IR spectra of TiO2-GO and GO samples(a-e)corresponding to samples(a-e)in Table 1.

    The peak positions of all the spectra in the TiO2-GO samples in Fig.2 are very similar.A broad absorption band at around 3410 cm-1,and two small absorption bands at around 1396,and 1204 cm-1are observed in all the samples,which belong to the stretching and deformation vibration of structural hydroxyl groups,respectively.The sharp absorption band located at 1630 cm-1is assigned to the deformation vibration of adsorbed water molecules.In addition,the absorption band at around 1052 and 995 cm-1is assigned to the vibration of C—O—C group.Compared the FT-IR spectra of TiO2-GO with that of GO in Fig.2(B), new absorption band appeared at 586 and 1125 cm-1which correspond to stretching vibration of Ti—O with shorter bond length and stretching vibration of S=O bond possibly formed due to Ti(SO4)2as a raw material in the reaction process.Furthermore,another difference between TiO2-GO and GO in the FT-IR spectra is at around 1726 cm-1[14,25-26],which is assigned to stretching vibration of conjugated C=O or COOH located at the edge of GO,the absorption band of TiO2-GO is obviously suppressed which may be attributed to the consumption of most C=O in the process of the nucleation and growth of TiO2crystallites.

    2.3 XPS analysis

    Fig.3 XPS spectra of C 1sThe spectra are deconvoluted into five peaks of sp2:C—OH,C—O—C,C=O,and COOH. (a)graphite;(b)graphite oxide;(c)sample d(d)sample b;(e)sample f

    Table 2 XPS data of binding energies(EB)and relative area(S)for GO and TiO2-GO samples deconvoluted into five peaks

    Fig.3(a-e)showsXPSC 1s ofgraphite(G),graphite oxide(GO), sample d or sample b and sample f in Table 1,same as follow.In Fig.3(a),the sp2-hybridized carbon peak appeared near 284.6 eV with a well-known asymmetric line shape.A few addi-tional peaks after oxidation developed due to the functional groups. The spectra were deconvoluted into five peaks of sp2(C—C, 285.1 eV),hydroxyl(C—OH,286.1 eV),epoxide(C—O—C, 287.3 eV),conjugated carboxyl(C=O,288.3 eV)and carboxyl (COOH,290.0 eV)groups in the graphite oxide[17,26-27],which are shown in Fig.3(b).Figs.3(c)and 3(d)show the XPS C 1s of samples d and b,and the shape of five peaks mentioned above suffered some degree of change.Table 2 shows the XPS data of binding energies and relative area percentages for GO and TiO2-GO samples deconvoluted into five peaks.Compared to GO,the area percentages of C=O in TiO2-GO samples reduced sharply.To sample d,with the decline of C=O,the content of C—C evidently increased.This can be interpreted by the nucleation and growth of TiO2in GO layer,where C=O was consumed abundantly and partly reduced to C—C.Additionally, to sample b,the content of C=O decreased much more evidently while COOH increased slightly.We speculate that as GO was exfoliated by NaOH,the lamella of GO broke into smaller flakes along with the increase of edge area of GO layer,which caused much more content of C=O and COOH.However,C=O had priority to react in the formation of TiO2which made it decrease sharply.On the other hand,as the total reaction environment is acidic,weakly acidic COOH was protected from no reacting preferentially which kept COOH with an upper content.Moreover,in the XPS data of sample b,the area percentage of C—OH enhanced obviously while the content of C—C decreased sharply,which can be explained that after the exfoliation of GO by NaOH,the colloidal GO/NaOH was alkaline and large amounts of OH attached to the carbon skeleton which finally leaded to the increase of C—OH and the decline of C—C groups.

    Compared to sample b,the content of C—C in sample f,Fig.3 (e)evidently increased while other oxygen-containing groups decreased respectively.We deduced that UV light partly reduced the oxygen-containing groups during the photodegradation process,which is also consistent with the fact that the molar ratio of C/O in sample f increased from 1.08 to 1.40 compared to that of fresh sample.

    2.4 Photoluminescence analysis

    The PL emission spectra(excitation at 338 nm)of P25,sample b and sample d at room temperature are shown in Fig.4(a,b,d). We introduced the mixture of P25 and graphite(P25-graphite, Fig.4(c))as a comparison to evaluate the effects of the absorbance of graphite.All samples emit strongly in the UV with a band centered at 380 nm,corresponding to the excitonic emission[28].The green band around 476 nm is induced by the electron transition from the level of the ionized oxygen vacancies to the valence band[29-30].

    Fig.4 PL spectra of the as-prepared samples under 338 nm UV irradiation(a)P25;(b)sample b;(c)P25-graphite;(d)sample d

    Compared to P25,the UV emission of sample b(Fig.4(b))and sample d(Fig.4(d))show a significant decline,which could be attributed to two possible reasons:the transfer of photoinduced electron and the absorbance of graphite.The PL spectrum of the mixture of P25 and graphite(Fig.4(c))is obviously weaker than sample b but slightly stronger than sample d.To the former situation,it should have shown the same UV emission between P25-graphite and sample b theoretically.So we deduce that nano P25 powders and electroconductive graphite flakes might have some close contact and the transfer of photoinduced electron might also took place in P25-graphite which caused the decrease of the UV emission.On the other hand,the really high content of C—OH groups and relatively low C—C groups,as shown in XPS spectra(Fig.3),resulted in the poor electroconductibility of GO in sample b which suppressed the transfer of photoinduced electron.However,the relatively high content of C—C groups and the better contact between the interface of nano TiO2particles and reduced GO flakes in sample d effectively promoted the photoelectron transfer process.

    In conclusion,it is clear that the decline of the UV emission of sample b,compared with P25,totally resulted from the absorbance of graphite.As to sample d,it can be attributed to the combined action of the absorbance of graphite and the transfer of photoinduced electron.

    2.5 FE SEM analysis

    Fig.5(a,c,e)reveals the SEM images of sample d,which parallel to plane(a),and sample b,which parallel to plane(c)and perpendicular to plane(e).Fig.5(b,d,f)shows the magnified morphology of the square area in(a),(c)and(e),respectively.

    Compared samples d with b(Figs.5(a)and 5(c)),we found that both of them showed layered structure,but GO was exfoliated more thoroughly by NaOH due to the obvious enlargement of the interlayer distance of GO lamella(shown in the illustration, Fig.5(c)).And the rolling structure(shown by the white arrow) found at the brink of GO lamella caused by uneven stress around the layer indicates that the formed GO lamella is very thin, which also explaines the better exfoliating capability of NaOH to GO,compared to that of H2O,promotes the formation of the lamellar-structure TiO2-GO.We can infer that as GO was exfoliated by NaOH,thinner GO layers increased and much more positions for the nucleation and growth of TiO2crystallites inside and outside the GO layer appeared,finally formed the intercalated structure with well-distributed TiO2particles.

    Fig.5 FESEM images of TiO2-GO(a)sample d;(c),(e)sample b;(b),(d),and(f)are magnified morphology of the square area in(a),(c),and(e),respectively.

    In the magnified morphology of the square area in Figs.5(a) and 5(c),Figs.5(b)and 5(d),huge amounts of nano TiO2particles can be found growing on the surface of GO flakes.By comparison,GO lamella appeared in Fig.5(d)is broader than that in Fig.5(b),and the nucleation and growth of TiO2crystallites also took place in such lamella.We speculate that the broader GO layers might be due to the connection of the GO flakes during the reaction between C=O located at the edge of GO and—Ti—O—Ti—induced by the hydrolysis of Ti(SO4)2.

    From the image of TiO2-GO in Fig.5(e,f),we can clearly observe the distribution status of TiO2nanoparticles inside the interlayer of broad GO lamella,in which fine TiO2particles distributed regularly and homogeneously.

    2.6 Photocatalytic properties

    Fig.6 Photocatalytic properties of P25 powders and TiO2-GO samples exfoliated by different alkalies, and self-degradation rate of MO(A)(B)is magnification of the oval area in figure(A);D:degradation

    Fig.6(A)shows the photocatalytic properties of TiO2-GO samples under different conditions contrasted with Degussa P25 powder,in which methyl orange(MO)played a role of a target degradation product.Fig.6(B)isthe magnification ofthe oval area in Fig.6(A).The results show that the photocatalytic properties of TiO2-GO composite(GO exfoliated by alkalies)is magnificent.Especially to the case of GO exfoliated by KOH,the pho-todegradation efficiency(η)to MO in 15 min is up to 87.9%, which can also be expressed as η=1.17 mg·min-1·g-1(η=1 mg· D(%)·1000)/(15 min·50 mg).As to GO exfoliated by NaOH and LiOH,the efficiency to MO in 15 min is 87.2%(η=1.16 mg· min-1·g-1)and 86%(η=1.15 mg·min-1·g-1).The photocatalytic properties of TiO2-GO composite(GO exfoliated by H2O)is slightly worse,as the data shown in Fig.6(A),66.7%in 15 min,η= 0.89 mg·min-1·g-1.Although Degussa P25 powder can degrade 91.3%MO in 60 min,such value in 15 min is only 38.4%,η= 0.51 mg·min-1·g-1,considerably lower than that of TiO2-GO composite.This may be caused by two factors.First,TiO2-GO composite has a better adsorption capacity than P25 powder which makes TiO2particles have higher probabilities to contact with MO.Second,the average crystal size of TiO2in TiO2-GO under different conditions is about 9 nm while the grain size of Degussa P25 powders comes up to 21nm.Contrasted with P25, larger specific surface area of TiO2in intercalation composite certainly improves the photodegradation efficiency.In addition, the properties of TiO2-GO composite are superior compared to that of the composite in which GO was exfoliated by H2O.From the test techniques above,these results can be explained that GO was exfoliated to a better degree,as GO was exfoliated by alkali, thinner GO layers increased and much more positions for the nucleation and growth of TiO2crystallites inside and outside the GO layer appeared,finally formed the intercalated structure with well distributed TiO2particles.In this case,when the composite is used to degrade methyl orange,more MO molecules can contact with the homogeneously distributed TiO2nanoparticles.Under UV light irradiation,more methyl orange molecules will be degraded and the photodegradation efficiency of the sample will be raised effectively.Moreover,the efficiency of TiO2-GO composite in which GO was exfoliated by different alkali differs slightly,as is shown in Fig.6(B),and the reason is same as that talked above.Owing to the different size of hydrated ion radius: K+<Na+<Li+,the hydrated ion of K+can diffuse into the interlayer of GO more easily,and then the hydrated ion substitute H+in GO layer and form stronger bond with GO.In consequence,among three alkali,KOH can exfoliate GO to a best degree and TiO2-GO composite in this case shows the best efficiency.

    Fig.7 Adsorption of P25 powder and TiO2-GO composites under different conditions

    Fig.6(A)also describes the self-degradation data of MO solution under UV light.After irradiation for 60 min,the degradation rate of MO is only 3.6%.Fig.7 shows the adsorption properties of TiO2-GO composites and Degussa P25 powder.When the suspensions of catalysts and MO were placed in the shadows for 15 min,the adsorption data of TiO2-GO(alkali),TiO2-GO(H2O) and P25 powder are up to 17%,14%and 1.5%,which is consistent with the conclusion discussed above.GO has a better adsorption capacity to MO than TiO2particles in TiO2-GO composite,which favorites the adjacent TiO2particles that have more chance to contact with the MO molecules and thereby increases the photodegradation efficiency.

    The photocatalytic properties and adsorption properties of TiO2-GO sample f(see Table 1)are shown in Fig.8.When TiO2-GO was reused for three times,the degradation rates of the composite in initial 15 min of each time are 68.2%(η=0.91 mg·min-1· g-1),64.5%(η=0.86 mg·min-1·g-1)and 59.2%(η=0.79 mg· min-1·g-1)respectively.The efficiency decline compared with the fresh sample(86%,η=1.16 mg·min-1·g-1)can be attributed to the agglomeration factor of TiO2particles in the process of storage and continuous use.And the adsorption rates of sample f remain little change when contrasted to the fresh sample.

    2.7 Formation mechanism of TiO2-GO composite

    Fig.9 elaborates the formation mechanism of TiO2-GO in which GO was exfoliated by alkali.Firstly,graphite(a)was oxidized by strong oxidants such as KMnO4and concentrated H2SO4.The process of strong oxidation induced carboxyl(C= O),hydroxyl(C—OH),epoxide(C—O—C)covalently attached to its layers,which caused the enlargement of the interlayer distance of GO(b).When GO was exfoliated by NaOH,the hydrated sodium ions diffused into the interlayer,part of OH groups attached to the carbon skeleton,the GO lamella broke into flakes and the interlayer distance of GO increased once more(c).After adding the colloidal GO exfoliated by NaOH into the titanium sulfate acid solution,—Ti—O—Ti—chains induced by the hydrolysis of Ti(SO4)2diffused into the interlayer of exfoliated GO and substituted the alkali metal ions existed in the interlayer(d). The substitution mechanism might be due to the difference of the ionic charge,as known to all,the ion exchange capacity of high valence cation is stronger than that of low valence cation. The electric charge of—Ti—O—Ti—is positive divalent and the concentration of—Ti—O—Ti— in the reaction environment is really high (0.1 mol·L-1vs 0.05 mol·L-1alkali ions). Based on these facts,it is practical to substitute alkali metal ions with—Ti—O—Ti—.After—Ti—O—Ti— diffused into GO layer,the nucleation and growth of TiO2crystallites took place subsequently(e).Most—Ti—O—Ti—would react with conjugated carboxyl(C=O)located at the edge of GO layer and form TiO2crystallites,a small proportion of—Ti—O—Ti— chains may be consumed due to the reaction with hydroxyl(C—OH)or epoxide(C—O—C).On the other hand,the exfoliated broken GO flakes will connect together as—Ti—O—Ti—react with conjugated carboxyl(f),then TiO2-GO intercalation composite was finally synthesized.

    Fig.8 Photocatalytic properties and adsorption of sample f

    Fig.9 Formation mechanism of TiO2-GO composite

    3 Conclusions

    (1)TiO2-graphite oxide(TiO2-GO)composite has been successfully prepared at low temperature(80℃)with graphite oxide(GO)and titanium sulfate(Ti(SO4)2)as initial reactants.GO was firstly exfoliated by alkali or H2O,and then mixed with the titanium sulfate solution,the nucleation and growth of TiO2crystallites finally took place in the interlayer of exfoliated GO.

    (2)Under the irradiation of UV light,the photodegradation efficiency of TiO2-GO(alkali)and TiO2-GO(H2O)to methyl orange in 15 min is up to 87.9%(η=1.17 mg·min-1·g-1)and 66.7% (η=0.89 mg·min-1·g-1),respectively.Compared with Degussa P25 powder,38.4%in 15 min,η=0.51 mg·min-1·g-1,these intercalation composites own much better efficiency.

    (3)There are two main reasons for the much better photodegradation efficiency of TiO2-GO composite,compared to P25 powder.The first is the better adsorption capacity of TiO2-GO composite and the second is the smaller average grain size of TiO2crystallites(about 9 nm)which may be due to the limit of the unique layered structure of TiO2-GO.

    (4)As GO is exfoliated by alkali,thinner GO layers increase and much more positions for the nucleation and growth of TiO2crystallites inside and outside the GO layer appear.In this case, when the composite is used to degrade methyl orange,more MO molecules can contact with the homogeneously distributed TiO2nanoparticles at same time.Under UV light irradiation,more methyl orange molecules will be degraded and the photodegradation efficiency of the sample will be more effective than that of TiO2-GO(H2O)composite.

    1 Kim,T.Y.;Lee,Y.H.;Park,K.H.Res.Chem.Intermed.,2005, 31:343

    2 Meacock,G.;Taylor,K.D.A.;Knowles,M.J.Sci.Food Agric., 1997,73:221

    3 Kim,S.J.J.Sol-Gel Sci.Technol.,2001,22:63

    4 Ihara,T.;Miyoshi.M.J.Mater.Sci.,2001,36:4201

    5 Tang,H.;Prasad,K.;Sanjinès,R.J.Appl.Phys.,1994,75:2042

    6 Sopyan,I.;Watanabe,M.;Murasawa,S.J.Photochem.Photobiol. A,1996,98:79

    7 Hayashi,H.;Torii,K.J.Mater.Chem.,2002,12:3671

    8 Minero,C.;Vione,D.Appl.Catal.B-Environ.,2006,67:257

    9 Gao,Y.;Liu,H.;Ma,M.React.Kinet.Catal.Lett.,2007,90:11

    10 Gao,B.;Chen,G.Z.;Puma,G.L.Appl.Catal.B-Environ.,2009, 89:503

    11 Oh,W.C.;Jung,A.R.;Ko,W.B.Mater.Sci.Eng.C,2009,29: 1338

    12 Gao,B.;Peng,C.Chen,G.Z.;Puma,G.Appl.Catal.B-Environ., 2008,85:17

    13 Lin,J.;Zong,R.;Zhou,M.;Zhu,Y.F.Appl.Catal.B-Environ., 2009,89:425

    14 Szabó,T.;Tombácz,E.;Illés,E.Carbon,2006,44:537

    15 Bissessur,R.;Liu,P.K.Y.;White,W.Langmuir,2006,22:1729

    16 Bourlinos,A.B.;Gournis,D.;Petridis,D.Langmuir,2003,19: 6050

    17 Jeong,H.K.;Lee,Y.P.;Lahaye,R.J.W.E.J.Am.Chem.Soc., 2008,130:1362

    18 Xiao,M.;Du,X.S.;Meng,Y.Z.New Carbon Materials,2004, 19:92

    19 Han,Y.Q.;Lu,Y.Synth.Met.,2008,158:744

    20 Wu,J.;Zou,Y.H.;Li,X.L.Sens.Actuators,B,2005,104:43

    21 Wang,G.C.;Yang,Z.Y.;Li,X.W.Carbon,2005,43:2564

    22 Higashika,S.;Kimura,K.;Matsuo,Y.Carbon,1999,37:351

    23 Bissessur,R.;Liu,P.K.Y.;Scully,S.F.Synth.Met.,2006,156: 1023

    24 Zhang,Y.H.;He,Y.Q.Front.Mater.Sci.China,2007,1:297

    25 Hontoria-Lucas,C.;Lopez-Einado,A.J.;De Lopez-Gonzalez,J. D.Carbon,1995,33:1585

    26 Szabo,T.;Berkesi,O.;Forgo,P.Chem.Mater.,2006,18:2740

    27 Jeong,H.K.;Colakerol,L.;Jin,M.H.Chem.Phys.Lett.,2008, 460:499

    28 Saraf,L.V.;Patil,S.I.;Ogale,S.B.Int.J.Mod.Phys.B,1998, 12:2653

    29 Serpone,N.;Lawless,D.;Khairutdinov,R.J.Phys.Chem.,1995, 99:16646

    30 Zhang,Y.X.;Li,G.H.;Jin,Y.X.Chem.Phys.Lett.,2002,365: 300

    猜你喜歡
    氧化鈦插層材料科學(xué)
    中海油化工與新材料科學(xué)研究院
    基于JAK/STAT信號(hào)通路研究納米氧化鈦致卵巢損傷的分子機(jī)制*
    保健文匯(2022年4期)2022-06-01 10:06:50
    材料科學(xué)與工程學(xué)科
    紫外吸收劑插層蒙脫土對(duì)瀝青老化性能的影響
    氧化鈦對(duì)陶瓷結(jié)合劑金剛石磨具性能及結(jié)構(gòu)的影響
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    CO2插層作用下有機(jī)蒙脫土膨脹/結(jié)構(gòu)行為的分子模擬
    十四烷酸插層稀土類水滑石的合成及其對(duì)PVC的熱穩(wěn)定作用
    鈦表面生物活性榍石/氧化鈦復(fù)合涂層的結(jié)構(gòu)和磷灰石形成機(jī)理
    久久国产精品男人的天堂亚洲| 欧美一级a爱片免费观看看 | 国产97色在线日韩免费| 亚洲av熟女| 亚洲狠狠婷婷综合久久图片| 午夜免费观看网址| 他把我摸到了高潮在线观看| 免费看美女性在线毛片视频| 亚洲成国产人片在线观看| 欧美最黄视频在线播放免费| 动漫黄色视频在线观看| 丰满的人妻完整版| 人成视频在线观看免费观看| 国产区一区二久久| 不卡av一区二区三区| 日韩免费av在线播放| 亚洲片人在线观看| 人成视频在线观看免费观看| 亚洲第一电影网av| 久久精品91蜜桃| 国产一卡二卡三卡精品| 在线观看午夜福利视频| 正在播放国产对白刺激| 成人国产综合亚洲| 色综合亚洲欧美另类图片| 精品免费久久久久久久清纯| 亚洲精品国产一区二区精华液| 免费在线观看视频国产中文字幕亚洲| 一级a爱片免费观看的视频| 久久久久久久午夜电影| 老司机午夜十八禁免费视频| 国产熟女xx| 男人舔奶头视频| 国产av不卡久久| 禁无遮挡网站| 淫妇啪啪啪对白视频| 亚洲中文字幕日韩| 欧美黄色片欧美黄色片| 久久香蕉激情| 人人妻人人看人人澡| 国产爱豆传媒在线观看 | 亚洲第一欧美日韩一区二区三区| 97人妻精品一区二区三区麻豆 | 天天躁狠狠躁夜夜躁狠狠躁| 好男人电影高清在线观看| 国产av在哪里看| 色综合亚洲欧美另类图片| 免费电影在线观看免费观看| 精品欧美国产一区二区三| 精品久久久久久久久久久久久 | 国产黄a三级三级三级人| 日韩大码丰满熟妇| 国产av一区在线观看免费| 欧美不卡视频在线免费观看 | 大型av网站在线播放| 国产97色在线日韩免费| 搡老熟女国产l中国老女人| 亚洲国产高清在线一区二区三 | 老司机福利观看| 老司机深夜福利视频在线观看| 国产亚洲精品第一综合不卡| 99国产精品一区二区蜜桃av| 成人18禁在线播放| 欧美亚洲日本最大视频资源| 精品久久久久久久毛片微露脸| 亚洲人成电影免费在线| 91九色精品人成在线观看| 久久久久亚洲av毛片大全| 亚洲人成77777在线视频| 免费在线观看黄色视频的| 免费一级毛片在线播放高清视频| 最好的美女福利视频网| 久久中文字幕一级| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| 啦啦啦 在线观看视频| 欧美日韩福利视频一区二区| 欧美乱色亚洲激情| 精品久久久久久,| 亚洲第一青青草原| 国产黄a三级三级三级人| 日韩精品青青久久久久久| 免费看a级黄色片| 国产不卡一卡二| 国产三级黄色录像| 日韩欧美免费精品| 午夜福利一区二区在线看| 亚洲欧美日韩无卡精品| 18禁观看日本| 少妇粗大呻吟视频| 动漫黄色视频在线观看| 精华霜和精华液先用哪个| 亚洲久久久国产精品| 国产成人精品无人区| 可以在线观看的亚洲视频| 精品一区二区三区av网在线观看| av免费在线观看网站| 精品久久久久久,| 香蕉久久夜色| 亚洲全国av大片| 在线免费观看的www视频| 69av精品久久久久久| 亚洲人成电影免费在线| 中文在线观看免费www的网站 | 久久久精品国产亚洲av高清涩受| 欧美中文日本在线观看视频| 久久草成人影院| 欧美国产日韩亚洲一区| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影 | 自线自在国产av| 国产精品精品国产色婷婷| 性欧美人与动物交配| 岛国在线观看网站| 两个人免费观看高清视频| 免费人成视频x8x8入口观看| xxx96com| 12—13女人毛片做爰片一| 哪里可以看免费的av片| 性欧美人与动物交配| 一本大道久久a久久精品| 精品人妻1区二区| 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| 麻豆久久精品国产亚洲av| av有码第一页| 一卡2卡三卡四卡精品乱码亚洲| 日本成人三级电影网站| 老汉色av国产亚洲站长工具| 日本一区二区免费在线视频| 欧美乱色亚洲激情| 男女床上黄色一级片免费看| 国产单亲对白刺激| 色哟哟哟哟哟哟| 亚洲中文av在线| 桃色一区二区三区在线观看| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 黄片大片在线免费观看| 国产真实乱freesex| 18禁黄网站禁片免费观看直播| 色综合亚洲欧美另类图片| 一夜夜www| 亚洲成人久久爱视频| 淫妇啪啪啪对白视频| 搞女人的毛片| 精品少妇一区二区三区视频日本电影| 亚洲真实伦在线观看| 国产精品久久久久久亚洲av鲁大| 成人欧美大片| 久久久久精品国产欧美久久久| 国内精品久久久久精免费| 亚洲自偷自拍图片 自拍| 国产一区二区三区视频了| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 中文资源天堂在线| 精品久久久久久,| 一夜夜www| 校园春色视频在线观看| 欧美乱色亚洲激情| 亚洲自拍偷在线| 成人亚洲精品一区在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲在线自拍视频| 老司机在亚洲福利影院| 久久天堂一区二区三区四区| 久久久久国内视频| 级片在线观看| 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 在线观看免费日韩欧美大片| 成人三级做爰电影| 人人澡人人妻人| 一级黄色大片毛片| 91在线观看av| 最好的美女福利视频网| 亚洲性夜色夜夜综合| 亚洲成国产人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 大型黄色视频在线免费观看| 亚洲国产毛片av蜜桃av| 极品教师在线免费播放| 国产麻豆成人av免费视频| 91老司机精品| 久热爱精品视频在线9| 美女免费视频网站| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 国产人伦9x9x在线观看| 亚洲一区中文字幕在线| 村上凉子中文字幕在线| 女生性感内裤真人,穿戴方法视频| 国产伦人伦偷精品视频| 中文字幕精品亚洲无线码一区 | 精品一区二区三区四区五区乱码| 欧美另类亚洲清纯唯美| 亚洲自偷自拍图片 自拍| 亚洲全国av大片| 亚洲国产看品久久| 亚洲精华国产精华精| 高清在线国产一区| 一级a爱视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久久久久黄片| 嫁个100分男人电影在线观看| 亚洲成人久久爱视频| 国产在线精品亚洲第一网站| 欧美精品亚洲一区二区| 久久国产乱子伦精品免费另类| 国产精品九九99| 久9热在线精品视频| 亚洲国产欧美网| 国产成人系列免费观看| 欧美日韩亚洲综合一区二区三区_| 午夜老司机福利片| 99国产精品99久久久久| 亚洲av第一区精品v没综合| 天天添夜夜摸| 欧美色视频一区免费| 色av中文字幕| 亚洲五月色婷婷综合| 亚洲精品色激情综合| 成人手机av| 黄色a级毛片大全视频| 白带黄色成豆腐渣| 亚洲成人精品中文字幕电影| 国产精品九九99| 国产精华一区二区三区| xxx96com| 妹子高潮喷水视频| 天堂动漫精品| av超薄肉色丝袜交足视频| 国产又黄又爽又无遮挡在线| 动漫黄色视频在线观看| 久久99热这里只有精品18| 大香蕉久久成人网| 啦啦啦韩国在线观看视频| 午夜福利18| 母亲3免费完整高清在线观看| 亚洲国产中文字幕在线视频| 亚洲精品在线美女| 91成年电影在线观看| 国产单亲对白刺激| 757午夜福利合集在线观看| 国产一区在线观看成人免费| 亚洲成av片中文字幕在线观看| 最近在线观看免费完整版| 免费在线观看日本一区| 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| av超薄肉色丝袜交足视频| 欧洲精品卡2卡3卡4卡5卡区| 在线观看66精品国产| 亚洲精品美女久久久久99蜜臀| 欧美一级毛片孕妇| 午夜影院日韩av| 成年人黄色毛片网站| 亚洲午夜精品一区,二区,三区| 琪琪午夜伦伦电影理论片6080| 日韩欧美国产在线观看| 亚洲精品久久成人aⅴ小说| 热99re8久久精品国产| 白带黄色成豆腐渣| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 最新美女视频免费是黄的| 黑人巨大精品欧美一区二区mp4| 99精品欧美一区二区三区四区| 欧美成人一区二区免费高清观看 | 88av欧美| 中文字幕人妻熟女乱码| 手机成人av网站| or卡值多少钱| 欧美最黄视频在线播放免费| 久久久久久久久久黄片| 国产人伦9x9x在线观看| 婷婷六月久久综合丁香| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 在线观看www视频免费| 欧美日韩乱码在线| 一本综合久久免费| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 国产高清激情床上av| 国产欧美日韩一区二区精品| 中文在线观看免费www的网站 | АⅤ资源中文在线天堂| 麻豆成人午夜福利视频| 香蕉久久夜色| 两个人免费观看高清视频| 18美女黄网站色大片免费观看| 黄色a级毛片大全视频| 亚洲精品在线观看二区| 大型av网站在线播放| 少妇的丰满在线观看| 黄色成人免费大全| 日韩欧美三级三区| 国产精品美女特级片免费视频播放器 | 精品午夜福利视频在线观看一区| 91在线观看av| 久久久久久九九精品二区国产 | 巨乳人妻的诱惑在线观看| 日韩高清综合在线| √禁漫天堂资源中文www| 亚洲最大成人中文| 午夜福利欧美成人| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 国产精品亚洲一级av第二区| 精华霜和精华液先用哪个| 中文字幕另类日韩欧美亚洲嫩草| 欧美最黄视频在线播放免费| 亚洲精品色激情综合| 亚洲成人久久爱视频| 岛国在线观看网站| 欧美成人性av电影在线观看| 日韩大尺度精品在线看网址| 18禁黄网站禁片免费观看直播| 免费在线观看亚洲国产| 韩国精品一区二区三区| 国产国语露脸激情在线看| 久久婷婷成人综合色麻豆| 麻豆av在线久日| 女性被躁到高潮视频| 国产精品自产拍在线观看55亚洲| 亚洲午夜理论影院| av在线天堂中文字幕| 中文字幕av电影在线播放| 亚洲男人天堂网一区| 丰满人妻熟妇乱又伦精品不卡| 精品国产一区二区三区四区第35| 欧美黄色淫秽网站| 午夜免费成人在线视频| 99热6这里只有精品| 999精品在线视频| 黄片大片在线免费观看| 亚洲中文字幕日韩| 两性夫妻黄色片| 中文亚洲av片在线观看爽| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| 国产成人影院久久av| 国产精品99久久99久久久不卡| 亚洲欧美一区二区三区黑人| 99国产精品一区二区三区| 成在线人永久免费视频| 人人妻人人看人人澡| 亚洲精品美女久久av网站| 夜夜躁狠狠躁天天躁| 欧美乱码精品一区二区三区| 精品久久久久久久毛片微露脸| 久久国产亚洲av麻豆专区| 在线天堂中文资源库| 淫妇啪啪啪对白视频| 亚洲av美国av| 亚洲人成伊人成综合网2020| 亚洲av成人不卡在线观看播放网| 老司机午夜十八禁免费视频| 午夜免费成人在线视频| 国产单亲对白刺激| 国产不卡一卡二| 人妻久久中文字幕网| 中文字幕人成人乱码亚洲影| 美女扒开内裤让男人捅视频| 黄色女人牲交| 久久久久精品国产欧美久久久| 久热这里只有精品99| 99热这里只有精品一区 | 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av高清一级| 超碰成人久久| 一个人观看的视频www高清免费观看 | 桃红色精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 最近在线观看免费完整版| 国产成人欧美| 操出白浆在线播放| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 久久久国产欧美日韩av| 色综合欧美亚洲国产小说| 99re在线观看精品视频| 亚洲第一电影网av| 亚洲精品色激情综合| 夜夜躁狠狠躁天天躁| 长腿黑丝高跟| 色综合婷婷激情| 午夜福利免费观看在线| 又黄又粗又硬又大视频| 欧美成人性av电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产av不卡久久| 欧美成人免费av一区二区三区| 亚洲精品中文字幕在线视频| а√天堂www在线а√下载| 亚洲在线自拍视频| 亚洲 国产 在线| 亚洲一码二码三码区别大吗| 国产激情偷乱视频一区二区| 18禁黄网站禁片免费观看直播| 男女之事视频高清在线观看| 亚洲国产中文字幕在线视频| 午夜视频精品福利| 最近最新中文字幕大全免费视频| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 免费在线观看亚洲国产| 亚洲电影在线观看av| 91av网站免费观看| 高潮久久久久久久久久久不卡| 国产主播在线观看一区二区| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区色噜噜| 一级作爱视频免费观看| 国产av在哪里看| www国产在线视频色| 丁香欧美五月| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一青青草原| 窝窝影院91人妻| 欧美性猛交黑人性爽| 香蕉久久夜色| 99久久无色码亚洲精品果冻| 一区二区三区激情视频| 免费在线观看黄色视频的| 人人妻,人人澡人人爽秒播| 桃色一区二区三区在线观看| 男女下面进入的视频免费午夜 | 波多野结衣高清无吗| 日韩免费av在线播放| 国产真实乱freesex| 欧美又色又爽又黄视频| 特大巨黑吊av在线直播 | 中文字幕av电影在线播放| 精品久久久久久久毛片微露脸| 国产伦在线观看视频一区| 亚洲精品中文字幕一二三四区| 亚洲av五月六月丁香网| 午夜福利视频1000在线观看| 精品电影一区二区在线| 国产视频内射| 国内揄拍国产精品人妻在线 | 国产一区在线观看成人免费| 一本精品99久久精品77| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 免费人成视频x8x8入口观看| 动漫黄色视频在线观看| 精品一区二区三区四区五区乱码| 成人国产一区最新在线观看| 一进一出抽搐动态| 韩国精品一区二区三区| 欧美另类亚洲清纯唯美| 欧美黑人欧美精品刺激| 色综合婷婷激情| 日本a在线网址| 国产精品免费视频内射| 后天国语完整版免费观看| 自线自在国产av| 久久久久国产一级毛片高清牌| 国产蜜桃级精品一区二区三区| 国产精品一区二区免费欧美| 免费高清在线观看日韩| 国语自产精品视频在线第100页| 久久性视频一级片| 午夜福利在线在线| 国产久久久一区二区三区| 亚洲成av片中文字幕在线观看| 在线国产一区二区在线| 满18在线观看网站| 亚洲精品在线美女| 99热6这里只有精品| 精品国产一区二区三区四区第35| 欧美久久黑人一区二区| 成人亚洲精品一区在线观看| 免费无遮挡裸体视频| 久久性视频一级片| 99国产极品粉嫩在线观看| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 一区二区三区国产精品乱码| 满18在线观看网站| 欧美亚洲日本最大视频资源| 国产精品亚洲av一区麻豆| 成人三级黄色视频| 国产精品永久免费网站| 啦啦啦 在线观看视频| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 老司机靠b影院| 在线看三级毛片| 久久婷婷人人爽人人干人人爱| 亚洲在线自拍视频| 制服丝袜大香蕉在线| 日本成人三级电影网站| 99热6这里只有精品| 日本 av在线| 中文字幕久久专区| 亚洲七黄色美女视频| 国产视频一区二区在线看| 免费在线观看黄色视频的| 国产又爽黄色视频| 日韩大尺度精品在线看网址| 精品免费久久久久久久清纯| 欧美日韩黄片免| 十分钟在线观看高清视频www| 少妇被粗大的猛进出69影院| 国产精品野战在线观看| 69av精品久久久久久| 免费在线观看影片大全网站| 中出人妻视频一区二区| 亚洲熟妇中文字幕五十中出| 免费在线观看视频国产中文字幕亚洲| 成人手机av| 国产亚洲精品第一综合不卡| 成人18禁高潮啪啪吃奶动态图| 国产精品日韩av在线免费观看| www日本在线高清视频| 成年人黄色毛片网站| 波多野结衣av一区二区av| 久久午夜综合久久蜜桃| 黄色视频,在线免费观看| 精品不卡国产一区二区三区| 免费在线观看亚洲国产| 欧美午夜高清在线| netflix在线观看网站| 久久精品成人免费网站| 亚洲av成人不卡在线观看播放网| 高清在线国产一区| 黑丝袜美女国产一区| 婷婷精品国产亚洲av| 99久久国产精品久久久| 久久精品国产亚洲av香蕉五月| 日日爽夜夜爽网站| 69av精品久久久久久| 一区二区三区高清视频在线| 很黄的视频免费| 国产亚洲精品第一综合不卡| 老司机午夜福利在线观看视频| 亚洲国产精品999在线| 老司机午夜福利在线观看视频| 搡老岳熟女国产| 欧美一级毛片孕妇| 日韩欧美一区视频在线观看| 高清在线国产一区| 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费| 国产黄a三级三级三级人| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 美国免费a级毛片| 男女之事视频高清在线观看| av免费在线观看网站| 久久亚洲真实| 精品少妇一区二区三区视频日本电影| 亚洲精品久久国产高清桃花| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 精品一区二区三区视频在线观看免费| 一本一本综合久久| 久久精品人妻少妇| 欧美丝袜亚洲另类 | 男人的好看免费观看在线视频 | av天堂在线播放| www国产在线视频色| 国产精品香港三级国产av潘金莲| 色尼玛亚洲综合影院| 免费av毛片视频| 脱女人内裤的视频| 欧美黑人巨大hd| 欧美一区二区精品小视频在线| 精品久久久久久成人av| 亚洲av电影在线进入| 亚洲 欧美 日韩 在线 免费| 成人国语在线视频| 在线天堂中文资源库| 国语自产精品视频在线第100页| aaaaa片日本免费| 精品国产美女av久久久久小说| 一本综合久久免费| 男人操女人黄网站| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区免费| 久久精品成人免费网站| 国产高清视频在线播放一区| 成人18禁在线播放| 亚洲九九香蕉| 一区二区三区激情视频| 欧美一级毛片孕妇| 久久久久久大精品| 亚洲三区欧美一区| 狂野欧美激情性xxxx| 日本精品一区二区三区蜜桃| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 亚洲专区字幕在线| 国产成人精品久久二区二区91| 国产伦一二天堂av在线观看| 欧美zozozo另类| 一区二区三区激情视频| 久久久精品国产亚洲av高清涩受| 巨乳人妻的诱惑在线观看| 欧美国产日韩亚洲一区| 国产一卡二卡三卡精品| 久久 成人 亚洲| 中文字幕另类日韩欧美亚洲嫩草| 国产精品98久久久久久宅男小说| 香蕉国产在线看| 免费看a级黄色片|