張弘瑋 狄建忠 張頻
·綜述與講座·
外科手術(shù)治療2型糖尿病的相關(guān)胃腸道激素研究進(jìn)展
張弘瑋 狄建忠 張頻
2型糖尿病是一常見疾病,目前的治療很少能使患者血糖完全恢復(fù)正常。治療肥胖癥的胃轉(zhuǎn)流手術(shù)(gastric bypass,GBP)和膽胰轉(zhuǎn)流手術(shù)(biliopancreatic diversion,BPD)可使80%~90%病態(tài)肥胖的糖尿病患者血糖、血胰島素、糖化血化蛋白濃度持久地處于正常水平,對(duì)并存的2型糖尿病治愈率達(dá)83%~86%[1]。GBP和BPD使十二指腸和至少部分空腸無食物通過,產(chǎn)生兩個(gè)明顯的后果:未消化或未完全消化的食物較早被送至回腸;十二指腸和空腸被排斥出腸-胰島素軸。提示外科手術(shù)對(duì)糖尿病的影響是因胃腸道激素分泌的改變介導(dǎo)所致,可能與血清瘦素、腸高血糖素、抑胃肽、胰島素樣生長(zhǎng)因子-1和胰高血糖素樣肽[2]的水平改變相關(guān),也可能是其他未知胃腸激素水平改變調(diào)節(jié)所致。
腸降血糖素是在體內(nèi)發(fā)揮促胰島素分泌或起胰島素樣作用從而影響血糖控制的一類胃腸多肽類物質(zhì),這類物質(zhì)存在的假說是基于一個(gè)現(xiàn)象,即:口服葡萄糖激發(fā)的胰島素釋放總量是等量葡萄糖靜脈內(nèi)給藥所激發(fā)的胰島素釋放總量的2~3倍。該類物質(zhì)包括抑胃肽、胰高血糖素樣肽-1、胰島素樣生長(zhǎng)因子-1等。
1.抑胃肽(glucose-dependent insulinotropic polypeptide,GIP):目前對(duì)外科手術(shù)治療2型糖尿病普遍認(rèn)同的作用機(jī)制是腸-胰島軸改變引起的近端空腸釋放GIP減少,從而導(dǎo)致胰島素抵抗的消失或胰島素敏感性的提高。GIP為哺乳動(dòng)物十二指腸和空腸黏膜K細(xì)胞產(chǎn)生的一種多肽,屬于促胰液素族。糖類和脂肪的攝入可刺激GIP的釋放,釋放量在攝食后15~30 min達(dá)到高峰。GIP主要通過與其受體GIPR 結(jié)合,發(fā)揮著葡萄糖依賴的刺激胰島素分泌的作用,尤其對(duì)胰島素早期相分泌更為重要[3];并且能夠直接作用于脂肪細(xì)胞,劑量依賴性增強(qiáng)脂蛋白脂酶活性,促進(jìn)脂肪酸的合成、脂肪酸進(jìn)入脂肪組織、β細(xì)胞增生和存活。文獻(xiàn)報(bào)道[4-6],未消化或者部分消化的食物通過近端小腸,刺激近端小腸壁上的K細(xì)胞,使其釋放GIP水平增加,造成胰島素抵抗,引起血糖水平增加,導(dǎo)致2型糖尿病。GBP(或十二指腸空腸曠置)術(shù)后,減少或停止了對(duì)近端小腸的刺激,從而減少K細(xì)胞釋放GIP,緩解K細(xì)胞過度增生并使得腸內(nèi)及循環(huán)中GIP濃度顯著下降,這依次抑制了胰島的肥大和β細(xì)胞的過度增生,解除了高胰島素血癥及胰島素抵抗,使2型糖尿病獲得了長(zhǎng)期的治愈。
2.胰高血糖素樣肽-1(glucagon like peptide-1,GLP-1):GLP-1主要由存在于遠(yuǎn)端小腸和結(jié)腸的L-細(xì)胞合成和分泌。GLP-1是腸-胰島軸中控制2型糖尿病最核心的介導(dǎo)因子,其主要生物學(xué)作用包括:促進(jìn)葡萄糖依賴的胰島素分泌與合成[7];抑制快速和餐后胰高血糖素的分泌,使胰島素/胰高血糖素比值符合生理狀態(tài)[8-9];抑制胰島β細(xì)胞的凋亡,誘導(dǎo)β細(xì)胞再生[10];抑制肝糖輸出和促進(jìn)外周組織葡萄糖增加胰島素敏感性,該作用不依賴對(duì)胰島素和胰高血糖素的分泌調(diào)節(jié)[11]。
GLP-1分泌調(diào)節(jié)由食物刺激及胃腸道神經(jīng)內(nèi)分泌機(jī)制參與[7],行轉(zhuǎn)流手術(shù)后,未消化或部分消化的食物及早進(jìn)入末端回腸,改變腸-胰島軸,刺激小腸上皮L細(xì)胞大量分泌GLP-1[12-13],從而降低血糖。
3.胰島素樣生長(zhǎng)因子-1(insulin-like growth factor-1,IGF-1):IGF-1是近年來諸多學(xué)者研究較多的一類激素,它與胰島素是同源的肽類激素。體內(nèi)循環(huán)的IGF-1多為肝臟合成,進(jìn)入血循環(huán)后主要以與IGF-1結(jié)合蛋白(IGFBP)結(jié)合形式存在[14],其受體(IGF-1R)廣泛存在于消化系統(tǒng)等體內(nèi)各個(gè)部位,主要受生長(zhǎng)激素的負(fù)反饋機(jī)制調(diào)控,但胰島素和營(yíng)養(yǎng)狀況也是重要的影響因素[15]。目前對(duì)其作用機(jī)制的主要觀點(diǎn)傾向于IGF-1-胰島素軸假設(shè)[16],認(rèn)為:(1)IGF-1在胰島素抵抗增加的情況下通過攝取外周葡萄糖來協(xié)助維持血糖水平正常;(2)高IGF-1引起外周組織對(duì)FFA的大量攝取,降低FFA對(duì)胰島素敏感性的負(fù)面影響及對(duì)胰島β細(xì)胞的脂毒性[17],逆轉(zhuǎn)糖尿病周圍神經(jīng)病變[18];(3)IGF-1與胰島β細(xì)胞有潛在聯(lián)系,其機(jī)制并非直接增進(jìn)β細(xì)胞的復(fù)制,而是起到抗凋亡的作用[19],并在2型糖尿病發(fā)展早期協(xié)助β細(xì)胞數(shù)量的保存和功能的維持[20]。轉(zhuǎn)流手術(shù)后體內(nèi)IGF-1水平增加,起到降低血糖及其一系列的作用。
4.酪氨酸-酪氨酸肽(peptide tyrosine tyrosine,PYY):PYY由36個(gè)氨基酸組成,同樣由小腸黏膜分泌GLP-1的L細(xì)胞所合成分泌。除了激素和神經(jīng)介導(dǎo)以外,PYY也可由腸內(nèi)營(yíng)養(yǎng)刺激釋放[21]。PYY有著外周和中樞兩種效應(yīng):外周抑制胃酸分泌和胰腺外分泌,并且延遲食物通過盲腸的時(shí)間;中樞性抑制食欲,并促使體重下降。肥胖患者體內(nèi)餐后PYY應(yīng)答遲鈍,導(dǎo)致餐后對(duì)飽食感反應(yīng)延遲。
研究表明,轉(zhuǎn)流手術(shù)(尤其GBP)后空腹PYY量上升[22],更重要的是餐后的PYY反應(yīng)能力顯著提高[22-23]。這可能是轉(zhuǎn)流術(shù)后血糖穩(wěn)定及早期體重下降,并且使得患者的胰島素抵抗得以緩解[24]的原因之一。
抗腸降血糖素是指胃腸道內(nèi)抑制胰島素分泌、延遲胰島素反應(yīng)、損害胰島素作用,與腸降血糖素相拮抗的一類物質(zhì)。
瘦素(leptin)是由肥胖基因(ob基因)產(chǎn)生的一種內(nèi)分泌激素。近年來研究發(fā)現(xiàn),不僅脂肪組織,胃黏膜上皮細(xì)胞也可分泌瘦素,外周組織的瘦素受體以ob-Ra為主。國(guó)內(nèi)外大多數(shù)臨床研究表明,瘦素與胰島素抵抗關(guān)系密切,是胰島素抵抗的獨(dú)立危險(xiǎn)因素。目前大多學(xué)者主要支持Kiefer等[25]提出的脂肪-胰島素軸反饋調(diào)節(jié)假說:在脂肪組織和胰島B細(xì)胞之間通過瘦素和胰島素形成一個(gè)雙向反饋環(huán),一旦雙向反饋環(huán)遭到破壞,即出現(xiàn)胰島素抵抗。胰島素是血漿瘦素濃度的決定因素,參與調(diào)節(jié)熱卡攝入對(duì)瘦素的效應(yīng),同時(shí),瘦素又抑制胰島素的分泌,并抑制前胰島素mRNA的表達(dá),降低胰島素啟動(dòng)子轉(zhuǎn)錄活性。消化道重建手術(shù)后,空回腸較早受納未消化或消化不充分的食物,刺激瘦素的分泌水平,但機(jī)制尚未清楚。
1.胃激素調(diào)節(jié)肽(ghrelin):文獻(xiàn)報(bào)道[26],胃捆扎術(shù)并沒有改變胃腸道通路,術(shù)后仍有相當(dāng)一部分糖尿病患者得到治愈。由此可見,腸-胰島軸機(jī)制不能完全解釋血糖控制的原因,這提示了胃分泌的激素在此過程中亦起到重要作用。
Ghrelin是一種主要由胃分泌的肽類激素,另外,胰腺ε細(xì)胞也可少量分泌。實(shí)驗(yàn)表明動(dòng)物體內(nèi)注射leptin也可以促使胃內(nèi)ghrelin表達(dá)升高[27]。Marchesini等[28]報(bào)道,2型糖尿病小鼠血漿ghrelin水平與空腹血清胰島素水平呈顯著的負(fù)相關(guān),推測(cè)2型糖尿病小鼠血漿ghrelin水平的下降與其胰島素抵抗所引起的高胰島素血癥相關(guān),ghrelin血漿水平下降可能具有防止肥胖和2型糖尿病繼續(xù)發(fā)展的作用。Espelund等[29]的實(shí)驗(yàn)說明胰島素與血糖水平都不是調(diào)節(jié)ghrelin分泌的關(guān)鍵因素。相反,若注射ghrelin則可以降低胰島素濃度,并使血糖升高,表明ghrelin濃度和活性的異??赡艽偈固谴x紊亂,誘導(dǎo)胰島素抵抗。
2.胰多肽(pancreatic polypeptide,PP):PP是在蛋白質(zhì)和高脂食物刺激下由胰島郎格罕斯細(xì)胞釋放的肽類激素。餐后PP水平的提升使得胃排空減慢并且抑制進(jìn)一步對(duì)食物的攝取,從而控制血糖及胰島素水平;迷走神經(jīng)的調(diào)控是穩(wěn)定胰腺釋放PP的重要機(jī)制。轉(zhuǎn)流術(shù)后PP水平保持不變或者有所下降[30]。但Karamanakos等[22]的研究結(jié)果相反。術(shù)后如此的差異可能是因?yàn)椴煌氖中g(shù)方式造成保留迷走神經(jīng)的與否,從而導(dǎo)致了胰腺分泌PP的改變,提示胃轉(zhuǎn)流手術(shù)對(duì)迷走神經(jīng)的影響可能是導(dǎo)致PP參與改變術(shù)后血糖及胰島素水平的因素。
3.生長(zhǎng)激素(growth hormone,GH):GH是垂體前葉分泌的一種含191個(gè)氨基酸的多肽。多項(xiàng)研究提示,GH與轉(zhuǎn)流術(shù)后改變的胃腸道激素聯(lián)系密切[31]。GH在BPD術(shù)12~24個(gè)月之后,對(duì)GHRH的應(yīng)答能力亦顯著提高,并且和胰島素分泌有著強(qiáng)烈的負(fù)相關(guān)性,提示GH也參與手術(shù)治療糖尿病的機(jī)制[32];另一方面,GH是影響IGF-1合成和釋放的主要因素[15],且IGF-1在體內(nèi)的水平變化與GH的釋放平行。在外科手術(shù)后,GH顯著提高血清IGF-1水平,提示可能GH在轉(zhuǎn)流手術(shù)后通過自身以及影響血清IGF-1水平兩條途徑參與治療糖尿病。
目前對(duì)于外科手術(shù)治療2型糖尿病的機(jī)制尚不明確,存在多種假設(shè),對(duì)于GIP、GLP-1水平的調(diào)節(jié)機(jī)制的研究是當(dāng)前的熱點(diǎn)和重點(diǎn),相關(guān)激素研究的突破有望為外科手術(shù)治療2型糖尿病提供理論基礎(chǔ),而GLP-1作為治療糖尿病的新靶點(diǎn)的臨床藥物研究也前景廣闊[33],使大多數(shù)學(xué)者普遍認(rèn)同腸-胰島軸機(jī)制。但仍有相當(dāng)一部分手術(shù)未改變腸道結(jié)構(gòu)而治愈糖尿病的案例并不能由腸-胰島軸機(jī)制所解釋,這提示有諸多因素和復(fù)雜的相互關(guān)系參與其中,可能存在多條胃腸道激素-胰島軸甚至胃腸道激素-垂體激素-胰島軸的改變。我們認(rèn)為通過系統(tǒng)大量的不同胃腸轉(zhuǎn)流手術(shù)治療2型糖尿病,結(jié)合對(duì)ghrelin、leptin、GH等激素及激素相關(guān)性研究的進(jìn)展是更深一層揭示其中聯(lián)系的突破。
[1] Pories WJ,Albrecht RJ.Etiology of type II diabetes mellitus:role of the foregut.World J Surg,2001,25:527-531.
[2] Zhou H,Yamada Y,Tsukiyama K,et al.Gastric inhibitory polypeptide modulates adiposity and fat oxidation under diminished insulin action.Biochemical and Biophys Res Commun,2005,335:937-942.
[3] Rubino F,Forgione A,Cummings DE,et al.The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes.Ann Surg,2006,244:741-749.
[4] Patriti A,Facchiano E,Donini A.Effect of duodenal-jejunal exclusion in a nonobese animal model of type 2 diabetes:a new perspective for an old disease.Ann Surg,2004,240: 388-389.
[5] Miyawaki K,Yamada Y,Ban N,et al.Inhibition of gastric inhibitory polypeptide signaling prevents obesity.Nat Med,2002,8:738-742.
[6] Holst JJ.The physiology of glucagon-like peptide 1.Physiol Rev,2007,87:1409-1439.
[7] Holst JJ,Gromada J.Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans.Am J Physiol Endocrinol Metab,2004,287:E199-E206.
[8] Deacon CF.Therapeutic strategies based on glucagon-like peptide 1.Diabetes,2004,53:2181-2189.
[9] Bulotta A,Hui H,Anastasi E,et al.Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1.J Mol Endocrinol,2002,29:347-360.
[10] 高虹,寧光.胰高血糖素樣肽1的胰腺外作用研究進(jìn)展.國(guó)際內(nèi)科學(xué)雜志,2007,34:408-411.
[11] Cummings DE,Overduin J,Foster-Schubert KE.Gastric bypass for obesity:mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab,2004, 89:2608-2615.
[12] Patriti A,Aisa MC,Annetti C,et al.How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Gotokakizaki rats through an enhanced Proglucagon gene expression and L-cell number.Surgery,2007,142:74-85.
[13] Gu Y,Wu ZH,Xie JX,et al.Effects of insulin like growth factor-I on the intestinal adaptation in growth hormone-treated rats.Clin Nutr,2001,20:159-166.
[14] 朱紅杰,張彥華,張億虹,等.胰島素樣生長(zhǎng)因子的研究進(jìn)展.黑龍江醫(yī)藥雜志,2007,106:2882.
[15] Rajpathak SN,Gunter MJ,Ho GY,et al.The role of insulin-like growth factor-1 and its binding proteins in glucose homeostasis and type 2 diabetes.Diabetes Metab Res Rev,2009,25;3-12.
[16] Wilding JP.The importance of free fatty acids in the development of Type 2 diabetes.Diabet Med,2007,24:934-945.
[17] Chu Q,Moreland R,Rew NS,et al.Systemic Insulin-like growth factor-1 reverses hypoalgesia and improves mobility in a mouse model of diabetic peripheral neuropathy.Mol Ther,2008,16:1400-1408.
[18] Robertson K,Lu Y,De Jesus K,et al.A general and islet cell-enriched overexpression of IGF-I results in normal islet cell growth, hypoglycemia, and significant resistance to experimental diabetes.Am J Physiol Endocrinol Metab,2008,294:E928-E938.
[19] Pratley RE,Weyer C.The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus.Diabetologia,2001,44: 929-945.
[20] Szoke E,Gerich JE.Role of impaired insulin secretion and insulin resistance in the pathogenesis of type 2 diabetes mellitus.Compr Ther,2005,31:106-112.
[21] Ballantyne GH.Peptide YY(1-36) and peptide YY(3-36):part I. Distribution,release and actions. Obes Surg,2006,16:651-658.
[22] Karamanakos SN,Vagenas K,Kalfarentzos F,et al.Weight loss,appetite suppression,and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy:a prospective,double blind study.Ann Surg,2008,247:401-407.
[23] Morinigo R,Vidal J,Lacy AM, et al.Circulating peptide YY,weight loss,and glucose homeostasis after gastric bypass surgery in morbidly obese subjects.Ann Surg,2008,247:270-275.
[24] Saliba J,Wattacheri J,Abumrad NN.Endocrine and metabolic response to gastric bypass.Curr Opin Clin Nutr Metab Care,2009,12:515-521.
[25] Kiefer TJ,Heller RS,Leech CA, et al.Leptin suppression of insulin secretion by the activation of ATP-sensitive K+channels in pancreatic beta-cells.Diabetes,1997,46:1087-1093.
[26] Demaria EJ,Jamal MK.Laparoscopic adjustable gastric banding:evolving clinical experience.Surg Clin North Am,2005,85:773-787.
[27] Faraj M,Havel PJ,Phelis S, et al.Plasma acylation-stimulating protein,adiponectin,leptin,and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects.Clin Endocrinol Metab,2003,88:1594-1602.
[28] Marchesini G,Pagotto U,Bugianesi E,et al.Low ghrelin concentrations in nonalcoholic fatty liver disease are related to insulin resistance.Clin Endocrinol Metab,2003,88:5674-5679.
[29] Espelund U,Hansen TK,Hojlound K,et al.Fasting unmasks a strong inverse association between ghrelin and cortisol in serum:studies in obese and normal-weight subjests.J Clin Endocrinol Metab,2005, 90:741-746.
[30] Swarbrick MM,Stanhope KL,Austrheim-Smith IT,et al.Longitudinal changes in pancreatic and adipocyte hormones following Roux-en-Y gastric bypass surgery.Diabetologia,2008,51:1901-1911.
[31] Lee JH,Reed DR,Price RA.Leptin resistance is associated with extreme obesity and aggregates in families.Int Obes Relat Metab Disord,2001,25:1471-1473.
[32] De Marinis L,Bianchi A,Mancini A, et al.Growth hormone secretion and leptin in morbid obesity before and after biliopancreatic diversion:relationships with insulin and body composition.J Clin Endocrinol Metab,2004,89:174-180.
[33] Vilsboll T,Zdravkovic M,Le-Thi T,et al.Liraglutide,a long-acting human glucagon-like peptide-1 analog,given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes.Diabetes Care,2007,30:1608-1610.
2010-06-23)
(本文編輯:屠振興)
10.3760/cma.j.issn.1674-1935.2010.05.031
200233 上海,上海交通大學(xué)附屬第六人民醫(yī)院普外科