• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Design of LaB6 Composite Field Emission Array Cathode

    2018-03-26 02:30:27DENGJiangGEYanbinYUYouandWANGXiaoju
    電子科技大學(xué)學(xué)報 2018年2期

    DENG Jiang, GE Yan-bin , YU You, and WANG Xiao-ju

    (1.College of Optoelectronic Technology, Chengdu University of Information Technology Chengdu 610225;2.Fuzhou BOE Optoelectronics Technology Co.Ltd. Fuzhou 350000;3.School of Optoelectronic Science and Engineering, Universityof Electronic Science and Technology of China Chengdu 610054)

    Compared with traditional thermionic cathode,field emission array cathode (FEAs)has several advantages, such as low operating temperature, strong controllability, large emission current, and short response time.It has attracted extensive attention in the applications of high-frequency devices, flat panel displays, x-ray tube, and so on[1-4].Take the field emission traveling wave tubes (TWTs)as an example.Firstly, it can work at room temperature without any heating equipment, resulting in low power consumption.Secondly, it is very easy to adjust emission current by changing the gate voltage,showing excellent switching characteristics and extremely high response speed.Reference [5]have reported the experimental results of implementation of Mo-FEA as the electron source for a moderate power traveling wave tube operating in the C-band frequency regime.The cold cathode TWT has operated for over 150 h at duty factors up to 10% and beam currents up to 121 mA.Although field emission cathode has made great progress in recent years, there are also some problems in the practical applications, mainly including its emission instability[6-9].The possible reason for the emission instability is that it is very difficult to prepare millions of microtips with the same shape on a silicon substrate.Thus, searching new materials and developing novel structures for field emission arrays are urgently needed.

    A few novel structures of FEAs have been fabricated and shown enhanced performance in some papers.References [10-11]fabricated mesh shaped resistor layers in a FEA, and Ref.[12]manufactured Spindt FEA with distributed series resistors.Both of them confirmed that the resistor grid layers may favorably improve the performance of an FEA.In addition, Ref.[13]reported a Spindt-type FEA with lanthanum hexaboride (LaB6)as the emitting material.It exhibited an average emission current as high as about 0.23 A/tip, implying that LaB6emitter was a promising candidate for high current density vacuum electronic device.

    In this work, a novel structure of Spindt-FEA was proposed.It included three layers: amorphous silicon(a-Si)film as a resistance layer, molybdenum (Mo)film as a transition layer, and LaB6film as an emission layer.The amorphous silicon film could effectively limit the abnormal emission of some microtips, which played a role in protecting the entire field emission cathode array.Molybdenum film connected amorphous silicon and LaB6film through its suitable thermal expansion coefficient, improving the working stability of FEAs.LaB6emitter was introduced to enhance the emission performance of cathodes, owing to its low work function and excellent mechanical stability against ion bombardment.Considering the thermal stress caused by the above three layers stacking, the finite element analysis software ANSYS14.0 was used to simulate the influence of each layer thicknesses on the distribution of thermal stress field of the cathode.The optimal structural parameters were obtained, and the accuracy of the simulation results was verified by a DTI-500 thermal stress meter.

    1 Finite Element Model Establishment

    Figure 1 shows the two-dimensional plane mathematical model of the cathode used in our simulation.Firstly, the thickness of the resistive layer was studied, which seriously affected the emission current of the cathode.According to the literature[13],the emission current of LaB6-FEA single tip was about 0.24 μA at gate voltage of 165 V.Thus, assuming that with the addition of the resistive layer, the gate voltage was reduced by 25%, 30%, 35%, and 40%, and the thickness of the resistive layer could be calculated as 45, 54, 63 and 72 nm respectively on the basis of Ohm’s law and resistance formula.In addition, the thickness of the transition layer was set to 0, 0.1, 0.2,0.3 and 0.4 μm, respectively.The height of silicon substrate and the whole tip were both fixed at 1 μm.

    Fig.1 Simulation model of LaB6 composite field emission array cathode

    Next, the working temperature of LaB6composite field emission array was needed to be confirmed and turned into mathematical language for ANSYS simulation.Because the bottom size and height of the cathode were both in the micron level, the operating temperature was set to steady-state temperature field,that is, the temperature of any point in the cathode did not change with time.In addition, only heat conduction was considered in the heat transferring process,ignoring the thermal convection and thermal radiation.

    During the simulation, it was assumed that the material parameters of cathode (lanthanum hexaboride,molybdenum, amorphous silicon and silicon substrate)did not change with the temperature, so there was no need to define the function of material properties and temperature.Four material parameters associated with thermal analysis were defined: thermal conductivity,elastic modulus, coefficient of thermal expansion, and Poisson’s ratio, as shown in Table 1[14].

    Tab.1 Material parameters of Spindt cathode

    2 Simulation Results and Discussions

    Figure 2 compares the results of the stress simulation of the cathodes at loading temperatures of 80 ℃ and 400 ℃, respectively.It is found that the loading temperature variation has little effect on the thermal field distribution of the model.The maximum stress of both cathodes appear at the center of the molybdenum layer, with the value of 1.54×108Pa and 9.8×108Pa, respectively.In our experiment, the thermal field distribution is the focus.Thus, the loading temperature of the cathode is set to 80 in the next simulation.

    Fig.2 Thermal stress distribution of the cathode at different loading temperatures

    Figure 3 shows the thermal stress distribution of the cathode without a resistive layer and transition layer.The maximum stress up to 8.2×107Pa appears at the emission layer, which is harmful to the working stability of the emitter.

    Fig.3 Thermal stress distribution of the cathode without a resistive layer and transition layer

    Figure 4 shows the thermal stress field of the model without a transition layer (h2=0 nm).The thickness of the resistive layer (h1)is 45 nm and the height of the emitter is 0.955 μm.The equivalent stress distribution of the cathodes with different thickness of resistive layer is similar.It indicates that, when there is no transition layer, the maximum value of the thermal stress appears at the interface between the emission layer and the resistance layer.

    Figure 5 shows the corresponding thermal stress values of the model without a transition layer.The abscissa (h)represents the distance between the points on the center axis of the model and the center of substrate bottom, as shown in Figure 4.It is found that no matter how thick the resistive layer is, the maximum thermal stress always appears at the interface between the emissive layer and the resistive layer.However, with the increase of the thickness of resistive layer, the maximum thermal stress is obviously reduced.In addition, the thermal stress of the emissive layer always keeps at a high value(8.0×107~9.1×107Pa).

    Fig.4 Thermal stress distribution of the cathode without a transition layer (h1=45 nm)

    Fig.5 Thermal stress of the cathode at h2=0 nm

    Figure 6 shows the thermal stress in the model when the thickness of transition layer is 0.1 μm.Compared with Figure 5, the simulation results show obvious changes with the addition of the transition layer.Firstly, the position of the maximum stress in the model changes to the interface between the transition layer and the emission layer.Secondly, the thermal stress value of emission layer is obviously lower than that ofh2=0 μm, which is about 6.5×107~7.8×107Pa.It indicates that, the molybdenum transition layer indeed has an effect on alleviating the thermal stress of the emission layer, acting as a gradient role in the model.However, unfortunately the large stress at the interface leads to the deformation of the transition layer or/and the emission layer, which is bad for the operation stability of the cathode.Thus we can conclude that the parameter ofh2=0.1 μm does not meet the expected design requirements.

    Fig.6 Thermal stress of the cathode at h2=0.1 μm

    Fig.7 Thermal stress of the cathode at h2=0.2 μm

    Figure 7 shows the thermal stress in the model when the thickness of transition layer is 0.2 μm.Regardless of the thickness of the resistive layer, the maximum thermal stress appears inside the transition layer.Compared with the results ofh2=0.1 μm, the thermal stress of the emission layer decreases slightly,which is about 6.4×107~7.7×107Pa.The above two features are beneficial to the cathode stability.Moreover, as the thickness of the resistive layer increases, the maximum value of the thermal stress is smaller.For example, when the thickness of the resistance layer increases from 45~72 nm, the maximum thermal stress decreases by 0.6×107Pa.It is known that, the smaller the thermal stress is, the more stably the cathodes work.Thus, we can conclude that when the transition layer is 0.2 μm and the resistance layer is 72 nm, the simulation results are ideal and the thermal stress distribution of the cathode is shown in Figure 8.

    Fig.8 Thermal stress distribution of the cathode at h1=0.072 μm, h2=0.2 μm

    Figure 9 and Figure 10 show the thermal stress in the model when the thickness of transition layer is 0.3 μm and 0.4 μm, respectively.Compared with the results ofh2=0.2 μm model, the thermal stress of the emission layers in Fig.9 and Fig.10 both increases slightly.All the maximum stress values appear at the interface between the a-Si film and Mo film, which may cause the resistance layer to deform or fall off,and result in operation instability of the cathode.

    Fig.10 Thermal stress of the cathode at h2=0.4 μm

    3 Experimental Results and Discussions

    According to the simulation results, the optimum parameters are as follows: a-Si layer thickness is 72 nm, Mo layer thickness is 200 nm, and LaB6layer thickness is 728 nm.The above parameters were experimentally verified in our paper.Firstly, a-Si film with thickness of ~75 nm was deposited on n-Si substrate, and followed by LaB6film with thickness of ~750 nm.Then another three-layer structure was also prepared, which included a-Si layer (~75 nm thickness), Mo layer (~205 nm thickness)and LaB6layer (~750 nm thickness)in turn.The thermal stress of the above two structures were tested by a thermal stress meter.

    Tab.2 Thermal stress test results of a-Si-LaB6 double films

    Tab.3 Thermal stress test results of a-Si-Mo-LaB6 triple films

    Table 2 and Table 3 show the results of thermal stress analysis of the double and triple films,respectively.When there is no molybdenum transition layer (Tab.2), the thermal stress of amorphous silicon layer is much larger than that of lanthanum hexaboride layer, which is consistent with the simulation results in Fig.5 (h1=72 nm).The average thermal stress of the amorphous silicon layer and the lanthanum hexaboride layer in Fig.5 (h1=72 nm)are calculated to be 8.5×107Pa and 8.3×107Pa, respectively, which are slightly lower than the test results.

    On the other hand, when the molybdenum transition layer is added (Tab.3), the maximum thermal stress value appears in the molybdenum film layer,which is consistent with the simulation curve in Fig.7(h1=72 nm).Compared with the data in Tab.2, the thermal stress of the lanthanum hexaboride layer is greatly reduced, confirming that the molybdenum transition layer does have an effect on alleviating the thermal stress of the emission layer.In addition, the average thermal stresses of the amorphous silicon layer,molybdenum layer, and lanthanum hexaboride layer in Fig.7 (h1=72 nm)are 8.0×107, 8.5×107and 6.6×107Pa,respectively.The possible reason for the thermal stress difference between the measurement and simulation results is that, the simulation result is the average stress under the ideal parameters of each layer, while the test value is the single experimental result.However, it should be noted that, the experimental value of thermal stress is less than 10% compared with the simulation result, which is within the allowable range.

    4 Conclusions

    In conclusion, the influence of the thickness of each layer of LaB6composite field emission array on the thermal stress has been simulated based on the ANSYS platform.The optimal structural parameters are determined and verified by experiments, and the following conclusions are obtained:

    1)The thickness of resistive layer does not affect the distribution of the thermal stress field, but the maximum value of the thermal stress decreases with the increase of resistive layer thickness.

    2)The introduction of the transition layer has a significant effect on reducing the thermal stress of the emission layer.

    3)The simulation results show that the optimum structural parameters of the cathode are as follows: the thickness of the resistive layer is 72 nm, the thickness of the transition layer is 200 nm, and the thickness of the emitter layer is 728 nm.

    4)The thermal stress test results are consistent with the simulation results, which confirm the importance of molybdenum film for improving the stability of the cathode.

    [1]CHEN J T, YANG B Q, LIU X H, et al.Field electron emission from pencil-drawn cold cathodes[J].Applied Physics Letters, 2016, 108(19): 193112.

    [2]XU J Z, XU P, OU-YANG W, et al.Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices[J].Applied Physics Letters, 2015, 106(7): 073501.

    [3]KIM H S, CASTRO E J D, LEE C H.Optimum design for the carbon nanotube based micro-focus x-ray tube[J].Vacuum, 2015, 111: 142-149.

    [4]QIN F, WANG D, XU S, et al.Repetitive operation of an L-band magnetically insulated transmission line oscillator with metal array cathode[J].Review of Scientific Instruments, 2016, 87: 044101.

    [5]WHALEY D R, BELLEW C L, SPINDT C A.100 W operation of a cold cathode TWT[J].IEEE Transactions on Electron Devices, 2009, 56(5): 896-905.

    [6]SCHEOEBEL P R, BRODIE I.Surface-science aspect of vacuum microelectronics[J].Journal of Vacuum Science and Technology, 1995, B13(4): 1391-1410.

    [7]CHALAMALA B R, REUSS R H.Studies on the interaction between thin film materials and Mo field emitter arrays[J].Journal of Vacuum Science and Technology, 2000, B18(4):1825-1832.

    [8]FENG J J.Stability of field emitter array in microwave tubes[J].Journal of Vacuum Science and Technology, 2005,25: 16-19.

    [9]YUAN J, DU B C, LI D J.Analysis on degradation mechanism in emission current of field-emitter array[J].Microfabrication Technology, 2002, 3: 70.

    [10]QU X S, LI D J, YAO B L.Influence of mesh shaped resistive layers on field emission arrays[J].Journal of Vacuum Science and Technology, 2000, 20(4): 229-231.

    [11]QU X S, LI D J, YAO B L.The distribution resistor layer on FEA[J].Semiconductor Optoelectronics, 2000, 21(3):196-202.

    [12]WANG W, LI D J, YAO B L, et al.Research on Spindt FEA with distributed series lateral resistor layer[J].Microfabrication Technology, 2000(2): 13-18.

    [13]QI K C, LIN Z L, CHEN W B, et al.Formation of extremely high current density LaB6field emission arrays via e-beam deposition[J].Applied Physics Letters, 2008, 93:093503.

    [14]CHO J R, TINSLEY O J.Functionally graded material: a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme[J].Comput Methods Appl Mech Engrg, 2000, 188: 17-38.

    考比视频在线观看| 中文字幕人妻丝袜一区二区 | 好男人视频免费观看在线| 又粗又硬又长又爽又黄的视频| 精品亚洲成a人片在线观看| 欧美日韩精品网址| 国产免费一区二区三区四区乱码| 亚洲欧美一区二区三区久久| a级毛片黄视频| 亚洲欧美日韩另类电影网站| 激情视频va一区二区三区| 亚洲自偷自拍图片 自拍| 中文字幕av电影在线播放| netflix在线观看网站| 国产精品熟女久久久久浪| 亚洲精品日本国产第一区| 亚洲成人手机| 亚洲欧美一区二区三区久久| 精品国产国语对白av| 久久精品亚洲熟妇少妇任你| 99热全是精品| 国产精品久久久久久精品古装| 欧美日韩av久久| 在线免费观看不下载黄p国产| 一边摸一边做爽爽视频免费| 久久精品久久久久久久性| 亚洲欧美一区二区三区国产| 侵犯人妻中文字幕一二三四区| 国产精品国产三级国产专区5o| 男女无遮挡免费网站观看| 国产有黄有色有爽视频| 一级片'在线观看视频| 黄色毛片三级朝国网站| 国产乱人偷精品视频| 大香蕉久久网| 国产熟女午夜一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 中文欧美无线码| 男女高潮啪啪啪动态图| 韩国高清视频一区二区三区| 国产又色又爽无遮挡免| 亚洲人成电影观看| 黄色怎么调成土黄色| 国产亚洲一区二区精品| 国产欧美亚洲国产| 一区在线观看完整版| 国产精品欧美亚洲77777| 无限看片的www在线观看| 亚洲美女搞黄在线观看| 久久精品人人爽人人爽视色| bbb黄色大片| 午夜福利视频精品| 黑人巨大精品欧美一区二区蜜桃| 日韩熟女老妇一区二区性免费视频| 波多野结衣一区麻豆| 在线观看国产h片| 99久久99久久久精品蜜桃| 老汉色∧v一级毛片| 欧美人与善性xxx| 亚洲美女黄色视频免费看| 欧美久久黑人一区二区| 亚洲av综合色区一区| av视频免费观看在线观看| 亚洲第一区二区三区不卡| 最近最新中文字幕免费大全7| 国产免费一区二区三区四区乱码| videos熟女内射| 亚洲成人av在线免费| 日韩精品有码人妻一区| 国产成人免费无遮挡视频| 亚洲精品成人av观看孕妇| 日韩欧美一区视频在线观看| 免费人妻精品一区二区三区视频| 久久精品久久精品一区二区三区| 男人舔女人的私密视频| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 亚洲五月色婷婷综合| 成人午夜精彩视频在线观看| 久久久亚洲精品成人影院| av网站在线播放免费| 在线 av 中文字幕| 日韩成人av中文字幕在线观看| www日本在线高清视频| 极品少妇高潮喷水抽搐| 亚洲av日韩精品久久久久久密 | 中文字幕人妻熟女乱码| 精品卡一卡二卡四卡免费| 伊人久久国产一区二区| 永久免费av网站大全| √禁漫天堂资源中文www| 久久久久国产精品人妻一区二区| 十八禁网站网址无遮挡| 精品国产一区二区久久| 咕卡用的链子| 国产亚洲精品第一综合不卡| 日韩av在线免费看完整版不卡| 国产日韩一区二区三区精品不卡| 啦啦啦啦在线视频资源| 国产一区二区激情短视频 | 久久99精品国语久久久| av卡一久久| 国产深夜福利视频在线观看| 成年美女黄网站色视频大全免费| 久久影院123| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av涩爱| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| 在线亚洲精品国产二区图片欧美| 亚洲av电影在线进入| 成人国产av品久久久| 人人妻人人澡人人爽人人夜夜| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产最新在线播放| 久久毛片免费看一区二区三区| 一区二区三区精品91| 久久青草综合色| 久久人人97超碰香蕉20202| 国产熟女欧美一区二区| 亚洲国产精品一区三区| 亚洲少妇的诱惑av| 男的添女的下面高潮视频| www.熟女人妻精品国产| 999久久久国产精品视频| 夫妻性生交免费视频一级片| 熟女少妇亚洲综合色aaa.| 麻豆精品久久久久久蜜桃| 十八禁网站网址无遮挡| 亚洲综合色网址| 国产 精品1| kizo精华| 又大又黄又爽视频免费| 欧美 亚洲 国产 日韩一| 午夜影院在线不卡| 黄片无遮挡物在线观看| 国产在视频线精品| 熟女av电影| 日韩精品有码人妻一区| 侵犯人妻中文字幕一二三四区| 国产一区二区三区综合在线观看| 少妇的丰满在线观看| 一边摸一边抽搐一进一出视频| 热99久久久久精品小说推荐| 日本wwww免费看| 一本大道久久a久久精品| 久久久精品免费免费高清| 如日韩欧美国产精品一区二区三区| 丁香六月欧美| 人妻 亚洲 视频| 91aial.com中文字幕在线观看| 99久久综合免费| 国产成人系列免费观看| 如日韩欧美国产精品一区二区三区| 丝袜美足系列| 久久亚洲国产成人精品v| 99精品久久久久人妻精品| 美国免费a级毛片| 久久狼人影院| 国产国语露脸激情在线看| 2021少妇久久久久久久久久久| 国产不卡av网站在线观看| 观看av在线不卡| 亚洲国产最新在线播放| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 老司机影院成人| 国产精品国产av在线观看| 日韩伦理黄色片| 国产精品久久久久成人av| 两个人免费观看高清视频| 中文字幕人妻熟女乱码| 侵犯人妻中文字幕一二三四区| 国产成人精品福利久久| 欧美国产精品一级二级三级| 999久久久国产精品视频| 母亲3免费完整高清在线观看| 精品久久蜜臀av无| 久久久久久久大尺度免费视频| 你懂的网址亚洲精品在线观看| 黑人猛操日本美女一级片| 亚洲精品中文字幕在线视频| 免费女性裸体啪啪无遮挡网站| 亚洲av电影在线观看一区二区三区| 国产精品一二三区在线看| 欧美亚洲 丝袜 人妻 在线| av片东京热男人的天堂| www.精华液| 亚洲成人av在线免费| 日韩中文字幕欧美一区二区 | 欧美精品一区二区大全| 91aial.com中文字幕在线观看| 国产熟女欧美一区二区| 亚洲一码二码三码区别大吗| 超色免费av| 色吧在线观看| 一边亲一边摸免费视频| 午夜日本视频在线| 亚洲国产欧美一区二区综合| 国产伦人伦偷精品视频| 亚洲精品aⅴ在线观看| 午夜av观看不卡| 自拍欧美九色日韩亚洲蝌蚪91| 制服人妻中文乱码| 啦啦啦中文免费视频观看日本| 在现免费观看毛片| 久热爱精品视频在线9| 老司机靠b影院| 国产亚洲精品第一综合不卡| 免费高清在线观看日韩| 看非洲黑人一级黄片| 爱豆传媒免费全集在线观看| 日日撸夜夜添| 国产精品亚洲av一区麻豆 | 侵犯人妻中文字幕一二三四区| 国产精品一区二区精品视频观看| 日韩免费高清中文字幕av| 欧美亚洲日本最大视频资源| 日本91视频免费播放| 九九爱精品视频在线观看| 秋霞伦理黄片| 在线精品无人区一区二区三| 肉色欧美久久久久久久蜜桃| 波多野结衣一区麻豆| 青青草视频在线视频观看| 99久久99久久久精品蜜桃| 国产福利在线免费观看视频| 不卡视频在线观看欧美| 亚洲视频免费观看视频| 日韩一区二区视频免费看| 免费看不卡的av| 免费看不卡的av| 日韩熟女老妇一区二区性免费视频| 国产高清不卡午夜福利| 1024视频免费在线观看| 免费观看a级毛片全部| 亚洲av成人精品一二三区| 熟女少妇亚洲综合色aaa.| 成人漫画全彩无遮挡| 亚洲欧美清纯卡通| 国产日韩欧美视频二区| 欧美最新免费一区二区三区| 国产成人av激情在线播放| 丝袜喷水一区| 免费在线观看黄色视频的| av女优亚洲男人天堂| 久久久久精品人妻al黑| 在线观看国产h片| 午夜福利视频在线观看免费| av福利片在线| 建设人人有责人人尽责人人享有的| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图综合在线观看| 欧美变态另类bdsm刘玥| 国产成人免费观看mmmm| 久久人人97超碰香蕉20202| 国产精品 国内视频| 自拍欧美九色日韩亚洲蝌蚪91| av在线播放精品| 中文字幕精品免费在线观看视频| 午夜福利影视在线免费观看| 欧美精品亚洲一区二区| 少妇猛男粗大的猛烈进出视频| 亚洲国产欧美网| 99热全是精品| 一区二区日韩欧美中文字幕| 国产成人精品久久二区二区91 | 欧美国产精品一级二级三级| 午夜日韩欧美国产| 日韩中文字幕欧美一区二区 | 久久毛片免费看一区二区三区| 精品人妻熟女毛片av久久网站| 制服丝袜香蕉在线| 亚洲成国产人片在线观看| 热re99久久精品国产66热6| 51午夜福利影视在线观看| av在线播放精品| 国产午夜精品一二区理论片| 国产男女内射视频| 一个人免费看片子| 日韩精品有码人妻一区| 性色av一级| 美女脱内裤让男人舔精品视频| 国产精品女同一区二区软件| 午夜免费观看性视频| 99热网站在线观看| 老熟女久久久| 日韩伦理黄色片| 97精品久久久久久久久久精品| 免费观看人在逋| 国产成人免费无遮挡视频| 成年动漫av网址| 久久性视频一级片| 一区福利在线观看| 欧美日本中文国产一区发布| 精品福利永久在线观看| 大香蕉久久成人网| 亚洲精品国产一区二区精华液| av电影中文网址| 人人妻,人人澡人人爽秒播 | 国产一级毛片在线| 精品人妻熟女毛片av久久网站| 亚洲精品久久久久久婷婷小说| 欧美精品av麻豆av| a级毛片黄视频| 一区二区日韩欧美中文字幕| 大香蕉久久成人网| 国产免费视频播放在线视频| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 亚洲成人一二三区av| 一级片免费观看大全| 夜夜骑夜夜射夜夜干| 成年人免费黄色播放视频| 久久热在线av| 宅男免费午夜| 欧美久久黑人一区二区| 1024香蕉在线观看| 亚洲精品国产色婷婷电影| 日本欧美视频一区| 精品久久蜜臀av无| 国产成人系列免费观看| 一本色道久久久久久精品综合| 三上悠亚av全集在线观看| 在线观看免费日韩欧美大片| 国产精品一二三区在线看| 色精品久久人妻99蜜桃| 一级黄片播放器| 亚洲精品aⅴ在线观看| 欧美国产精品va在线观看不卡| 老司机影院毛片| 丁香六月欧美| 成人免费观看视频高清| 在线观看免费高清a一片| 亚洲久久久国产精品| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 制服人妻中文乱码| 高清视频免费观看一区二区| 欧美日韩视频高清一区二区三区二| 亚洲成人国产一区在线观看 | 国产乱来视频区| 一级,二级,三级黄色视频| a 毛片基地| 满18在线观看网站| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 亚洲五月色婷婷综合| 久久天躁狠狠躁夜夜2o2o | 日韩欧美一区视频在线观看| 精品一区在线观看国产| 在线观看免费视频网站a站| 777米奇影视久久| 国产一区有黄有色的免费视频| 色婷婷av一区二区三区视频| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 欧美97在线视频| 可以免费在线观看a视频的电影网站 | 一本久久精品| 久热爱精品视频在线9| 蜜桃国产av成人99| 五月开心婷婷网| 最近最新中文字幕免费大全7| 亚洲精品日本国产第一区| 国产毛片在线视频| 在线天堂最新版资源| 成人亚洲欧美一区二区av| 熟女少妇亚洲综合色aaa.| 国产日韩欧美视频二区| 人人妻人人爽人人添夜夜欢视频| 一区在线观看完整版| 青春草亚洲视频在线观看| 成年av动漫网址| 狠狠婷婷综合久久久久久88av| 国产一区亚洲一区在线观看| 97精品久久久久久久久久精品| 国产一区二区三区综合在线观看| 少妇人妻久久综合中文| 老司机深夜福利视频在线观看 | 欧美中文综合在线视频| 国产精品国产三级国产专区5o| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频| 女人被躁到高潮嗷嗷叫费观| 视频区图区小说| 18禁观看日本| 亚洲国产av新网站| 亚洲少妇的诱惑av| 大码成人一级视频| 人妻 亚洲 视频| 久久久久精品国产欧美久久久 | 免费黄色在线免费观看| 亚洲美女黄色视频免费看| 国产精品一二三区在线看| 中文欧美无线码| 晚上一个人看的免费电影| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂| 操美女的视频在线观看| 午夜影院在线不卡| 丰满乱子伦码专区| 国产成人一区二区在线| 国产精品女同一区二区软件| 看十八女毛片水多多多| 亚洲欧美一区二区三区久久| 黄频高清免费视频| 一级a爱视频在线免费观看| 国产精品国产三级专区第一集| 精品国产超薄肉色丝袜足j| 制服诱惑二区| 熟妇人妻不卡中文字幕| 可以免费在线观看a视频的电影网站 | 国产乱人偷精品视频| bbb黄色大片| av在线app专区| 成人国语在线视频| 美女中出高潮动态图| 2018国产大陆天天弄谢| 久久av网站| 亚洲国产精品一区三区| 国产精品.久久久| 99久久99久久久精品蜜桃| 中文字幕人妻丝袜制服| 国产精品免费视频内射| 国产一区二区三区av在线| 国产精品久久久久久久久免| 99热网站在线观看| 精品一品国产午夜福利视频| 亚洲国产精品一区三区| 久久久久久久久久久免费av| 伊人久久国产一区二区| 亚洲av成人不卡在线观看播放网 | 国产精品一二三区在线看| 母亲3免费完整高清在线观看| 午夜91福利影院| 成人免费观看视频高清| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 精品一区在线观看国产| 久热这里只有精品99| 亚洲综合色网址| 久久国产精品男人的天堂亚洲| 最近最新中文字幕免费大全7| 亚洲av成人不卡在线观看播放网 | 亚洲第一av免费看| 精品久久久久久电影网| 亚洲精品一区蜜桃| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 亚洲精品视频女| 欧美人与性动交α欧美软件| 五月开心婷婷网| 国产高清国产精品国产三级| 少妇被粗大的猛进出69影院| √禁漫天堂资源中文www| 精品一区二区三卡| 中文字幕色久视频| av线在线观看网站| 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 日本色播在线视频| 欧美 日韩 精品 国产| 超色免费av| 欧美日韩av久久| 肉色欧美久久久久久久蜜桃| 一二三四中文在线观看免费高清| 亚洲欧美成人精品一区二区| 可以免费在线观看a视频的电影网站 | 伦理电影大哥的女人| 国产成人免费无遮挡视频| 精品酒店卫生间| 黄色毛片三级朝国网站| 国产欧美亚洲国产| 久久青草综合色| 99re6热这里在线精品视频| 色视频在线一区二区三区| 男女床上黄色一级片免费看| 成人漫画全彩无遮挡| 国产成人一区二区在线| 久久综合国产亚洲精品| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| www.av在线官网国产| 久久99热这里只频精品6学生| 亚洲精品美女久久久久99蜜臀 | 天天躁日日躁夜夜躁夜夜| 免费观看av网站的网址| 老司机亚洲免费影院| 亚洲七黄色美女视频| 老司机影院成人| 黄频高清免费视频| a级毛片黄视频| 久久久亚洲精品成人影院| 亚洲欧美日韩另类电影网站| 视频在线观看一区二区三区| 99热全是精品| 国产精品偷伦视频观看了| 侵犯人妻中文字幕一二三四区| 男的添女的下面高潮视频| 狂野欧美激情性bbbbbb| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 老鸭窝网址在线观看| 国产片特级美女逼逼视频| 天堂中文最新版在线下载| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 亚洲国产欧美一区二区综合| a 毛片基地| 天天躁夜夜躁狠狠久久av| 老司机深夜福利视频在线观看 | 最近2019中文字幕mv第一页| 欧美精品一区二区大全| 狂野欧美激情性bbbbbb| 视频在线观看一区二区三区| 韩国av在线不卡| 只有这里有精品99| 妹子高潮喷水视频| 麻豆av在线久日| 久久人人爽人人片av| 18在线观看网站| 久久久久网色| 伊人亚洲综合成人网| a级毛片黄视频| 日韩人妻精品一区2区三区| 少妇 在线观看| 免费高清在线观看视频在线观看| 国产黄色视频一区二区在线观看| 一级片免费观看大全| 97精品久久久久久久久久精品| 国产极品天堂在线| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 亚洲精品中文字幕在线视频| 中文字幕人妻熟女乱码| 老熟女久久久| 亚洲一级一片aⅴ在线观看| 中文字幕制服av| 尾随美女入室| 欧美日韩视频高清一区二区三区二| 啦啦啦 在线观看视频| 多毛熟女@视频| 老汉色av国产亚洲站长工具| 一区二区av电影网| 国产日韩欧美在线精品| 欧美少妇被猛烈插入视频| 1024香蕉在线观看| 新久久久久国产一级毛片| 国产免费视频播放在线视频| 老熟女久久久| 一级毛片黄色毛片免费观看视频| 久久精品国产亚洲av高清一级| 国产精品一区二区在线观看99| av国产精品久久久久影院| 秋霞伦理黄片| 亚洲av男天堂| 如何舔出高潮| 只有这里有精品99| 中文乱码字字幕精品一区二区三区| 亚洲国产精品999| 国产精品 欧美亚洲| 97在线人人人人妻| 亚洲欧美成人综合另类久久久| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 久久久久网色| 日韩av不卡免费在线播放| 下体分泌物呈黄色| 满18在线观看网站| 亚洲四区av| 男女之事视频高清在线观看 | 亚洲av欧美aⅴ国产| 9热在线视频观看99| 大话2 男鬼变身卡| 最新在线观看一区二区三区 | 亚洲综合精品二区| 美女脱内裤让男人舔精品视频| 亚洲精品av麻豆狂野| 久久久久精品人妻al黑| 精品第一国产精品| 美女午夜性视频免费| 色吧在线观看| 国产野战对白在线观看| 日本午夜av视频| www日本在线高清视频| 欧美日韩综合久久久久久| 久久国产亚洲av麻豆专区| 亚洲中文av在线| 卡戴珊不雅视频在线播放| 91精品三级在线观看| 中国国产av一级| 黄片小视频在线播放| 午夜久久久在线观看| 少妇精品久久久久久久| 日韩一卡2卡3卡4卡2021年| 人人妻,人人澡人人爽秒播 | 亚洲国产欧美一区二区综合| 亚洲一区中文字幕在线| 亚洲精品视频女| 久久久久久人人人人人| av免费观看日本| 国产欧美日韩一区二区三区在线| 日本av免费视频播放| 国产成人欧美| 哪个播放器可以免费观看大片| 黄色 视频免费看| 久久99精品国语久久久| 少妇人妻精品综合一区二区| 婷婷色麻豆天堂久久| 亚洲精品第二区| 十八禁人妻一区二区| 久久久精品区二区三区| 亚洲色图 男人天堂 中文字幕| 丝袜在线中文字幕|