• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local and biglobal linear stability analysisof parallel shear flows

    2017-03-13 05:47:08SanjayMittalandAnubhavDwivedi

    Sanjay Mittal and Anubhav Dwivedi

    1 Introduction

    Thehydrodynamic stability of laminar flows has received significant attention and has been investigated by several researchers in the past[Schmid and Henningson(2001);Chandrasekhar(1981);Huerre and Monkewitz(1990);Huerre(2000);Chomaz(2005)].The linear stability of parallel shear flows can be analyzed via finding solution to the Orr-Sommerfeld (OS) equation [Orr (1907); Sommerfeld(1908)], with suitable boundary conditions. The disturbance fi eld is assumed to be a plane wave whose amplitude varies transverse to the flow and is periodic in the homogeneous directions. The analysis can be carried out in either a spatial or temporal framework [Boiko, Dovgal, Grek, and Kozlov (2012)]. The spatial analysis assumes that the disturbance field develops in s pace. The spatial growth rate is determined for different values of frequency and Reynolds number. In contrast, the temporal analysis assumes that the disturbance develops in time. As per the Squire’s theorem [Schmid and Henningson (2001)], the 2D disturbance is the most critical in terms of its growth rate. Therefore, it is suffi cient to consider twodimensional disturbances that have streamwise periodicity [Boiko, Dovgal, Grek,and Kozlov (2012)]. The analysis is carried out to determine temporal growth rate at various Re and for disturbances with different values of streamwise wavenumber. The spatial and temporal approaches for local analysis are related to each other[Huerre (2000)]. For example, Gaster (1962) proposed a transformation for that,approximately, relates the temporal and spatial growth. Several methods have been used to solve the OS equations. Davey and Drazin (1969) utilized Bessel functions to represent the disturbance fi eld and analyze the stability of pipe Poiseuille flow. Orszag (1971) used Chebyshev polynomials to solve the OS equation for the plane Poiseuille flow. Saraph, Vasudeva, and Panikar (1979) used Galerkin’s weighted residual method to carry out the stability analysis of plane Poiseuille flow and magneto-hydrodynamic flows. Garg and Rouleau (1972) used asymptotic analysis to carry out the linear stability analysis in pipe flow. The method has also been applied, in a local sense, to spatially developing flows [Pierrehumbert (1985); Yang and Zebib (1989); Monkewitz (1988); Chomaz, Huerre, and Redekopp (1988)]. In this approach, the flow profi les at different streamwise stations are analyzed by assuming that each profi le corresponds to an independent parallel flow. The local analysis, at each streamwise station of the flow, involves solving the OS equation,with suitable boundary conditions.

    Analternateapproach toinvestigatethelinear stability of fluid flowsisthe BiGlobal and TriGlobal stability analysis[Theofilis(2011);Swaminathan,Sahu,Sameen,and Govindrajan(2011)].Unlike in the local analysis,in this approach the disturbance fi eld is represented globally,including in the streamwise direction.The analysis results in global modes which,depending on the sign of the growth rate,may either grow or decay in the entire computational domain with time.The global analysisisusually muchmorecomputationally expensivethan thelocal one.Such an approach has been used to analyze the global linear stability properties of several non-parallel flows[Mittal(2004);Chomaz(2005);Schmid and Henningson(2001)].Swaminathan,Sahu,Sameen,and Govindrajan(2011)carried out a global linear stability analysis of a diverging channel flow using spectral collocation method.Mittal and Kumar(2003)used astabilized finite element method for the global LSA of stationary and rotating cylinder.Later,Verma and Mittal(2011)used asimilar approachfor carryingout global LSA to investigatetheexistenceand stability of secondary wake mode of a two-dimensional flow past a circular cylinder.Morerecently,Navrose,Meena,and Mittal(2015)carried out LSA of spinning cylinder in auniform flow and identifi ed several unstablethree-dimensional modes for variousrotation ratesof thespinning cylinder.

    In the present work,Linear Stability Analysis(LSA)of the plane Poiseuille flow is carried out.Local and global analyses are considered.The solutions to the OS equation for local analysis have been obtained in a temporal framework.A spectral collocation method based on Chebyshev polynomials[Schmid and Henningson(2001)]is used to solve the governing Orr-Sommerfeld(OS)equation.The global LSA of theplane Poiseuilleflow iscarried out using astabilized finiteelement formulation.The governing equationsarecast in theprimitivevariables:velocity and pressure.Equal-order finite-element interpolation functions are used for pressure and velocity disturbancefi elds.Four-noded quadrilateral elementswith bilinear interpolation isemployed.Thestreamline-upwind/Petrov-Galerkin(SUPG)[Brooks and Hughes(1982)]and pressure-stabilizing/Petrov-Galerkin(PSPG)stabilization techniques[Tezduyar,Mittal,Ray,and Shih(1992)]are employed to stabilize the computations against spurious numerical oscillations.The fi nite element formulation results in a generalized eigenvalue-vector problem which is solved using the subspace iteration method[Stewart(1975)].For carrying out the global analysis,we assume periodic boundary conditions at the inflow and the outflow for the disturbancefield.Thisallowsadirectcomparisonof theglobal LSA withthe OSequation.A comparison between the local and global analysis of the plane Poiseuille flow at Re=7000 is presented and is utilized to show the connection between the two analyses.

    2 Governing Equations

    2.1 Linearized Disturbance Equations

    Let,??Rnsdand(0,T)be the spatial and temporal domains respectively,where nsdis the number of space dimensions,and letΓ denote the boundary of?.The Navier-Stokesequationsgoverning incompressiblefluid flow are given as:

    Hereρ,u andσ are the density,velocity and the stress tensor,respectively.The stresstensor isrepresented asσ =?p I+μ((?u)+(?u)T),where p andμ arethe pressure and coeffi cient of dynamic viscosity,respectively.The boundary conditionsarespecified as:

    Here,ΓgandΓhare the complementary subsetsof the boundaryΓwhere Dirichlet and Neumann boundary conditionsarespecified,respectively.

    To understand the evolution of small disturbances,the unsteady solution is expressed asacombination of steady solution and disturbance:

    Here,U and P representthesteady statesolution whosestability isto bedetermined while u′and p′aretheperturbation fields.Substituting thedecomposition given by Eq.(3)in Eqs.(1)and subtracting from them,the equations for steady flow one obtains the evolution equations for the disturbance fields.Further,the perturbations,u′and p′,areassumed to besmall and thenon-linear termsaredropped.The linearized perturbation equationsaregiven as:

    Here,σ′is the stress tensor for the perturbed solution.Eq.(4)subjected to the initial condition,u′(x,0)=u′0describes the evolution of small disturbances in the domain,?.Theboundary conditionson u′arehomogeneousversionsof thoseused for calculating thebaseflow(Eq.(2)).

    2.2 Global Linear Stability Analysis

    To conduct a global Linear stability analysis we assume the following form of the disturbancefield,u′and p′

    Substituting Eqs.(5)in the linearized disturbanceequations(Eqs.(4))we obtain:

    Eqs.(6)representsa generalized eigenvalue problem withλas the eigenvalue and(?u,?p)as the corresponding eigenmode.The boundary conditions for(?u,?p)are homogeneous version of those used for calculating the base flow(U,P).In general,the eigenvalue λ = λr+iλiis complex.The growth rate is given by the real part,λrof the eigenvalue whereas the imaginary part,λiis related to the temporal frequency of the of the disturbance field.A positive value ofλrindicates an unstable mode.This method has been utilized by several researchers in the past to investigatetheglobal linear stability of varioussteady flow configurations[Jackson(1987);Morzynski and Thiele(1991);Morzynski,Afanasiev,and Thiele(1999);Swaminathan,Sahu,Sameen,and Govindrajan(2011)].Mittal and Kumar(2003)proposed a stabilized fi nite element formulation for solving these equations and employed it to study theglobal stability propertiesof theflow past astationary and rotating cylinder.

    2.3 Local Stability Analysis:Orr-Sommerfeld Equation

    The disturbance field is assumed to be periodic along the two homogeneous directions:x and z.The wavenumbers along the x and z directions areαandβ,respectively.Thus,the perturbation fi eld in thisscenario isgiven by:

    Similar expressions can bewritten forwhich represent the x and z component of the disturbance fi eld.Let,k=α?i+β?k represent the wavenumber vector in the x?z planewith itsmagnitudegiven by k=.Substituting,Eq.(8)in thelinearized disturbance equation described by Eq.(7),weobtain:

    We consider the case when the streamwise wavenumber,α,is real and the eigenvalueλ =λr+iλiiscomplex.Thereal part,λr,isthegrowthrateof thedisturbance whileλi,theimaginary part,isthetemporal frequency of the disturbance.The disturbance associated with the eigenvalue that has the largest real mode is of major interest as it represents the fastest growing mode.For 2?D disturbances we can rewrite Eq.(9)to obtain the Orr-Sommerfeld(OS)equation:

    The disturbance velocity,u′,v′must vanish on the far-fi eld and solid boundaries,Γ.For the periodic disturbance fi eld considered this requires?u,?v to vanish onΓ.Using the continuity equation,one can simplify thisto:

    3 Formulation

    3.1 The Stabilized Finite Element Formulation for Global Linear Stability Analysis

    Let??R2be the spatial domain for global linear stability analysis(Eq.(6)).Consider afi niteelement discretization of?into subdomains?e,e=1,2,3,...,nel,where nelis the number of elements.Based on this discretization we define fi nite element trial function spaces for velocity and pressure perturbation fi elds asand,respectively.The weighting function space areand,respectively.Thesefunction spacesareselected by taking thehomogeneous Dirichlet boundary conditions into account,assubsetsof[H1h(?)]2and H1h(?),where H1h(?)isthe finitedimensional function spaceover?.Thestabilized finiteelement formulation of Eq.(6),is as follows:Findu?h∈Suuuhandp?h∈such that?w?h∈Vuuuhand

    Here,Uhrepresents the base flow at the element nodes.In the variational formulation given by Eq.(13),the first three terms constitute the Galerkin formulation of the problem.The terms involving the element level integrals are the stabilization terms added to the basic Galerkin formulation to enhance its numerical stability.These terms stabilize the computations against node-to-node oscillations in advection dominated flows and allow the use of equal-in-order basis functions for velocity and pressure.The terms with coeffi cientsτSUPGand τPSPGare based on the SUPG(Streamline-Upwind/Petrov-Galerkin)[Brooks and Hughes(1982)]and PSPG(Pressure-stabilized/Petrov-Galerkin)[Tezduyar,Mittal,Ray,and Shih(1992)]stabilizations.The SUPGformulation for convection dominated flowswas introduced by Hughes and Brooks(1979)and Brooks and Hughes(1982).PSPG stabilization for enabling the use of equal-order interpolations for the velocity and pressureto fluid flowsat finite Reynoldsnumber wasintroduced by Tezduyar,Mittal,Ray,and Shih(1992).The term with coeffi cientτLSICis a stabilization term based on theleast squares of thedivergencefreecondition on the velocity field.It providesnumerical stability at high Reynoldsnumber.Here,thestabilization coefficients used in the finite element formulation of LSA(Eq.(13))are computed on the basis of the base flow at the element nodes,Uh.The stabilization parameters aredefi ned as[Tezduyar,Mittal,Ray,and Shih(1992)]:

    Here,heis the element length based on the minimum edge length of an element[Mittal(2000)]and Uhisthebase flow velocity at element nodes.

    Eq.(13)lead to a generalized non-symmetric eigenvalue problem of the form A X?λB X=0.For our case,theeigenvalueproblem isslightly morecomplicated asthecontinuity equation responsiblefor determining pressurecausesthematrix B to becomesingular.Hence,to avoid singularity,wesolvetheinverseproblem,i.e.,eigenvalues for B X?μA X=0 are computed.Here,λ =1/μ.To check the stability of the steady-state solution we look for the rightmost eigenvalue(eigenvalue with largest real part),using thesubspaceiteration method[Stewart(1975)].

    3.2 The Spectral Method for Local Linear Stability Analysis

    Thespectral collocation method based on Chebyshev polynomialsof thefi rstkind[Schmid and Henningson(2001)]isused to solvethe Eq.(11)for carrying out thelocal sta-

    bility analysis.The Chebyshev polynomial of the fi rst kind isdefi ned as:

    for all non-negativeintegers n∈[0,N]and y∈[?1,1].By using asuitabletransformation,it ispossibleto map any other rangeof y to the Chebyshev domain[?1,1].The Chebyshev polynomials areutilized as the basis functions to approximate the eigenfunction,?v(y)in Eq.(8):

    Thisapproximation of theeigenfunction issubstituted in the OSequation(Eq.(11).It resultsin the following equation:

    Thecollocation method isemployed to evaluatetheconstants anin theapproximation given by Eq.(17).The following Gauss-Lobatto collocation pointsareused:

    Eq.(18)leads to the generalized eigenvalue problem of the form A X?λB X=0.In the present work,the numerical solution to the same is obtained using LAPACK[Anderson,Bai,Bischof,Blackford,Demmel,Dongarra,Du Croz,Greenbaum,Hammarling,McKenney,and Sorensen(1999)]libraries.

    4 Problem Setup

    4.1 The Base Flow

    Thelocal and theglobal linear stability analysisarecarried outfor theplane Poiseuille flow.Figure(1)shows the schematic of the flow.The fluid occupies the channel formed by two stationary plates parallel to each other and separated by a distance 2H.Theplatesarealigned with the x?axis.Thevelocity profilefor thebaseflow

    Figure1:Schematic of theplane Poiseuilleflow.

    is shown in the fi gure.It is parabolic and symmetric about the channel centerline.The equation for the streamwise component of velocity isgiven as:

    Here,H denotes half the channel width and Ucis the centerline velocity.All the lengthsarenon-dimensionalized with H,and velocity with Uc.The Reynoldsnumber,Re,isdefined as:

    where,νdenotesthekinematic viscosity of thefluid.

    4.2 Local Linear Stability Analysis

    The local analysis of the plane Poiseuille flow iscarried out via the solution to OS(Eq.(11)).The domain across the channel width,[?H,H],is mapped to[?1,1].No-slip boundary conditions are applied to the disturbance fi eld at the channel walls.In thissituation,Eq.(12)can berewritten as:

    The OSequation(Eq.(11)),along withtheboundary conditions(Eq.(22),issolved in thetemporal point of view.The wavenumber,α,is assumed to bereal.The OS equation is solved for different values of values ofαand Re.The effect of the number of grid points,along y,on the accuracy of the solution is investigated.It is found that 200 collocation points provide adequate spatial resolution.All the resultspresented in thispaper for the OSanalysisarewith 200 points.

    4.3 Global Linear Stability Analysis

    The flow in a fi nite streamwise length of the channel(=L)is considered for carrying out theglobal analysis.Thebaseflow isthefully developed steady flow in the channel.The streamwise velocity for the same is given by Eq.(20).The boundary conditions for thedisturbance fi eld are as follows.The disturbance velocity is prescribed a zero value at the upper and lower walls.To enable comparison with the local analysis,the disturbance is assumed to be periodic in the streamwise direction.Therefore,periodic boundary conditionsareapplied on all thevariablesat the inflow and theoutflow boundaries.Thefi niteelementmesh consistsof 24 elements alongthestreamwiseand 150elementsinthecross-flow directions.Thegrid points are uniformly spaced along x but are clustered close to the wall in the y direction.A mesh convergence study is carried out for the Re=7000 plane Poiseuille flow and L/2H=1.A more refi ned grid with roughly twice the resolution in each direction leadsto lessthan onepercentdifferencein theresults,thereby reflecting the adequacy of theoriginal fi nite element mesh.

    5 Results:Linear Stability Analysisof the Plane Poiseuille Flow

    5.1 OSAnalysis

    Local analysis via solution to the OS equation(Eq.(11))is carried out for various values of Re andα.At each(Re,α)the eigenvalue with the largest real part is identified.Figure(2)shows the variation of the growth rate of the disturbance associated with the rightmost eigenvalue with Re andα.The fi gure shows the iso-contours for various values of growth rate in the Re?αplane.The contour corresponding to zero growth rateistheneutral curve.Thecritical Re for theonset of instability is the lowest value of the Re on the neutral curve,for any value of α.The critical Re for this flow is found to be 5773,approximately and is marked in Figure(2).The value is in excellent agreement with results from earlier studies[Schmid and Henningson(2001)].

    Theresultsfor theflow at Re=7000 arepresented inmoredetail in Figure(3).This fi gureshowsthevariation of thereal(λr)and imaginary(λi)partsof therightmost eigenvalue with wavenumber(α)at Re=7000.While λrdenotes the growth rate,λiis related to the temporal frequency of the disturbance.We observe that the Re=7000 flow is linearly unstable only to disturbances whose wavenumber lies in a specifi c interval.The maximum growth rate is0.0017,approximately forα=1.00.

    Figure 2:Orr-Sommerfeld analysis of the Plane Poiseuille flow:iso-contours of constant growth rate.The critical Re for the onset of the instability of the flow is Recr=5773 and ismarked with a vertical broken line.

    Figure 3:Orr-Sommerfeld Analysis of the Plane Poiseuille Flow at Re=7000:variation of real and imaginary partof theright-most eigenvaluewith wavenumber,α.

    Figure 4:Global linear stability analysis of the Plane Poiseuille flow for Re=7000 and L/2H=5.10:the v′field for the eigenmodes corresponding to the two rightmost eigenvalues.The upper row corresponds to one cell in the domain(n=1)and has a growth rate,λr=?0.017.The lower row is for n=2 with two cells in thedomain;the growth ratefor this mode isλr=?0.0097.

    5.2 Global Analysis

    In thelocal analysis,the OSequation(Eq.(11))can besolved by usingαasoneof the independent variables.However,the global analysis(Eq.(6))does not directly offerαas an independent variable.The analysis,of course,can be carried out for different streamwise extent(L)of the computational domain.We attempt to understand the relation between L(for the global analysis)andα(for the local analysis).We propose that for a spatially periodic disturbance,its wavenumber is related to thelength of thecomputational domain as:

    where,n is the number of waves along the stream wise direction in the domain.To demonstratethis,weconsider theglobal linear stability analysisfor Re=7000.Fig.(4)shows the eigen modes associated with the two right most eigenvalues for L/2H=5.1.While the first one is associated with one wave(n=1),the other houses two waves(n=2)in the computational domain.Thus,they both represent different wavenumbersand areassociated with their own growth rates,aslisted in the caption of the fi gure.The real and imaginary part of the eigenvalue obtained from the global analysis,and their comparison with the values obtained from the local analysis,arealso shown in Figures(5)and(6).Thedatapointscorresponding to the two eigenmodes lie on the vertical line segment marked in the two figures for L/2H=5.10.The values from the local and global analysis are in excellent agreement.

    Figures(5)and(6)show the variation of the growth rate and the imaginary part of the rightmost eigenvalue from the global analysis for plane Poiseuille flow at Re=7000.The data points from the global analysis are marked by solid circles.Also shown in thesamefigurearetheresultsfrom thelocal analysis.Thevariation is associated with a number of peaks and valleys.We attempt to understand this behavior.It isdemonstrated in Fig.(4)that thecomputational domain may accommodate multiple cells of the disturbance.We fi rst identify in Figs.(5)and(6)the cases that are associated with onecell only(n=1)in thestreamwise extent of the domain.A best fi t to these points is in excellent agreement with the results from the local analysis.These curves are marked as L=2π/α in the figures.These curvescan also beutilized to understand thevariation ofλrandλiwithα.Wenote that thegrowth rateand temporal frequency of an eigenmodeshould depend onα,but must beindependent of thenumber of cellsof the sameαin the computational domain.Usingthisidea,and thedataforλrandλiv/sα fromthelocal analysis,the variation ofλrand λiwith L/2H is generated for multiple cells by observing that L=2πn/α,where n is the number of cells.These curves are shown in Figs.(5)and(6)for various values of n.The outer envelope of these curves is shown in thicker solid line.These curves provide an estimate of the variation of the rightmost eigenvaluewiththelength of thecomputational domain.Excellentagreement is observed between the estimated rightmost eigenvalue and the actual value from global LSA computationsfor n≥2.Wenotethatasthelengthof thecomputational domain isincreased,thedependenceof the growth rateof themost unstableeigenmodeon L becomesweaker.In theasymptotic limit of thedomain being infinitely long,the fastest growing mode comprises of infi nite cells of the n=1 eigenmode whose wavenumber is associated with largestλr.We also note from Fig.(5)that in certain situations it might be diffi cult to track the eigenmodes corresponding to low values ofαfrom the global analysis.Low values ofα correspond to large L/2H.Asseen from Fig.(5),at large L/2H,n=1 modeisnot necessarily theone with rightmost eigenvalue.For example,at L/2H=15 the rightmost eigenvalue corresponds to the mode with five cells(n=5).The modes with four,three,two and onecell have lower growth rate,and in the sameorder.Therefore,tracking the modefor n=1 for thisvalueof L/2H is relatively morechallenging than theones for higher valuesof n.

    To further demonstrate that the growth rate and temporal frequency of an eigenmode must be independent of the number of streamwise cells in the global analysis,weconsider thecasewhereweseek therightmost eigenvalueforα=1.05.For n=1,thiscorrespondsto L/2H=3.0,approximately.Figure(7)showstheeigenmodesfromtheglobal analysisfor variousvaluesof L/2H for thesameα(=1.05).Thevariousvaluesof L arechosen by varying n in therelation L=2 nπ/α.A broken horizontal lineismarked in Figures(5)and(6)to show thereal and imaginary partof therightmosteigenvaluefor variousvaluesof L thatcorrespond toα=1.05.We observe that all these modes are associated with the same eigenvalue.In fact,theeigenmodesarealso of thesamefamily.They areshown in Figure(7)and have

    Figure 5:Variation of the growth rate of the leading eigenvalue with L/2H for the plane Poiseuilleflow for Re=7000:thesolid dotsrepresent thegrowth rateof the mostunstablemodeobtained atvariousvaluesof L/2H fromglobal LSA.Thesolid(red)curveisobtained from thelocal(Orr-Sommerfeld)analysis.It isin excellent agreement with the best fi t to the points corresponding to one streamwise wave(n=1)from global analysis asper the relation L=2π/α.The curve isreplicated for various n to show the predicted variation ofλr with L,for the global analysis using the relation L=n(2π/α),when the domain houses different number of cells.Theouter envelopeof thesecurves,showninthicker solid line,representsthe eigenmode associated with the rightmost eigenvalue for the corresponding length of thecomputational domain.

    the sameflow structure,albeit with different number of cells.

    6 Concluding Remarks

    Hydrodynamic stability of shear flows has been widely investigated in the past usinglocal and global Linear Stability Analysis(LSA).Inthiswork wehavereviewed thetwo approachesand attempted to highlightthedifferencebetween thetwo in the context of their application to parallel shear flows.Resultsfor thelinear stability of plane Poiseuille flow have been presented,using both approaches.The local analysisiscarried out by solving the Orr-Sommerfeld(OS)equation using thespectral collocation method based on Chebyshev polynomials.The analysis has been carried out for various wavenumbers,αof the streamwise periodic disturbance fi eld.The critical Re for the onset of linear instability for plane Poiseuille flow is found to be 5773,which is in good agreement with earlier results[Schmid and Henningson(2001)].The stability of the flow at Re=7000 has been presented in more detail.For example,the variation of the real and imaginary part of the least stable eigenvalue withαhas been presented.Unlike the local analysis which involves solution to an ordinary differential equation,the global analysis involves fi nding solution to a set of partial differential equations.The analysis has been carried out for atwo-dimensional disturbance fi eld that isassumed to bespatially periodic along the stream wise direction.A stabilized finite element method has been presented for carrying out the global LSA in primitive variables.Equal-in-order fi nite element functions are used for representing velocity and pressure.To suppress the numerical oscillationsthat might appear in thecomputations,the SUPGand PSPG,stabilizationsareadded tothe Galerkinfiniteelementformulation.Theformulation hasbeen used to carry out the linear stability analysisfor the plane Poiseuille flow at Re=7000.Computations are carried out for various values of the streamwise length,L,of thecomputational domain.

    Figure 6:Variation of the imaginary part of theleading eigenvalue with L/2H for theplane Poiseuilleflow for Re=7000:thesolid dotsrepresent theimaginary part of the most unstable mode obtained at various values of L/2H from global LSA.The solid(red)curve isobtained from the local(Orr-Sommerfeld)analysis.It isin excellent agreement with thebest fit to thepointscorresponding to onestreamwise wave(n=1)from global analysis as per the relation L=2π/α.The curve is replicated for various n to show the predicted variation ofλi with L,for the global analysisusingtherelation L=n(2π/α),when thedomainhousesdifferent number of cells.The curves shown in thicker solid line representsλi associated with the rightmost eigenvaluefor thecorresponding length of thecomputational domain.

    Figure 7:Eigenmodes of v′corresponding to the leading eigenvalue for various lengths of the domain obtained with the global LSA for the plane Poiseuille flow for Re=7000 for disturbancesthat areperiodic in thestreamwise direction.

    Unlike the local analysis, the global analysis can handle non-periodic disturbances and is applicable to non-parallel flows as well. However, the global analysis is signifi cantly more expensive than the local a nalysis. For the parallel flow and with spatially periodic disturbances the present work brings out a very interesting relationship between the wave number of the disturbance and the streamwise extent of the domain in the global analysis. When the eigenmode contains only once cell, the results from the local and global analysis are virtually identical; the wavenumber and streamwise extent of the domain are related as α = 2 π/L. However, when the eigenmode consists of n cells along the streamwise length of the domain the relationship is: α = (2 πn)/L. For a very large value of L, the global analysis results in an eigenmode with a large number of cells of the eigenmode whose α corresponds to the mode with largest growth rate. If one would like to use the global analysis to create the growth rate v/s α curve for the rightmost eigenvalue, as is done in the local analysis for a specific value of Re, the procedure is complicated by the number of cells that are housed in the domain. In the scenario when L is relatively large, to track an eigenmode for low α, the eigenmode associated with one cell might not be the most unstable mode. Therefore, one needs to examine the eigenmodes for the first few eigenvalues that are arranged in the descending order of their real part.The one that corresponds to α = 2 π/L is the eigenmode which consists of only one cell along the streamwise direction.

    Acknowledgement:The help from Mr.Hardik Parwana in carrying out some of thecomputationsisgratefully acknowledged.

    Anderson,E.;Bai,Z.;Bischof,C.;Blackford,S.;Demmel,J.;Dongarra,J.;Du Croz,J.;Greenbaum,A.;Hammarling,S.;McKenney,A.;Sorensen,D.(1999):LAPACKUsers’Guide.Society for Industrial and Applied Mathematics,Philadelphia,PA,third edition.

    Boiko,A.V.;Dovgal,A.V.;Grek,G.R.;Kozlov,V.V.(2012): Physics of Transitional Shear Flows.Springer-Verlag.

    Brooks,A.;Hughes,T.(1982):Streamlineupwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations.Computer Methods in Applied Mechanics and Engineering,vol.32,pp.199–259.

    Chandrasekhar,S.(1981): Hydrodynamic and hydromagnetic stability.Dover.

    Chomaz,J.-M.(2005): Global instabilities in spatially developing flows:nonnormality and nonlinearity.Annual Review of Fluid Mech.,vol.37,pp.357–392.

    Chomaz,J.M.;Huerre,P.;Redekopp,L.G.(1988):Bifurcations to local and global modes in spatially developing flows.Physical Review Letters,vol.60,pp.25–28.

    Davey,A.;Drazin,P.(1969):Thestability of poiseuilleflow in apipe.J.Fluid Mech.,vol.36,pp.209–218.

    Garg, V. K.; Rouleau, W. T. (1972): Linear spatial stability of pipe poiseuille flow. J. Fluid Mech., vol. 54, pp. 113–127.

    Gaster,M.(1962): A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability.J.Fluid Mech.,vol.14,pp.222–224.

    Huerre,P.(2000): Open shear flow instabilities.In Batchelor,G.;Moffatt,H.;Worster,M.(Eds):Perspectivesin Fluid Dynamics,pp.159–229.Cambridge.

    Huerre,P.;Monkewitz,P.(1990): Local and global instabilities in spatially developing flows.Annual Review of Fluid Mech.,vol.22,pp.473–537.

    Hughes,T.;Brooks,A.(1979): A multi-dimensional upwind scheme with no crosswind diffusion.Journal of Applied Mechanics,vol.34,pp.19–35.

    Jackson,C.(1987):A fi niteelement study of theonset of vortex shedding in flow past variously shaped bodies.J.Fluid Mech.,vol.182,pp.23.

    Mittal,S.(2000): On the performance of high aspect-ratio elements for incompressible flows.Computer Methods in Applied Mechanics and Engineering,vol.188,pp.269–287.

    Mittal,S.(2004):Three-dimensional instabilitiesin flow past a rotating cylinder.Journal of Applied Mechanics,vol.71,pp.89–95.

    Mittal,S.;Kumar,B.(2003): Flow past a rotating cylinder.Journal of Fluid Mechanics,vol.476,pp.303–334.

    Monkewitz,P.A.(1988): The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers.Physics of Fluids,vol.31,pp.999–1006.

    Morzynski, M.; Afanasiev, K.; Thiele, F. (1999): Solution of the eigenvalue problems resulting from global non-parallel flow s ta bility analysis.Comput. Meth-ods Appl. Mech. Eng., vol. 169, pp. 161.

    Morzynski,M.;Thiele,F.(1991):Numerical stability analysis of aflow about a cylinder.Z.Angew.Math.Mech.,vol.71,pp.T424.

    Navrose;Meena,J.;Mittal,S.(2015): Three-dimensional flow past a rotating cylinder.J.Fluid Mech.,vol.766,pp.28–53.

    Orr,W.M.(1907):The stability or instability of the steady motions of a perfect liquid and of a viscousliquid.Proc.R.Irish Acad.Sec.A,vol.27,pp.9–138.

    Orszag,S.A.(1971):Accurate solution of the orr-sommerfeld stability equation.J.Fluid Mech.,vol.50,pp.689–703.

    Pierrehumbert,R.T.(1985): Local and global baroclinic instability of zonally varying flow.Journal of the Atmospheric Sciences,vol.41,pp.2141–2162.

    Saraph,V.;Vasudeva,B.R.;Panikar,J.(1979):Stability of parallel flowsby the fi nite element method.Int.J.Numer.Methods Engineering,vol.17,pp.853–870.

    Schmid,P.J.;Henningson,D.S.(2001): Stability and Transition in Shear Flows.Springer-Verlag.

    Sommerfeld,A.(1908):Ein Beitrag zur hydrodynamischen Erkl?erung der turbulenten Flüessigkeitsbewegungen. Proc.Fourth Internat.Cong.Math.,Rome,vol.III,pp.116–128.

    Stewart,G.(1975):Methods of simultaneous iteration for calculating eigenvectors of matrices.In Miller,J.(Ed):Topics in Numerical Analysis II,pp.169–185.Academic Press:New York.

    Swaminathan,G.;Sahu,K.;Sameen,A.;Govindrajan,R.(2011): Global instabilities in diverging channel flows.Theor.Comput.Fluid Dyn.,vol.25,pp.53–64.

    Tezduyar,T.;Mittal,S.;Ray,S.;Shih,R.(1992):Incompressibleflow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements.Comput.Meth.Appl.Mech.Engrg,vol.95,pp.221.

    Theofilis,V.(2011):Global linear instability.Annual Review of Fluid Mech.,vol.43,pp.319–352.

    Verma,A.;Mittal,S.(2011): A new unstable mode in the wake of a circular cylinder.Phys.Fluids.,vol.23,pp.121701.

    Yang,X.;Zebib,A.(1989): Absolute and convective instability of a cylinder wake.Physicsof Fluids A,vol.1,pp.689–696.

    99久久精品热视频| 很黄的视频免费| 亚洲18禁久久av| 国产毛片a区久久久久| 舔av片在线| 亚洲av成人不卡在线观看播放网| 桃红色精品国产亚洲av| 亚洲美女视频黄频| 黑人操中国人逼视频| 一边摸一边抽搐一进一小说| 99久久综合精品五月天人人| 免费搜索国产男女视频| 国产私拍福利视频在线观看| 欧美黄色片欧美黄色片| 国产激情欧美一区二区| 最近在线观看免费完整版| 亚洲精品国产精品久久久不卡| 久久精品91蜜桃| 日韩欧美在线二视频| 亚洲九九香蕉| 夜夜躁狠狠躁天天躁| 免费搜索国产男女视频| 精品人妻1区二区| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 91字幕亚洲| 国产1区2区3区精品| 午夜激情福利司机影院| 十八禁网站免费在线| 亚洲精品在线美女| 欧美最黄视频在线播放免费| 精品免费久久久久久久清纯| 亚洲国产精品sss在线观看| 亚洲午夜精品一区,二区,三区| 国产激情久久老熟女| 亚洲aⅴ乱码一区二区在线播放| 欧美在线黄色| 欧美日韩精品网址| 最近最新中文字幕大全电影3| 老鸭窝网址在线观看| 亚洲国产看品久久| 日本熟妇午夜| 亚洲国产色片| 老汉色av国产亚洲站长工具| 欧美乱色亚洲激情| 欧美丝袜亚洲另类 | 男女那种视频在线观看| 男女之事视频高清在线观看| 色在线成人网| 欧美日韩国产亚洲二区| 国产精品亚洲av一区麻豆| 免费大片18禁| 黑人巨大精品欧美一区二区mp4| 国产久久久一区二区三区| 免费观看人在逋| 亚洲一区二区三区色噜噜| 中文字幕久久专区| 校园春色视频在线观看| 久久久久久久精品吃奶| 国产一区在线观看成人免费| ponron亚洲| 国产成人精品久久二区二区免费| 国产97色在线日韩免费| 亚洲av第一区精品v没综合| 国产高清激情床上av| 精品国产亚洲在线| 窝窝影院91人妻| 午夜激情欧美在线| 国产午夜精品久久久久久| 黄色 视频免费看| 免费在线观看日本一区| 精品免费久久久久久久清纯| 成人国产一区最新在线观看| 国产一级毛片七仙女欲春2| 久久热在线av| 99在线视频只有这里精品首页| 国产精品免费一区二区三区在线| 一个人看的www免费观看视频| www.熟女人妻精品国产| 又大又爽又粗| 一进一出好大好爽视频| 成人国产综合亚洲| 国产aⅴ精品一区二区三区波| 18禁裸乳无遮挡免费网站照片| 久久精品国产清高在天天线| 此物有八面人人有两片| 国产伦在线观看视频一区| 国产单亲对白刺激| 偷拍熟女少妇极品色| 婷婷六月久久综合丁香| 亚洲一区二区三区色噜噜| 人人妻人人看人人澡| 久久草成人影院| 久久久久久久精品吃奶| 五月玫瑰六月丁香| 亚洲精品在线观看二区| 欧美乱色亚洲激情| 色尼玛亚洲综合影院| 国产淫片久久久久久久久 | 亚洲人成电影免费在线| 欧美性猛交黑人性爽| 婷婷精品国产亚洲av在线| 国产熟女xx| www.熟女人妻精品国产| 久9热在线精品视频| 婷婷六月久久综合丁香| ponron亚洲| 国语自产精品视频在线第100页| 午夜久久久久精精品| 一本一本综合久久| 成年女人永久免费观看视频| 美女大奶头视频| 亚洲av成人不卡在线观看播放网| 亚洲av片天天在线观看| xxxwww97欧美| 淫秽高清视频在线观看| 婷婷精品国产亚洲av在线| 天天一区二区日本电影三级| 99久久成人亚洲精品观看| 精品欧美国产一区二区三| a级毛片a级免费在线| 成人三级黄色视频| 又黄又粗又硬又大视频| 成年女人毛片免费观看观看9| 免费人成视频x8x8入口观看| 久久久久久久久久黄片| 欧美+亚洲+日韩+国产| 在线观看舔阴道视频| 美女扒开内裤让男人捅视频| 免费人成视频x8x8入口观看| 99精品欧美一区二区三区四区| 在线观看免费视频日本深夜| 少妇的逼水好多| 麻豆av在线久日| 香蕉av资源在线| 国产亚洲精品一区二区www| 婷婷丁香在线五月| 女人高潮潮喷娇喘18禁视频| 欧美日韩国产亚洲二区| 婷婷丁香在线五月| 这个男人来自地球电影免费观看| www.999成人在线观看| 午夜福利在线在线| 亚洲国产欧美网| 狂野欧美激情性xxxx| 99久久无色码亚洲精品果冻| 香蕉av资源在线| 亚洲 国产 在线| 黄色日韩在线| 天堂网av新在线| 国产精品久久久久久亚洲av鲁大| 黄色成人免费大全| 搞女人的毛片| 亚洲av中文字字幕乱码综合| 亚洲av电影不卡..在线观看| 亚洲欧美精品综合久久99| 后天国语完整版免费观看| 国产黄a三级三级三级人| 亚洲中文字幕日韩| 国产又黄又爽又无遮挡在线| av女优亚洲男人天堂 | 国产爱豆传媒在线观看| 成人永久免费在线观看视频| 亚洲欧美精品综合久久99| 欧美成人一区二区免费高清观看 | 久久久久久国产a免费观看| 色哟哟哟哟哟哟| 亚洲国产精品合色在线| 亚洲在线自拍视频| 很黄的视频免费| 亚洲av熟女| 88av欧美| 国产精品久久久久久精品电影| 麻豆久久精品国产亚洲av| 99久久99久久久精品蜜桃| 黄色丝袜av网址大全| 美女 人体艺术 gogo| 国模一区二区三区四区视频 | 99精品欧美一区二区三区四区| 国产精品98久久久久久宅男小说| 中文字幕av在线有码专区| 欧美大码av| 日本三级黄在线观看| 国产视频内射| 十八禁人妻一区二区| 嫩草影院精品99| 久久香蕉国产精品| 国产精品一及| 亚洲自拍偷在线| 老汉色∧v一级毛片| 欧美日本视频| 亚洲 欧美一区二区三区| 色尼玛亚洲综合影院| 99在线视频只有这里精品首页| 日本 欧美在线| 免费看美女性在线毛片视频| 国产黄a三级三级三级人| 好男人电影高清在线观看| www日本在线高清视频| 亚洲av中文字字幕乱码综合| 亚洲在线自拍视频| www国产在线视频色| 精品欧美国产一区二区三| 国产亚洲欧美在线一区二区| 国产精品av视频在线免费观看| 日韩免费av在线播放| 亚洲成人免费电影在线观看| 国产精品亚洲美女久久久| 脱女人内裤的视频| 又爽又黄无遮挡网站| 色精品久久人妻99蜜桃| 九九热线精品视视频播放| 欧美午夜高清在线| 好男人电影高清在线观看| 欧美日韩精品网址| 岛国在线观看网站| 欧美日韩国产亚洲二区| 丁香六月欧美| 国产精品一区二区免费欧美| 国产亚洲欧美98| av女优亚洲男人天堂 | 成年女人永久免费观看视频| 日本 av在线| 99re在线观看精品视频| 在线观看免费视频日本深夜| 久久伊人香网站| 给我免费播放毛片高清在线观看| cao死你这个sao货| 床上黄色一级片| 天堂√8在线中文| 美女黄网站色视频| 男人舔女人下体高潮全视频| 亚洲中文字幕日韩| 国产精品98久久久久久宅男小说| 在线十欧美十亚洲十日本专区| 免费在线观看日本一区| 国产精品 国内视频| 欧美黑人欧美精品刺激| 亚洲av免费在线观看| 国产精品,欧美在线| 亚洲精品美女久久av网站| 十八禁网站免费在线| 精品乱码久久久久久99久播| 久久亚洲精品不卡| ponron亚洲| 天堂影院成人在线观看| 一级a爱片免费观看的视频| 久久久色成人| 看黄色毛片网站| a级毛片a级免费在线| 国产一级毛片七仙女欲春2| 国产精品电影一区二区三区| 色精品久久人妻99蜜桃| cao死你这个sao货| av视频在线观看入口| 丰满的人妻完整版| 久久99热这里只有精品18| 18禁观看日本| 国产精品99久久久久久久久| 亚洲在线观看片| xxx96com| 中文在线观看免费www的网站| 国内精品久久久久精免费| 精品国产乱子伦一区二区三区| 国产亚洲精品av在线| 无限看片的www在线观看| 精品久久久久久久人妻蜜臀av| 精品国内亚洲2022精品成人| 看片在线看免费视频| 日本一本二区三区精品| 久久热在线av| 久久精品国产综合久久久| 成人特级黄色片久久久久久久| 美女午夜性视频免费| 黄色视频,在线免费观看| 一级作爱视频免费观看| 一级毛片女人18水好多| 麻豆成人av在线观看| 成人三级黄色视频| 免费看a级黄色片| 亚洲成人精品中文字幕电影| 97人妻精品一区二区三区麻豆| 亚洲片人在线观看| 亚洲激情在线av| 亚洲无线在线观看| 黄频高清免费视频| 色精品久久人妻99蜜桃| 嫁个100分男人电影在线观看| 给我免费播放毛片高清在线观看| 国产精品美女特级片免费视频播放器 | 日本在线视频免费播放| 亚洲欧洲精品一区二区精品久久久| 99久久精品一区二区三区| 高清在线国产一区| 国产又黄又爽又无遮挡在线| 高潮久久久久久久久久久不卡| 国产欧美日韩精品一区二区| 欧美国产日韩亚洲一区| 伦理电影免费视频| 精品国内亚洲2022精品成人| 国产精品乱码一区二三区的特点| 老熟妇乱子伦视频在线观看| 欧美日韩综合久久久久久 | 色哟哟哟哟哟哟| 欧美日韩黄片免| ponron亚洲| 欧美av亚洲av综合av国产av| 日韩欧美 国产精品| 人人妻,人人澡人人爽秒播| 天天躁狠狠躁夜夜躁狠狠躁| 男人舔女人下体高潮全视频| 村上凉子中文字幕在线| 日本五十路高清| 日韩 欧美 亚洲 中文字幕| 无遮挡黄片免费观看| 国产一区二区在线观看日韩 | 黄色女人牲交| 免费av毛片视频| 深夜精品福利| 俄罗斯特黄特色一大片| 一个人观看的视频www高清免费观看 | 性欧美人与动物交配| 国内精品久久久久久久电影| 欧美xxxx黑人xx丫x性爽| 亚洲黑人精品在线| 九九热线精品视视频播放| 一a级毛片在线观看| 黄色 视频免费看| 国产蜜桃级精品一区二区三区| 国产精品精品国产色婷婷| 久久久国产成人免费| 午夜成年电影在线免费观看| 欧美日本视频| 日韩欧美 国产精品| 国产精品免费一区二区三区在线| 免费大片18禁| 亚洲人与动物交配视频| 日本一本二区三区精品| 黄色日韩在线| 久久国产乱子伦精品免费另类| 国产黄a三级三级三级人| 18禁裸乳无遮挡免费网站照片| 国产亚洲欧美98| 99热这里只有精品一区 | 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 天堂动漫精品| 女人被狂操c到高潮| 亚洲色图av天堂| 一区福利在线观看| 久久亚洲真实| 99热精品在线国产| 我的老师免费观看完整版| 国产一区二区激情短视频| 女人被狂操c到高潮| 久久精品国产综合久久久| 国产又色又爽无遮挡免费看| 黄片大片在线免费观看| 91九色精品人成在线观看| 最好的美女福利视频网| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 女人高潮潮喷娇喘18禁视频| a在线观看视频网站| 色综合婷婷激情| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| 亚洲精品乱码久久久v下载方式 | av天堂中文字幕网| 一a级毛片在线观看| 日韩有码中文字幕| 国产精品一区二区精品视频观看| 一个人免费在线观看的高清视频| 精品一区二区三区av网在线观看| 久久国产乱子伦精品免费另类| 欧美乱妇无乱码| 少妇熟女aⅴ在线视频| 波多野结衣高清作品| 美女扒开内裤让男人捅视频| 国产精品av视频在线免费观看| 国模一区二区三区四区视频 | 久久精品夜夜夜夜夜久久蜜豆| 欧美另类亚洲清纯唯美| 日韩成人在线观看一区二区三区| 欧美极品一区二区三区四区| 久久这里只有精品中国| 伦理电影免费视频| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 亚洲av成人av| 亚洲av片天天在线观看| 欧美日韩乱码在线| 又黄又爽又免费观看的视频| 在线观看午夜福利视频| 国产一级毛片七仙女欲春2| 最近在线观看免费完整版| 久久久久久人人人人人| 久久这里只有精品19| 亚洲精品一区av在线观看| 女人被狂操c到高潮| www日本黄色视频网| 美女扒开内裤让男人捅视频| 免费电影在线观看免费观看| 日日夜夜操网爽| 久久久国产精品麻豆| 在线观看舔阴道视频| 午夜亚洲福利在线播放| 又黄又爽又免费观看的视频| a在线观看视频网站| 国产一级毛片七仙女欲春2| 别揉我奶头~嗯~啊~动态视频| 欧美+亚洲+日韩+国产| 久久久久性生活片| 国产一区二区在线观看日韩 | 99久久精品一区二区三区| or卡值多少钱| 国内精品一区二区在线观看| 又大又爽又粗| 久久久久久人人人人人| 美女高潮的动态| 国产精品久久久av美女十八| 99久久成人亚洲精品观看| 88av欧美| 看片在线看免费视频| 成在线人永久免费视频| 国产精品一区二区三区四区免费观看 | 丝袜人妻中文字幕| 99久久久亚洲精品蜜臀av| 午夜激情福利司机影院| 欧美在线黄色| 最近最新中文字幕大全电影3| 老汉色av国产亚洲站长工具| 中文资源天堂在线| av视频在线观看入口| 免费av不卡在线播放| 亚洲成av人片免费观看| 国产精品影院久久| 亚洲avbb在线观看| 欧美黑人欧美精品刺激| 9191精品国产免费久久| 日韩av在线大香蕉| 国产99白浆流出| bbb黄色大片| 亚洲精品一区av在线观看| 色av中文字幕| 欧美黑人欧美精品刺激| 亚洲午夜理论影院| 亚洲黑人精品在线| 身体一侧抽搐| 欧美黄色淫秽网站| 欧美午夜高清在线| 亚洲av中文字字幕乱码综合| 亚洲欧美一区二区三区黑人| 全区人妻精品视频| 久久这里只有精品19| 五月伊人婷婷丁香| 日本一本二区三区精品| 亚洲狠狠婷婷综合久久图片| 精品福利观看| tocl精华| 精品久久久久久,| 色尼玛亚洲综合影院| 十八禁网站免费在线| 国产亚洲精品av在线| cao死你这个sao货| 老汉色∧v一级毛片| 日本撒尿小便嘘嘘汇集6| 男人舔女人下体高潮全视频| 欧美一级a爱片免费观看看| 女生性感内裤真人,穿戴方法视频| 精品国产乱子伦一区二区三区| 中文字幕熟女人妻在线| 又黄又爽又免费观看的视频| 香蕉国产在线看| 午夜免费成人在线视频| 午夜福利成人在线免费观看| 天堂动漫精品| 无限看片的www在线观看| 嫩草影院入口| 亚洲专区中文字幕在线| 成熟少妇高潮喷水视频| 亚洲av免费在线观看| 亚洲av成人一区二区三| 国产精品女同一区二区软件 | 国产精华一区二区三区| 人人妻,人人澡人人爽秒播| 99久国产av精品| 热99在线观看视频| 中文字幕久久专区| 老汉色av国产亚洲站长工具| 不卡av一区二区三区| 桃红色精品国产亚洲av| 99国产极品粉嫩在线观看| 欧美中文综合在线视频| 国产一区二区在线av高清观看| 国产伦在线观看视频一区| 成人无遮挡网站| 亚洲 国产 在线| 精品99又大又爽又粗少妇毛片 | 老司机深夜福利视频在线观看| 最近最新免费中文字幕在线| 亚洲 国产 在线| 精品99又大又爽又粗少妇毛片 | 老司机深夜福利视频在线观看| 十八禁人妻一区二区| 国产精品影院久久| 黄色丝袜av网址大全| 亚洲av日韩精品久久久久久密| 国产精品一区二区三区四区免费观看 | 真人一进一出gif抽搐免费| 午夜影院日韩av| 久久午夜综合久久蜜桃| 欧美性猛交╳xxx乱大交人| 一级黄色大片毛片| 国内精品久久久久久久电影| 国产欧美日韩一区二区三| 成人精品一区二区免费| 中亚洲国语对白在线视频| 亚洲 国产 在线| 国产成人啪精品午夜网站| 国产午夜精品久久久久久| 久久久久国产精品人妻aⅴ院| 又大又爽又粗| 人人妻人人澡欧美一区二区| 高清在线国产一区| 舔av片在线| av福利片在线观看| 黄色片一级片一级黄色片| avwww免费| 国产激情偷乱视频一区二区| 亚洲国产欧美一区二区综合| 欧美+亚洲+日韩+国产| 日本三级黄在线观看| 欧美性猛交黑人性爽| 免费av不卡在线播放| 国内精品久久久久久久电影| 香蕉av资源在线| 韩国av一区二区三区四区| 一本久久中文字幕| 在线视频色国产色| 看免费av毛片| 国产精品久久久久久人妻精品电影| 我的老师免费观看完整版| 成人三级做爰电影| 亚洲中文av在线| 国语自产精品视频在线第100页| bbb黄色大片| 黄色女人牲交| 国产熟女xx| 给我免费播放毛片高清在线观看| 91av网一区二区| 欧美最黄视频在线播放免费| 99久久无色码亚洲精品果冻| 日韩欧美国产一区二区入口| www.熟女人妻精品国产| 极品教师在线免费播放| 亚洲熟女毛片儿| 久久精品国产99精品国产亚洲性色| 丰满人妻一区二区三区视频av | 亚洲国产欧美网| www.www免费av| 色在线成人网| 国产探花在线观看一区二区| 久久亚洲真实| 精品人妻1区二区| 国产高清三级在线| 岛国在线免费视频观看| 18禁观看日本| 中文字幕最新亚洲高清| 俄罗斯特黄特色一大片| 国内精品美女久久久久久| 久久草成人影院| 丰满人妻一区二区三区视频av | 国产午夜福利久久久久久| 美女高潮的动态| 岛国视频午夜一区免费看| 欧美日本视频| 亚洲欧美日韩高清专用| 国产不卡一卡二| 人人妻人人看人人澡| 日本一二三区视频观看| 日韩 欧美 亚洲 中文字幕| 一区二区三区国产精品乱码| a在线观看视频网站| 搡老岳熟女国产| 天堂av国产一区二区熟女人妻| 这个男人来自地球电影免费观看| 在线视频色国产色| 国产av麻豆久久久久久久| 久久久久国内视频| 成人三级黄色视频| 免费一级毛片在线播放高清视频| www.www免费av| 美女免费视频网站| 中文字幕高清在线视频| 日本一二三区视频观看| 国产又色又爽无遮挡免费看| 99久久99久久久精品蜜桃| 两性夫妻黄色片| 国产主播在线观看一区二区| 香蕉久久夜色| 亚洲国产色片| 91麻豆精品激情在线观看国产| 国产伦一二天堂av在线观看| 成人性生交大片免费视频hd| 久久精品国产亚洲av香蕉五月| 国产伦在线观看视频一区| 成人性生交大片免费视频hd| 1024香蕉在线观看| 岛国在线观看网站| 久久久久性生活片| 天堂√8在线中文| 日本成人三级电影网站| 久久久久国产一级毛片高清牌| 综合色av麻豆|