• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local and biglobal linear stability analysisof parallel shear flows

    2017-03-13 05:47:08SanjayMittalandAnubhavDwivedi

    Sanjay Mittal and Anubhav Dwivedi

    1 Introduction

    Thehydrodynamic stability of laminar flows has received significant attention and has been investigated by several researchers in the past[Schmid and Henningson(2001);Chandrasekhar(1981);Huerre and Monkewitz(1990);Huerre(2000);Chomaz(2005)].The linear stability of parallel shear flows can be analyzed via finding solution to the Orr-Sommerfeld (OS) equation [Orr (1907); Sommerfeld(1908)], with suitable boundary conditions. The disturbance fi eld is assumed to be a plane wave whose amplitude varies transverse to the flow and is periodic in the homogeneous directions. The analysis can be carried out in either a spatial or temporal framework [Boiko, Dovgal, Grek, and Kozlov (2012)]. The spatial analysis assumes that the disturbance field develops in s pace. The spatial growth rate is determined for different values of frequency and Reynolds number. In contrast, the temporal analysis assumes that the disturbance develops in time. As per the Squire’s theorem [Schmid and Henningson (2001)], the 2D disturbance is the most critical in terms of its growth rate. Therefore, it is suffi cient to consider twodimensional disturbances that have streamwise periodicity [Boiko, Dovgal, Grek,and Kozlov (2012)]. The analysis is carried out to determine temporal growth rate at various Re and for disturbances with different values of streamwise wavenumber. The spatial and temporal approaches for local analysis are related to each other[Huerre (2000)]. For example, Gaster (1962) proposed a transformation for that,approximately, relates the temporal and spatial growth. Several methods have been used to solve the OS equations. Davey and Drazin (1969) utilized Bessel functions to represent the disturbance fi eld and analyze the stability of pipe Poiseuille flow. Orszag (1971) used Chebyshev polynomials to solve the OS equation for the plane Poiseuille flow. Saraph, Vasudeva, and Panikar (1979) used Galerkin’s weighted residual method to carry out the stability analysis of plane Poiseuille flow and magneto-hydrodynamic flows. Garg and Rouleau (1972) used asymptotic analysis to carry out the linear stability analysis in pipe flow. The method has also been applied, in a local sense, to spatially developing flows [Pierrehumbert (1985); Yang and Zebib (1989); Monkewitz (1988); Chomaz, Huerre, and Redekopp (1988)]. In this approach, the flow profi les at different streamwise stations are analyzed by assuming that each profi le corresponds to an independent parallel flow. The local analysis, at each streamwise station of the flow, involves solving the OS equation,with suitable boundary conditions.

    Analternateapproach toinvestigatethelinear stability of fluid flowsisthe BiGlobal and TriGlobal stability analysis[Theofilis(2011);Swaminathan,Sahu,Sameen,and Govindrajan(2011)].Unlike in the local analysis,in this approach the disturbance fi eld is represented globally,including in the streamwise direction.The analysis results in global modes which,depending on the sign of the growth rate,may either grow or decay in the entire computational domain with time.The global analysisisusually muchmorecomputationally expensivethan thelocal one.Such an approach has been used to analyze the global linear stability properties of several non-parallel flows[Mittal(2004);Chomaz(2005);Schmid and Henningson(2001)].Swaminathan,Sahu,Sameen,and Govindrajan(2011)carried out a global linear stability analysis of a diverging channel flow using spectral collocation method.Mittal and Kumar(2003)used astabilized finite element method for the global LSA of stationary and rotating cylinder.Later,Verma and Mittal(2011)used asimilar approachfor carryingout global LSA to investigatetheexistenceand stability of secondary wake mode of a two-dimensional flow past a circular cylinder.Morerecently,Navrose,Meena,and Mittal(2015)carried out LSA of spinning cylinder in auniform flow and identifi ed several unstablethree-dimensional modes for variousrotation ratesof thespinning cylinder.

    In the present work,Linear Stability Analysis(LSA)of the plane Poiseuille flow is carried out.Local and global analyses are considered.The solutions to the OS equation for local analysis have been obtained in a temporal framework.A spectral collocation method based on Chebyshev polynomials[Schmid and Henningson(2001)]is used to solve the governing Orr-Sommerfeld(OS)equation.The global LSA of theplane Poiseuilleflow iscarried out using astabilized finiteelement formulation.The governing equationsarecast in theprimitivevariables:velocity and pressure.Equal-order finite-element interpolation functions are used for pressure and velocity disturbancefi elds.Four-noded quadrilateral elementswith bilinear interpolation isemployed.Thestreamline-upwind/Petrov-Galerkin(SUPG)[Brooks and Hughes(1982)]and pressure-stabilizing/Petrov-Galerkin(PSPG)stabilization techniques[Tezduyar,Mittal,Ray,and Shih(1992)]are employed to stabilize the computations against spurious numerical oscillations.The fi nite element formulation results in a generalized eigenvalue-vector problem which is solved using the subspace iteration method[Stewart(1975)].For carrying out the global analysis,we assume periodic boundary conditions at the inflow and the outflow for the disturbancefield.Thisallowsadirectcomparisonof theglobal LSA withthe OSequation.A comparison between the local and global analysis of the plane Poiseuille flow at Re=7000 is presented and is utilized to show the connection between the two analyses.

    2 Governing Equations

    2.1 Linearized Disturbance Equations

    Let,??Rnsdand(0,T)be the spatial and temporal domains respectively,where nsdis the number of space dimensions,and letΓ denote the boundary of?.The Navier-Stokesequationsgoverning incompressiblefluid flow are given as:

    Hereρ,u andσ are the density,velocity and the stress tensor,respectively.The stresstensor isrepresented asσ =?p I+μ((?u)+(?u)T),where p andμ arethe pressure and coeffi cient of dynamic viscosity,respectively.The boundary conditionsarespecified as:

    Here,ΓgandΓhare the complementary subsetsof the boundaryΓwhere Dirichlet and Neumann boundary conditionsarespecified,respectively.

    To understand the evolution of small disturbances,the unsteady solution is expressed asacombination of steady solution and disturbance:

    Here,U and P representthesteady statesolution whosestability isto bedetermined while u′and p′aretheperturbation fields.Substituting thedecomposition given by Eq.(3)in Eqs.(1)and subtracting from them,the equations for steady flow one obtains the evolution equations for the disturbance fields.Further,the perturbations,u′and p′,areassumed to besmall and thenon-linear termsaredropped.The linearized perturbation equationsaregiven as:

    Here,σ′is the stress tensor for the perturbed solution.Eq.(4)subjected to the initial condition,u′(x,0)=u′0describes the evolution of small disturbances in the domain,?.Theboundary conditionson u′arehomogeneousversionsof thoseused for calculating thebaseflow(Eq.(2)).

    2.2 Global Linear Stability Analysis

    To conduct a global Linear stability analysis we assume the following form of the disturbancefield,u′and p′

    Substituting Eqs.(5)in the linearized disturbanceequations(Eqs.(4))we obtain:

    Eqs.(6)representsa generalized eigenvalue problem withλas the eigenvalue and(?u,?p)as the corresponding eigenmode.The boundary conditions for(?u,?p)are homogeneous version of those used for calculating the base flow(U,P).In general,the eigenvalue λ = λr+iλiis complex.The growth rate is given by the real part,λrof the eigenvalue whereas the imaginary part,λiis related to the temporal frequency of the of the disturbance field.A positive value ofλrindicates an unstable mode.This method has been utilized by several researchers in the past to investigatetheglobal linear stability of varioussteady flow configurations[Jackson(1987);Morzynski and Thiele(1991);Morzynski,Afanasiev,and Thiele(1999);Swaminathan,Sahu,Sameen,and Govindrajan(2011)].Mittal and Kumar(2003)proposed a stabilized fi nite element formulation for solving these equations and employed it to study theglobal stability propertiesof theflow past astationary and rotating cylinder.

    2.3 Local Stability Analysis:Orr-Sommerfeld Equation

    The disturbance field is assumed to be periodic along the two homogeneous directions:x and z.The wavenumbers along the x and z directions areαandβ,respectively.Thus,the perturbation fi eld in thisscenario isgiven by:

    Similar expressions can bewritten forwhich represent the x and z component of the disturbance fi eld.Let,k=α?i+β?k represent the wavenumber vector in the x?z planewith itsmagnitudegiven by k=.Substituting,Eq.(8)in thelinearized disturbance equation described by Eq.(7),weobtain:

    We consider the case when the streamwise wavenumber,α,is real and the eigenvalueλ =λr+iλiiscomplex.Thereal part,λr,isthegrowthrateof thedisturbance whileλi,theimaginary part,isthetemporal frequency of the disturbance.The disturbance associated with the eigenvalue that has the largest real mode is of major interest as it represents the fastest growing mode.For 2?D disturbances we can rewrite Eq.(9)to obtain the Orr-Sommerfeld(OS)equation:

    The disturbance velocity,u′,v′must vanish on the far-fi eld and solid boundaries,Γ.For the periodic disturbance fi eld considered this requires?u,?v to vanish onΓ.Using the continuity equation,one can simplify thisto:

    3 Formulation

    3.1 The Stabilized Finite Element Formulation for Global Linear Stability Analysis

    Let??R2be the spatial domain for global linear stability analysis(Eq.(6)).Consider afi niteelement discretization of?into subdomains?e,e=1,2,3,...,nel,where nelis the number of elements.Based on this discretization we define fi nite element trial function spaces for velocity and pressure perturbation fi elds asand,respectively.The weighting function space areand,respectively.Thesefunction spacesareselected by taking thehomogeneous Dirichlet boundary conditions into account,assubsetsof[H1h(?)]2and H1h(?),where H1h(?)isthe finitedimensional function spaceover?.Thestabilized finiteelement formulation of Eq.(6),is as follows:Findu?h∈Suuuhandp?h∈such that?w?h∈Vuuuhand

    Here,Uhrepresents the base flow at the element nodes.In the variational formulation given by Eq.(13),the first three terms constitute the Galerkin formulation of the problem.The terms involving the element level integrals are the stabilization terms added to the basic Galerkin formulation to enhance its numerical stability.These terms stabilize the computations against node-to-node oscillations in advection dominated flows and allow the use of equal-in-order basis functions for velocity and pressure.The terms with coeffi cientsτSUPGand τPSPGare based on the SUPG(Streamline-Upwind/Petrov-Galerkin)[Brooks and Hughes(1982)]and PSPG(Pressure-stabilized/Petrov-Galerkin)[Tezduyar,Mittal,Ray,and Shih(1992)]stabilizations.The SUPGformulation for convection dominated flowswas introduced by Hughes and Brooks(1979)and Brooks and Hughes(1982).PSPG stabilization for enabling the use of equal-order interpolations for the velocity and pressureto fluid flowsat finite Reynoldsnumber wasintroduced by Tezduyar,Mittal,Ray,and Shih(1992).The term with coeffi cientτLSICis a stabilization term based on theleast squares of thedivergencefreecondition on the velocity field.It providesnumerical stability at high Reynoldsnumber.Here,thestabilization coefficients used in the finite element formulation of LSA(Eq.(13))are computed on the basis of the base flow at the element nodes,Uh.The stabilization parameters aredefi ned as[Tezduyar,Mittal,Ray,and Shih(1992)]:

    Here,heis the element length based on the minimum edge length of an element[Mittal(2000)]and Uhisthebase flow velocity at element nodes.

    Eq.(13)lead to a generalized non-symmetric eigenvalue problem of the form A X?λB X=0.For our case,theeigenvalueproblem isslightly morecomplicated asthecontinuity equation responsiblefor determining pressurecausesthematrix B to becomesingular.Hence,to avoid singularity,wesolvetheinverseproblem,i.e.,eigenvalues for B X?μA X=0 are computed.Here,λ =1/μ.To check the stability of the steady-state solution we look for the rightmost eigenvalue(eigenvalue with largest real part),using thesubspaceiteration method[Stewart(1975)].

    3.2 The Spectral Method for Local Linear Stability Analysis

    Thespectral collocation method based on Chebyshev polynomialsof thefi rstkind[Schmid and Henningson(2001)]isused to solvethe Eq.(11)for carrying out thelocal sta-

    bility analysis.The Chebyshev polynomial of the fi rst kind isdefi ned as:

    for all non-negativeintegers n∈[0,N]and y∈[?1,1].By using asuitabletransformation,it ispossibleto map any other rangeof y to the Chebyshev domain[?1,1].The Chebyshev polynomials areutilized as the basis functions to approximate the eigenfunction,?v(y)in Eq.(8):

    Thisapproximation of theeigenfunction issubstituted in the OSequation(Eq.(11).It resultsin the following equation:

    Thecollocation method isemployed to evaluatetheconstants anin theapproximation given by Eq.(17).The following Gauss-Lobatto collocation pointsareused:

    Eq.(18)leads to the generalized eigenvalue problem of the form A X?λB X=0.In the present work,the numerical solution to the same is obtained using LAPACK[Anderson,Bai,Bischof,Blackford,Demmel,Dongarra,Du Croz,Greenbaum,Hammarling,McKenney,and Sorensen(1999)]libraries.

    4 Problem Setup

    4.1 The Base Flow

    Thelocal and theglobal linear stability analysisarecarried outfor theplane Poiseuille flow.Figure(1)shows the schematic of the flow.The fluid occupies the channel formed by two stationary plates parallel to each other and separated by a distance 2H.Theplatesarealigned with the x?axis.Thevelocity profilefor thebaseflow

    Figure1:Schematic of theplane Poiseuilleflow.

    is shown in the fi gure.It is parabolic and symmetric about the channel centerline.The equation for the streamwise component of velocity isgiven as:

    Here,H denotes half the channel width and Ucis the centerline velocity.All the lengthsarenon-dimensionalized with H,and velocity with Uc.The Reynoldsnumber,Re,isdefined as:

    where,νdenotesthekinematic viscosity of thefluid.

    4.2 Local Linear Stability Analysis

    The local analysis of the plane Poiseuille flow iscarried out via the solution to OS(Eq.(11)).The domain across the channel width,[?H,H],is mapped to[?1,1].No-slip boundary conditions are applied to the disturbance fi eld at the channel walls.In thissituation,Eq.(12)can berewritten as:

    The OSequation(Eq.(11)),along withtheboundary conditions(Eq.(22),issolved in thetemporal point of view.The wavenumber,α,is assumed to bereal.The OS equation is solved for different values of values ofαand Re.The effect of the number of grid points,along y,on the accuracy of the solution is investigated.It is found that 200 collocation points provide adequate spatial resolution.All the resultspresented in thispaper for the OSanalysisarewith 200 points.

    4.3 Global Linear Stability Analysis

    The flow in a fi nite streamwise length of the channel(=L)is considered for carrying out theglobal analysis.Thebaseflow isthefully developed steady flow in the channel.The streamwise velocity for the same is given by Eq.(20).The boundary conditions for thedisturbance fi eld are as follows.The disturbance velocity is prescribed a zero value at the upper and lower walls.To enable comparison with the local analysis,the disturbance is assumed to be periodic in the streamwise direction.Therefore,periodic boundary conditionsareapplied on all thevariablesat the inflow and theoutflow boundaries.Thefi niteelementmesh consistsof 24 elements alongthestreamwiseand 150elementsinthecross-flow directions.Thegrid points are uniformly spaced along x but are clustered close to the wall in the y direction.A mesh convergence study is carried out for the Re=7000 plane Poiseuille flow and L/2H=1.A more refi ned grid with roughly twice the resolution in each direction leadsto lessthan onepercentdifferencein theresults,thereby reflecting the adequacy of theoriginal fi nite element mesh.

    5 Results:Linear Stability Analysisof the Plane Poiseuille Flow

    5.1 OSAnalysis

    Local analysis via solution to the OS equation(Eq.(11))is carried out for various values of Re andα.At each(Re,α)the eigenvalue with the largest real part is identified.Figure(2)shows the variation of the growth rate of the disturbance associated with the rightmost eigenvalue with Re andα.The fi gure shows the iso-contours for various values of growth rate in the Re?αplane.The contour corresponding to zero growth rateistheneutral curve.Thecritical Re for theonset of instability is the lowest value of the Re on the neutral curve,for any value of α.The critical Re for this flow is found to be 5773,approximately and is marked in Figure(2).The value is in excellent agreement with results from earlier studies[Schmid and Henningson(2001)].

    Theresultsfor theflow at Re=7000 arepresented inmoredetail in Figure(3).This fi gureshowsthevariation of thereal(λr)and imaginary(λi)partsof therightmost eigenvalue with wavenumber(α)at Re=7000.While λrdenotes the growth rate,λiis related to the temporal frequency of the disturbance.We observe that the Re=7000 flow is linearly unstable only to disturbances whose wavenumber lies in a specifi c interval.The maximum growth rate is0.0017,approximately forα=1.00.

    Figure 2:Orr-Sommerfeld analysis of the Plane Poiseuille flow:iso-contours of constant growth rate.The critical Re for the onset of the instability of the flow is Recr=5773 and ismarked with a vertical broken line.

    Figure 3:Orr-Sommerfeld Analysis of the Plane Poiseuille Flow at Re=7000:variation of real and imaginary partof theright-most eigenvaluewith wavenumber,α.

    Figure 4:Global linear stability analysis of the Plane Poiseuille flow for Re=7000 and L/2H=5.10:the v′field for the eigenmodes corresponding to the two rightmost eigenvalues.The upper row corresponds to one cell in the domain(n=1)and has a growth rate,λr=?0.017.The lower row is for n=2 with two cells in thedomain;the growth ratefor this mode isλr=?0.0097.

    5.2 Global Analysis

    In thelocal analysis,the OSequation(Eq.(11))can besolved by usingαasoneof the independent variables.However,the global analysis(Eq.(6))does not directly offerαas an independent variable.The analysis,of course,can be carried out for different streamwise extent(L)of the computational domain.We attempt to understand the relation between L(for the global analysis)andα(for the local analysis).We propose that for a spatially periodic disturbance,its wavenumber is related to thelength of thecomputational domain as:

    where,n is the number of waves along the stream wise direction in the domain.To demonstratethis,weconsider theglobal linear stability analysisfor Re=7000.Fig.(4)shows the eigen modes associated with the two right most eigenvalues for L/2H=5.1.While the first one is associated with one wave(n=1),the other houses two waves(n=2)in the computational domain.Thus,they both represent different wavenumbersand areassociated with their own growth rates,aslisted in the caption of the fi gure.The real and imaginary part of the eigenvalue obtained from the global analysis,and their comparison with the values obtained from the local analysis,arealso shown in Figures(5)and(6).Thedatapointscorresponding to the two eigenmodes lie on the vertical line segment marked in the two figures for L/2H=5.10.The values from the local and global analysis are in excellent agreement.

    Figures(5)and(6)show the variation of the growth rate and the imaginary part of the rightmost eigenvalue from the global analysis for plane Poiseuille flow at Re=7000.The data points from the global analysis are marked by solid circles.Also shown in thesamefigurearetheresultsfrom thelocal analysis.Thevariation is associated with a number of peaks and valleys.We attempt to understand this behavior.It isdemonstrated in Fig.(4)that thecomputational domain may accommodate multiple cells of the disturbance.We fi rst identify in Figs.(5)and(6)the cases that are associated with onecell only(n=1)in thestreamwise extent of the domain.A best fi t to these points is in excellent agreement with the results from the local analysis.These curves are marked as L=2π/α in the figures.These curvescan also beutilized to understand thevariation ofλrandλiwithα.Wenote that thegrowth rateand temporal frequency of an eigenmodeshould depend onα,but must beindependent of thenumber of cellsof the sameαin the computational domain.Usingthisidea,and thedataforλrandλiv/sα fromthelocal analysis,the variation ofλrand λiwith L/2H is generated for multiple cells by observing that L=2πn/α,where n is the number of cells.These curves are shown in Figs.(5)and(6)for various values of n.The outer envelope of these curves is shown in thicker solid line.These curves provide an estimate of the variation of the rightmost eigenvaluewiththelength of thecomputational domain.Excellentagreement is observed between the estimated rightmost eigenvalue and the actual value from global LSA computationsfor n≥2.Wenotethatasthelengthof thecomputational domain isincreased,thedependenceof the growth rateof themost unstableeigenmodeon L becomesweaker.In theasymptotic limit of thedomain being infinitely long,the fastest growing mode comprises of infi nite cells of the n=1 eigenmode whose wavenumber is associated with largestλr.We also note from Fig.(5)that in certain situations it might be diffi cult to track the eigenmodes corresponding to low values ofαfrom the global analysis.Low values ofα correspond to large L/2H.Asseen from Fig.(5),at large L/2H,n=1 modeisnot necessarily theone with rightmost eigenvalue.For example,at L/2H=15 the rightmost eigenvalue corresponds to the mode with five cells(n=5).The modes with four,three,two and onecell have lower growth rate,and in the sameorder.Therefore,tracking the modefor n=1 for thisvalueof L/2H is relatively morechallenging than theones for higher valuesof n.

    To further demonstrate that the growth rate and temporal frequency of an eigenmode must be independent of the number of streamwise cells in the global analysis,weconsider thecasewhereweseek therightmost eigenvalueforα=1.05.For n=1,thiscorrespondsto L/2H=3.0,approximately.Figure(7)showstheeigenmodesfromtheglobal analysisfor variousvaluesof L/2H for thesameα(=1.05).Thevariousvaluesof L arechosen by varying n in therelation L=2 nπ/α.A broken horizontal lineismarked in Figures(5)and(6)to show thereal and imaginary partof therightmosteigenvaluefor variousvaluesof L thatcorrespond toα=1.05.We observe that all these modes are associated with the same eigenvalue.In fact,theeigenmodesarealso of thesamefamily.They areshown in Figure(7)and have

    Figure 5:Variation of the growth rate of the leading eigenvalue with L/2H for the plane Poiseuilleflow for Re=7000:thesolid dotsrepresent thegrowth rateof the mostunstablemodeobtained atvariousvaluesof L/2H fromglobal LSA.Thesolid(red)curveisobtained from thelocal(Orr-Sommerfeld)analysis.It isin excellent agreement with the best fi t to the points corresponding to one streamwise wave(n=1)from global analysis asper the relation L=2π/α.The curve isreplicated for various n to show the predicted variation ofλr with L,for the global analysis using the relation L=n(2π/α),when the domain houses different number of cells.Theouter envelopeof thesecurves,showninthicker solid line,representsthe eigenmode associated with the rightmost eigenvalue for the corresponding length of thecomputational domain.

    the sameflow structure,albeit with different number of cells.

    6 Concluding Remarks

    Hydrodynamic stability of shear flows has been widely investigated in the past usinglocal and global Linear Stability Analysis(LSA).Inthiswork wehavereviewed thetwo approachesand attempted to highlightthedifferencebetween thetwo in the context of their application to parallel shear flows.Resultsfor thelinear stability of plane Poiseuille flow have been presented,using both approaches.The local analysisiscarried out by solving the Orr-Sommerfeld(OS)equation using thespectral collocation method based on Chebyshev polynomials.The analysis has been carried out for various wavenumbers,αof the streamwise periodic disturbance fi eld.The critical Re for the onset of linear instability for plane Poiseuille flow is found to be 5773,which is in good agreement with earlier results[Schmid and Henningson(2001)].The stability of the flow at Re=7000 has been presented in more detail.For example,the variation of the real and imaginary part of the least stable eigenvalue withαhas been presented.Unlike the local analysis which involves solution to an ordinary differential equation,the global analysis involves fi nding solution to a set of partial differential equations.The analysis has been carried out for atwo-dimensional disturbance fi eld that isassumed to bespatially periodic along the stream wise direction.A stabilized finite element method has been presented for carrying out the global LSA in primitive variables.Equal-in-order fi nite element functions are used for representing velocity and pressure.To suppress the numerical oscillationsthat might appear in thecomputations,the SUPGand PSPG,stabilizationsareadded tothe Galerkinfiniteelementformulation.Theformulation hasbeen used to carry out the linear stability analysisfor the plane Poiseuille flow at Re=7000.Computations are carried out for various values of the streamwise length,L,of thecomputational domain.

    Figure 6:Variation of the imaginary part of theleading eigenvalue with L/2H for theplane Poiseuilleflow for Re=7000:thesolid dotsrepresent theimaginary part of the most unstable mode obtained at various values of L/2H from global LSA.The solid(red)curve isobtained from the local(Orr-Sommerfeld)analysis.It isin excellent agreement with thebest fit to thepointscorresponding to onestreamwise wave(n=1)from global analysis as per the relation L=2π/α.The curve is replicated for various n to show the predicted variation ofλi with L,for the global analysisusingtherelation L=n(2π/α),when thedomainhousesdifferent number of cells.The curves shown in thicker solid line representsλi associated with the rightmost eigenvaluefor thecorresponding length of thecomputational domain.

    Figure 7:Eigenmodes of v′corresponding to the leading eigenvalue for various lengths of the domain obtained with the global LSA for the plane Poiseuille flow for Re=7000 for disturbancesthat areperiodic in thestreamwise direction.

    Unlike the local analysis, the global analysis can handle non-periodic disturbances and is applicable to non-parallel flows as well. However, the global analysis is signifi cantly more expensive than the local a nalysis. For the parallel flow and with spatially periodic disturbances the present work brings out a very interesting relationship between the wave number of the disturbance and the streamwise extent of the domain in the global analysis. When the eigenmode contains only once cell, the results from the local and global analysis are virtually identical; the wavenumber and streamwise extent of the domain are related as α = 2 π/L. However, when the eigenmode consists of n cells along the streamwise length of the domain the relationship is: α = (2 πn)/L. For a very large value of L, the global analysis results in an eigenmode with a large number of cells of the eigenmode whose α corresponds to the mode with largest growth rate. If one would like to use the global analysis to create the growth rate v/s α curve for the rightmost eigenvalue, as is done in the local analysis for a specific value of Re, the procedure is complicated by the number of cells that are housed in the domain. In the scenario when L is relatively large, to track an eigenmode for low α, the eigenmode associated with one cell might not be the most unstable mode. Therefore, one needs to examine the eigenmodes for the first few eigenvalues that are arranged in the descending order of their real part.The one that corresponds to α = 2 π/L is the eigenmode which consists of only one cell along the streamwise direction.

    Acknowledgement:The help from Mr.Hardik Parwana in carrying out some of thecomputationsisgratefully acknowledged.

    Anderson,E.;Bai,Z.;Bischof,C.;Blackford,S.;Demmel,J.;Dongarra,J.;Du Croz,J.;Greenbaum,A.;Hammarling,S.;McKenney,A.;Sorensen,D.(1999):LAPACKUsers’Guide.Society for Industrial and Applied Mathematics,Philadelphia,PA,third edition.

    Boiko,A.V.;Dovgal,A.V.;Grek,G.R.;Kozlov,V.V.(2012): Physics of Transitional Shear Flows.Springer-Verlag.

    Brooks,A.;Hughes,T.(1982):Streamlineupwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations.Computer Methods in Applied Mechanics and Engineering,vol.32,pp.199–259.

    Chandrasekhar,S.(1981): Hydrodynamic and hydromagnetic stability.Dover.

    Chomaz,J.-M.(2005): Global instabilities in spatially developing flows:nonnormality and nonlinearity.Annual Review of Fluid Mech.,vol.37,pp.357–392.

    Chomaz,J.M.;Huerre,P.;Redekopp,L.G.(1988):Bifurcations to local and global modes in spatially developing flows.Physical Review Letters,vol.60,pp.25–28.

    Davey,A.;Drazin,P.(1969):Thestability of poiseuilleflow in apipe.J.Fluid Mech.,vol.36,pp.209–218.

    Garg, V. K.; Rouleau, W. T. (1972): Linear spatial stability of pipe poiseuille flow. J. Fluid Mech., vol. 54, pp. 113–127.

    Gaster,M.(1962): A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability.J.Fluid Mech.,vol.14,pp.222–224.

    Huerre,P.(2000): Open shear flow instabilities.In Batchelor,G.;Moffatt,H.;Worster,M.(Eds):Perspectivesin Fluid Dynamics,pp.159–229.Cambridge.

    Huerre,P.;Monkewitz,P.(1990): Local and global instabilities in spatially developing flows.Annual Review of Fluid Mech.,vol.22,pp.473–537.

    Hughes,T.;Brooks,A.(1979): A multi-dimensional upwind scheme with no crosswind diffusion.Journal of Applied Mechanics,vol.34,pp.19–35.

    Jackson,C.(1987):A fi niteelement study of theonset of vortex shedding in flow past variously shaped bodies.J.Fluid Mech.,vol.182,pp.23.

    Mittal,S.(2000): On the performance of high aspect-ratio elements for incompressible flows.Computer Methods in Applied Mechanics and Engineering,vol.188,pp.269–287.

    Mittal,S.(2004):Three-dimensional instabilitiesin flow past a rotating cylinder.Journal of Applied Mechanics,vol.71,pp.89–95.

    Mittal,S.;Kumar,B.(2003): Flow past a rotating cylinder.Journal of Fluid Mechanics,vol.476,pp.303–334.

    Monkewitz,P.A.(1988): The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers.Physics of Fluids,vol.31,pp.999–1006.

    Morzynski, M.; Afanasiev, K.; Thiele, F. (1999): Solution of the eigenvalue problems resulting from global non-parallel flow s ta bility analysis.Comput. Meth-ods Appl. Mech. Eng., vol. 169, pp. 161.

    Morzynski,M.;Thiele,F.(1991):Numerical stability analysis of aflow about a cylinder.Z.Angew.Math.Mech.,vol.71,pp.T424.

    Navrose;Meena,J.;Mittal,S.(2015): Three-dimensional flow past a rotating cylinder.J.Fluid Mech.,vol.766,pp.28–53.

    Orr,W.M.(1907):The stability or instability of the steady motions of a perfect liquid and of a viscousliquid.Proc.R.Irish Acad.Sec.A,vol.27,pp.9–138.

    Orszag,S.A.(1971):Accurate solution of the orr-sommerfeld stability equation.J.Fluid Mech.,vol.50,pp.689–703.

    Pierrehumbert,R.T.(1985): Local and global baroclinic instability of zonally varying flow.Journal of the Atmospheric Sciences,vol.41,pp.2141–2162.

    Saraph,V.;Vasudeva,B.R.;Panikar,J.(1979):Stability of parallel flowsby the fi nite element method.Int.J.Numer.Methods Engineering,vol.17,pp.853–870.

    Schmid,P.J.;Henningson,D.S.(2001): Stability and Transition in Shear Flows.Springer-Verlag.

    Sommerfeld,A.(1908):Ein Beitrag zur hydrodynamischen Erkl?erung der turbulenten Flüessigkeitsbewegungen. Proc.Fourth Internat.Cong.Math.,Rome,vol.III,pp.116–128.

    Stewart,G.(1975):Methods of simultaneous iteration for calculating eigenvectors of matrices.In Miller,J.(Ed):Topics in Numerical Analysis II,pp.169–185.Academic Press:New York.

    Swaminathan,G.;Sahu,K.;Sameen,A.;Govindrajan,R.(2011): Global instabilities in diverging channel flows.Theor.Comput.Fluid Dyn.,vol.25,pp.53–64.

    Tezduyar,T.;Mittal,S.;Ray,S.;Shih,R.(1992):Incompressibleflow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements.Comput.Meth.Appl.Mech.Engrg,vol.95,pp.221.

    Theofilis,V.(2011):Global linear instability.Annual Review of Fluid Mech.,vol.43,pp.319–352.

    Verma,A.;Mittal,S.(2011): A new unstable mode in the wake of a circular cylinder.Phys.Fluids.,vol.23,pp.121701.

    Yang,X.;Zebib,A.(1989): Absolute and convective instability of a cylinder wake.Physicsof Fluids A,vol.1,pp.689–696.

    久久精品熟女亚洲av麻豆精品 | 日日啪夜夜撸| 日韩三级伦理在线观看| 精品久久久精品久久久| 亚洲精品乱码久久久v下载方式| 日韩在线高清观看一区二区三区| 日韩人妻高清精品专区| 日韩三级伦理在线观看| 午夜精品在线福利| 日韩欧美国产在线观看| 国产黄片美女视频| 九九久久精品国产亚洲av麻豆| 深爱激情五月婷婷| 久久精品国产亚洲网站| 国产又色又爽无遮挡免| av在线观看视频网站免费| 精品久久久久久久久av| 国产精品一区www在线观看| 成人美女网站在线观看视频| 亚洲第一区二区三区不卡| 九九久久精品国产亚洲av麻豆| 69av精品久久久久久| 免费黄色在线免费观看| 免费观看精品视频网站| 国产女主播在线喷水免费视频网站 | 久久久国产一区二区| 亚洲精品色激情综合| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 大香蕉久久网| 免费播放大片免费观看视频在线观看| 丝袜美腿在线中文| 精品久久久久久成人av| 国产精品99久久久久久久久| 精品人妻视频免费看| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 国产亚洲精品av在线| 日韩av在线免费看完整版不卡| 精品午夜福利在线看| 国语对白做爰xxxⅹ性视频网站| 免费黄网站久久成人精品| 不卡视频在线观看欧美| 免费播放大片免费观看视频在线观看| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| www.av在线官网国产| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 免费看av在线观看网站| 色综合色国产| 免费播放大片免费观看视频在线观看| 日韩欧美精品免费久久| 国产 一区 欧美 日韩| 成人亚洲欧美一区二区av| 欧美bdsm另类| 一区二区三区免费毛片| 青春草视频在线免费观看| 亚洲av日韩在线播放| 国产成人精品婷婷| 久久久久精品性色| 久久久久久久久中文| 边亲边吃奶的免费视频| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| 人妻一区二区av| 男女边摸边吃奶| 国国产精品蜜臀av免费| 人妻系列 视频| 亚洲丝袜综合中文字幕| 亚洲av中文av极速乱| 精品一区在线观看国产| 99久国产av精品| 国产精品99久久久久久久久| 看非洲黑人一级黄片| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 大香蕉久久网| 免费av毛片视频| 大片免费播放器 马上看| 成年av动漫网址| 九草在线视频观看| 精品国产三级普通话版| 亚洲国产最新在线播放| 夜夜爽夜夜爽视频| 纵有疾风起免费观看全集完整版 | 久久久久久久国产电影| 夫妻性生交免费视频一级片| av又黄又爽大尺度在线免费看| 2021少妇久久久久久久久久久| 又黄又爽又刺激的免费视频.| 身体一侧抽搐| 国产亚洲午夜精品一区二区久久 | 欧美日本视频| 日韩av不卡免费在线播放| 亚洲av男天堂| 日韩不卡一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片| 天堂中文最新版在线下载 | 精品国内亚洲2022精品成人| 欧美人与善性xxx| 99视频精品全部免费 在线| 麻豆成人av视频| 高清在线视频一区二区三区| 啦啦啦韩国在线观看视频| 亚洲最大成人中文| 久久精品人妻少妇| 久久99热这里只有精品18| 最近视频中文字幕2019在线8| 久久精品夜色国产| 内地一区二区视频在线| 国产伦理片在线播放av一区| 永久网站在线| 亚洲精品亚洲一区二区| 亚洲自偷自拍三级| 卡戴珊不雅视频在线播放| 亚洲国产精品成人久久小说| 一级爰片在线观看| 中文字幕av在线有码专区| 国产亚洲精品av在线| 久久精品人妻少妇| 街头女战士在线观看网站| 日韩不卡一区二区三区视频在线| 男女边吃奶边做爰视频| 97热精品久久久久久| 91精品国产九色| 中文字幕久久专区| 夫妻性生交免费视频一级片| 日本午夜av视频| 久久久久久久午夜电影| 午夜福利视频1000在线观看| 午夜福利成人在线免费观看| 成人午夜精彩视频在线观看| 夜夜看夜夜爽夜夜摸| 欧美精品一区二区大全| 久久精品夜夜夜夜夜久久蜜豆| 乱人视频在线观看| 欧美日韩国产mv在线观看视频 | 亚洲欧美精品专区久久| 精品午夜福利在线看| 成人午夜高清在线视频| 亚洲婷婷狠狠爱综合网| 99热全是精品| 亚洲图色成人| 精品久久久久久久人妻蜜臀av| 欧美日韩综合久久久久久| 亚洲精品自拍成人| 午夜亚洲福利在线播放| 一区二区三区免费毛片| av线在线观看网站| 特级一级黄色大片| 熟女电影av网| freevideosex欧美| 免费看a级黄色片| 久久久久久久久大av| 日韩强制内射视频| 视频中文字幕在线观看| 97在线视频观看| 国产av国产精品国产| 欧美日韩国产mv在线观看视频 | 久久久午夜欧美精品| 国产精品av视频在线免费观看| 亚洲综合色惰| 亚洲国产欧美人成| 高清欧美精品videossex| 免费看日本二区| 一级爰片在线观看| h日本视频在线播放| 亚洲av国产av综合av卡| 久久久成人免费电影| 一个人免费在线观看电影| 成年人午夜在线观看视频 | 日韩在线高清观看一区二区三区| av在线蜜桃| 久久99热这里只有精品18| 国产黄片视频在线免费观看| 毛片女人毛片| 日韩人妻高清精品专区| 99热网站在线观看| 麻豆国产97在线/欧美| 能在线免费看毛片的网站| 晚上一个人看的免费电影| 国产乱人偷精品视频| 久久久久国产网址| 2021天堂中文幕一二区在线观| 亚洲欧美日韩卡通动漫| 少妇熟女欧美另类| 欧美 日韩 精品 国产| 人妻制服诱惑在线中文字幕| 少妇丰满av| 日韩成人av中文字幕在线观看| 久久久色成人| 高清在线视频一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 久久精品久久精品一区二区三区| 99久国产av精品| 国产亚洲精品av在线| av在线观看视频网站免费| 欧美性感艳星| 日韩 亚洲 欧美在线| 99热6这里只有精品| 亚洲精品一二三| 2022亚洲国产成人精品| 乱人视频在线观看| 婷婷色av中文字幕| 特级一级黄色大片| 日韩伦理黄色片| 国产成人a∨麻豆精品| 久久精品国产亚洲av天美| 夫妻性生交免费视频一级片| 国产伦精品一区二区三区视频9| 久久久国产一区二区| 69av精品久久久久久| 久久久久久久大尺度免费视频| 国产精品不卡视频一区二区| 国产免费一级a男人的天堂| 丰满人妻一区二区三区视频av| 我要看日韩黄色一级片| 能在线免费观看的黄片| 老女人水多毛片| 夫妻性生交免费视频一级片| 精品人妻偷拍中文字幕| 婷婷色综合大香蕉| xxx大片免费视频| 成人无遮挡网站| 久久久久久久久久久丰满| 久久久久久久久久久免费av| 神马国产精品三级电影在线观看| 青春草亚洲视频在线观看| 一级av片app| 看免费成人av毛片| 日韩欧美精品v在线| 男女国产视频网站| 国产淫片久久久久久久久| 久久久久久久亚洲中文字幕| 男的添女的下面高潮视频| 亚洲自偷自拍三级| 久久国内精品自在自线图片| 秋霞伦理黄片| 免费播放大片免费观看视频在线观看| 禁无遮挡网站| 波多野结衣巨乳人妻| 亚洲精品日韩在线中文字幕| 日本av手机在线免费观看| 国产色爽女视频免费观看| 亚洲精品视频女| 日韩成人av中文字幕在线观看| 老师上课跳d突然被开到最大视频| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 乱码一卡2卡4卡精品| 午夜福利高清视频| 日韩av在线大香蕉| 久久这里有精品视频免费| 亚洲欧美精品专区久久| 婷婷色综合www| av在线亚洲专区| 久久久成人免费电影| 日本欧美国产在线视频| 午夜免费男女啪啪视频观看| 国产三级在线视频| 国精品久久久久久国模美| 久久精品国产鲁丝片午夜精品| 国产免费福利视频在线观看| av一本久久久久| 亚洲一区高清亚洲精品| 99re6热这里在线精品视频| 亚洲怡红院男人天堂| 亚洲精品国产成人久久av| 国产在视频线在精品| 80岁老熟妇乱子伦牲交| 日韩欧美 国产精品| 国产黄a三级三级三级人| 亚洲欧美中文字幕日韩二区| 日韩一区二区视频免费看| 久久热精品热| 淫秽高清视频在线观看| 美女高潮的动态| 十八禁网站网址无遮挡 | 亚洲综合色惰| 日韩亚洲欧美综合| 欧美潮喷喷水| 亚洲精品亚洲一区二区| 午夜亚洲福利在线播放| 观看免费一级毛片| 国产成人91sexporn| 韩国高清视频一区二区三区| 久久精品人妻少妇| 亚洲精品日本国产第一区| 三级男女做爰猛烈吃奶摸视频| 在线观看美女被高潮喷水网站| 成人一区二区视频在线观看| 日韩欧美三级三区| 精品亚洲乱码少妇综合久久| 五月伊人婷婷丁香| 成人鲁丝片一二三区免费| 成人毛片a级毛片在线播放| 国产精品久久久久久av不卡| 不卡视频在线观看欧美| 一级毛片久久久久久久久女| 久久久久久久久中文| 午夜激情久久久久久久| 国产亚洲av片在线观看秒播厂 | 少妇熟女欧美另类| 国产乱人视频| 国产淫片久久久久久久久| 大陆偷拍与自拍| 女人十人毛片免费观看3o分钟| 波多野结衣巨乳人妻| av又黄又爽大尺度在线免费看| 久久精品国产鲁丝片午夜精品| 国产真实伦视频高清在线观看| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 精品久久久精品久久久| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频 | 亚洲无线观看免费| 嫩草影院精品99| 一级毛片aaaaaa免费看小| 国产精品久久久久久精品电影| 午夜精品国产一区二区电影 | 亚洲国产av新网站| 午夜福利成人在线免费观看| 国产黄频视频在线观看| 国产精品一二三区在线看| 国产免费一级a男人的天堂| 性色avwww在线观看| 久久久久国产网址| 91在线精品国自产拍蜜月| 91精品一卡2卡3卡4卡| 国产男人的电影天堂91| 久久精品熟女亚洲av麻豆精品 | 乱系列少妇在线播放| 免费观看在线日韩| 久久国内精品自在自线图片| 亚洲第一区二区三区不卡| 一区二区三区免费毛片| 久久久久久久久久人人人人人人| 国产精品久久久久久av不卡| 在线a可以看的网站| 色播亚洲综合网| 国产一区二区三区综合在线观看 | 久久久久久久久大av| 欧美3d第一页| 91av网一区二区| 天堂俺去俺来也www色官网 | 久99久视频精品免费| 免费观看av网站的网址| 2021少妇久久久久久久久久久| 欧美日韩综合久久久久久| 国产免费视频播放在线视频 | 春色校园在线视频观看| 美女脱内裤让男人舔精品视频| 久久韩国三级中文字幕| 少妇高潮的动态图| 91精品伊人久久大香线蕉| 搞女人的毛片| 日韩成人av中文字幕在线观看| 日韩成人伦理影院| 成人漫画全彩无遮挡| 天堂av国产一区二区熟女人妻| 日韩大片免费观看网站| 国产成人a区在线观看| 亚洲国产精品专区欧美| 伊人久久国产一区二区| 国产 亚洲一区二区三区 | 国产一级毛片在线| 黄片无遮挡物在线观看| 免费看av在线观看网站| 日本午夜av视频| 日本黄色片子视频| 美女大奶头视频| 三级国产精品片| 日韩人妻高清精品专区| 国产麻豆成人av免费视频| 午夜福利网站1000一区二区三区| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看| av在线播放精品| 日韩,欧美,国产一区二区三区| 日本免费a在线| 免费av观看视频| 国产成人福利小说| 日韩电影二区| 舔av片在线| 久久久欧美国产精品| 亚洲精品国产成人久久av| 国产午夜精品一二区理论片| 精品久久国产蜜桃| 成年女人在线观看亚洲视频 | 国产精品一区www在线观看| 身体一侧抽搐| 国产美女午夜福利| av在线观看视频网站免费| 建设人人有责人人尽责人人享有的 | 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 少妇人妻精品综合一区二区| 欧美精品一区二区大全| 免费黄色在线免费观看| 男人舔奶头视频| 国产精品国产三级国产专区5o| 婷婷色麻豆天堂久久| 国产美女午夜福利| 国产黄频视频在线观看| 一级av片app| 精品人妻视频免费看| 极品教师在线视频| 婷婷六月久久综合丁香| 男女那种视频在线观看| 亚洲av成人av| 国产成人午夜福利电影在线观看| 视频中文字幕在线观看| 欧美激情久久久久久爽电影| 欧美成人a在线观看| 久久久久久久久久人人人人人人| 亚洲精品国产av成人精品| 一级毛片黄色毛片免费观看视频| 毛片女人毛片| av网站免费在线观看视频 | 国产精品不卡视频一区二区| 久久99热这里只频精品6学生| 精品少妇黑人巨大在线播放| 毛片一级片免费看久久久久| 全区人妻精品视频| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 欧美激情在线99| 99久久九九国产精品国产免费| 成人午夜高清在线视频| 日本免费在线观看一区| 国产人妻一区二区三区在| 1000部很黄的大片| 一级黄片播放器| 黄色一级大片看看| 六月丁香七月| 国产免费福利视频在线观看| 少妇人妻精品综合一区二区| 黄片无遮挡物在线观看| 九九爱精品视频在线观看| 国产精品av视频在线免费观看| 天堂影院成人在线观看| xxx大片免费视频| 亚洲人成网站在线观看播放| 欧美 日韩 精品 国产| 欧美日韩一区二区视频在线观看视频在线 | 噜噜噜噜噜久久久久久91| 大又大粗又爽又黄少妇毛片口| www.色视频.com| 韩国高清视频一区二区三区| 美女脱内裤让男人舔精品视频| 在线a可以看的网站| 边亲边吃奶的免费视频| 午夜免费激情av| 成年版毛片免费区| 69av精品久久久久久| 亚洲欧美日韩东京热| 噜噜噜噜噜久久久久久91| 欧美变态另类bdsm刘玥| 国产国拍精品亚洲av在线观看| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| 免费看日本二区| 国产一级毛片七仙女欲春2| 校园人妻丝袜中文字幕| 国产欧美日韩精品一区二区| 美女黄网站色视频| 女人被狂操c到高潮| 国产乱人视频| 精品一区二区三区视频在线| 亚洲欧美日韩东京热| 亚洲av男天堂| 久久久久九九精品影院| 成年版毛片免费区| 高清日韩中文字幕在线| 久久人人爽人人片av| 日本黄大片高清| 毛片一级片免费看久久久久| av专区在线播放| 国产成人福利小说| 免费人成在线观看视频色| 久久久久久久久久黄片| 啦啦啦啦在线视频资源| 免费观看av网站的网址| 国产精品久久久久久av不卡| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 亚洲国产日韩欧美精品在线观看| 亚洲国产欧美在线一区| 熟妇人妻不卡中文字幕| 精华霜和精华液先用哪个| 久99久视频精品免费| 成人毛片60女人毛片免费| 一区二区三区乱码不卡18| av福利片在线观看| 男女视频在线观看网站免费| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 国产综合精华液| 久久精品国产亚洲av涩爱| 一级毛片久久久久久久久女| kizo精华| 嫩草影院精品99| 亚洲精品一二三| 97在线视频观看| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 国产乱人偷精品视频| 日韩欧美精品v在线| 日本黄色片子视频| 亚洲av国产av综合av卡| 免费黄色在线免费观看| 22中文网久久字幕| 插阴视频在线观看视频| 成人亚洲精品一区在线观看 | 99热全是精品| 在线观看av片永久免费下载| 在现免费观看毛片| 成年女人看的毛片在线观看| 国语对白做爰xxxⅹ性视频网站| 国产老妇女一区| 日韩av在线大香蕉| 成人高潮视频无遮挡免费网站| 一区二区三区四区激情视频| 插逼视频在线观看| 在线免费十八禁| 亚洲真实伦在线观看| 精品久久久久久成人av| 麻豆国产97在线/欧美| 久久精品国产亚洲av涩爱| 成人无遮挡网站| 亚洲精品亚洲一区二区| 精品99又大又爽又粗少妇毛片| 亚洲av成人av| 国产伦一二天堂av在线观看| 婷婷色综合www| 亚洲精品日韩在线中文字幕| 中文字幕亚洲精品专区| 国产男人的电影天堂91| 岛国毛片在线播放| 亚洲精品日本国产第一区| 国产 一区精品| 在线观看人妻少妇| 18禁在线播放成人免费| 亚洲国产高清在线一区二区三| 亚洲欧美一区二区三区国产| 亚洲欧洲国产日韩| 成人一区二区视频在线观看| 免费大片18禁| 人妻夜夜爽99麻豆av| 国产精品一二三区在线看| 在线免费观看的www视频| 欧美高清成人免费视频www| 午夜福利视频精品| 国产乱人视频| 天堂影院成人在线观看| 狂野欧美激情性xxxx在线观看| 夫妻性生交免费视频一级片| 免费在线观看成人毛片| 国产 亚洲一区二区三区 | 精品久久久久久久人妻蜜臀av| 久久韩国三级中文字幕| 亚洲精品亚洲一区二区| 最近最新中文字幕大全电影3| 嫩草影院精品99| 在线天堂最新版资源| 久久草成人影院| 久久久国产一区二区| h日本视频在线播放| 国产精品一区www在线观看| 日韩制服骚丝袜av| 免费观看精品视频网站| 六月丁香七月| 亚洲激情五月婷婷啪啪| 免费黄频网站在线观看国产| 欧美一区二区亚洲| 在线天堂最新版资源| 超碰97精品在线观看| 亚洲18禁久久av| 国内精品一区二区在线观看| 乱系列少妇在线播放| 菩萨蛮人人尽说江南好唐韦庄| 97超碰精品成人国产| 精品久久久精品久久久| 亚洲成人精品中文字幕电影| 男女那种视频在线观看| 国产黄片视频在线免费观看| 国产精品综合久久久久久久免费| 久久精品国产亚洲av天美| 激情 狠狠 欧美| 老司机影院毛片| 欧美丝袜亚洲另类| 最近最新中文字幕免费大全7| 日本熟妇午夜| 日本欧美国产在线视频| 久久精品夜夜夜夜夜久久蜜豆| 国产激情偷乱视频一区二区| 18禁裸乳无遮挡免费网站照片| 午夜日本视频在线| 国产成人精品一,二区| 女人十人毛片免费观看3o分钟| 日韩一本色道免费dvd| 国产在视频线在精品| 午夜亚洲福利在线播放| 成人毛片a级毛片在线播放| 欧美极品一区二区三区四区| 成人特级av手机在线观看| 欧美不卡视频在线免费观看| 日韩亚洲欧美综合| 亚洲欧美成人综合另类久久久| 91精品一卡2卡3卡4卡| 久久久色成人|