• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    線狀和樹枝狀銀納米結(jié)構(gòu)、形成機(jī)理及表面增強(qiáng)拉曼散射性質(zhì)

    2010-12-12 02:42:58吳馨洲裴梅山王廬巖李肖男陶緒堂
    物理化學(xué)學(xué)報 2010年11期
    關(guān)鍵詞:化工學(xué)院物理化學(xué)濟(jì)南

    吳馨洲 裴梅山 王廬巖, 李肖男 陶緒堂

    (1濟(jì)南大學(xué)化學(xué)化工學(xué)院,山東省氟化學(xué)化工材料重點實驗室,濟(jì)南 250022; 2山東大學(xué)晶體材料國家重點實驗室,濟(jì)南 250100)

    Silver nanoparticles,especially one?dimensional nanostruc?tures,have drawn particular attention due to their highest elec?trical,thermal conductivities and strong surface plasmon reso?nance,which make them attractive for use in biochemistry as nanoscale biomaterials[1-5].For instance,Thorpe et al.[6]synthe?sized a composite electrode structure comprised of silver nanowires and carbon nanotubes for use as cathode catalysts in alkaline fuel cell.They found that silver nanowires had similar performance at a much lower catalyst loading than the bulk samples.

    In the past few years,many wet?chemical methods,like soft template,non-template,seedless and ionic liquid processes, have been developed for the synthesis of one dimensional sil?ver nanostructures[7-10].And their properties such as catalysis, SERS,and plasmon resonances have been investigated[5-6,11-12]. However,these methods have their own disadvantages,such as relatively high temperature,expensive and commercially un?available reagents,complicated operations,and low?yield.Suh et al.[10]prepared silver nanowires in the presence ofN?alkyl imidazolium based ionic liquids.The obtained straight wires are about 200 nm in width and up to about 15 mm in length with no or few nanoparticles.But this method requires expen?sive reagents and complicated operations.Therefore,there is still a need to develop a more straightforward procedure for fabricating silver nanowires.Monodispersed silver nanowires were synthesized under oil?bath heating in high yield(>90% without isolation)using bubbling of air through a reagent solu?tion from ca 20℃to the boiling point of ethylene glycol(EG) (198℃)for 20 min by Tsuji et al.[13].Nevertheless,this method is limited due to relatively high temperature and the bubbling of oxygen molecules is indispensable.Most recently,Saha et al.[14]prepared single crystalline micron?sized rectangular silver bar using polyacrylamide(PAM)and silver nitrate(AgNO3)by a hydrothermal process.But this method requires relatively high?er temperature(above 107℃)and the PAM aqueous solution needs to be mature for 7 days.And the main products are rect?angular silver bars,and this method has a low yield of silver bars according to the SEM images.

    Herein,we describe a simple one?step method to prepare tan?gled silver nanowires as well as the dendritic structures,using PAM as the stabilizer and soft template at room temperature in large quantities.The structures obtained in our system are all in tangled morphology,which is different from those silver nanow?ires reported before.Moreover,PAM,being widely used in pe?troleum exploitation,water treatment,textile dyeing and chemi?cal industry,is cheaper and easy to be purchased.It plays the key role in the formation of wire?like structures.The growth mechanism concerning the tangled sliver nanowires are pro?posed and detailed investigated.Further,the study on the SERS properties indicates that such anisotropic structures are suitable substrates for probing PATP and probably other analytes.

    1 Experimental

    1.1 Materials

    Acrylamide(AM,99.0%),Polyacrylamide(PAM,≥99.0%, Mw≈5000000)are purchased from Tianjin Kermel Reagent Co.Ascorbic acid(Vc,99.7%)and silver nitrate(AgNO3, 99.8%)are purchased respectively from Shanghai Reagent Co..4?aminothiophenol(PATP,97%)is purchased from Alfa Aesar China(Tianjin)Co.,Ltd..All chemicals are used without fur?ther purification.The secondary distilled water is used for all solution preparation and experiments.

    1.2 Synthesis of silver products

    A typical procedure to synthesize the silver tangled nanow?ires is as follows:2 mL of 10 mmol·L-1PAM([PAM]denotes concentrations calculated in terms of moles of the repeating unit of PAM,with a molecular weight of 71 g·mol-1,per liter of solution),1 mL of 10 mmol·L-1silver nitrate,1 mL of 10 mmol·L-1ascorbic acid are added to 6 mL of water.The final concentrations of PAM,ascorbic acid,and AgNO3are 2,1,and 1 mmol·L-1,respectively.The solution is stirred for several seconds and aged for 24 h at 25℃without any stirring.All samples are sealed in glass tubes and left at certain temperature for further study.

    1.3 Characterization of silver products

    TEM observations are performed with a JEM?100CX II(JE?OL,Japan)electron microscope operated at an accelerating voltage of 100 kV.To prepare TEM samples,the reacted mix?tures are dispersed in water under sonication and centrifuged at 5500 r·min-1for 15 min.Then the upper solution containing unreduced ions and unbound molecules is removed.Such ob?tained samples are redispersed in water.A little drop of result?ing dispersion is put onto a Formvar?covered copper grid(230 meshes)and followed by drying naturally in the air at room temperature for TEM measurement.For the UV(HP 8453E UV?Vis spectrometer,US)measurements,the suspension obtained above is placed in a 1 cm light path quartz cell,and spectra are recorded at room temperature.Raman measurements are made with a Renishaw System 1000 Raman imaging microscope (Renishaw Plc,U.K.)equipped with 25 mW(632.8 nm)He?Ne laser(model 127?25RP,Spectra?Physics,USA)and a Pelti?er?cooled CCD detector(Renishaw,576 pixels×384 pix?els).A 50×objective(numerical aperture=0.80)mounted on an Olympus BH?2 microscope(Japan)is used to focus the laser onto a spot approximately 1 μm in diameter and collect the back?scattered light from the sample.To analyze the SERS ac?tivities of these samples,40 μL of these concentrated colloids is directly cast on the clean glass slide and let dry in air.Final?ly,10 μL of a 24 mmol·L-1ethanol solution of PATP is cast onto the colloid films formed on the glass slide,and allowing the solvent to evaporate.

    2 Results and discussion

    Fig.1(A-C)presents representative SEM and TEM images of the silver products obtained at a PAM concentration of 2 mmol·L-1,which apparently consists of tangled wire?like struc?tures as the main products with width ranging from 50 to 100 nm.Fig.1D shows a small amount of structures in the products, with some short wires and some aggregated quasi?spherical nanostructures.The quasi?spherical nanoparticles connect with the short wires(arrows in Fig.1D)with the tendency of form?ing tangled silver nanostructures.And the sizes of the sliver quasi?spherical nanostructures range from 50 to 100 nm in di?ameter,which is similar to the width of the wires.

    To investigate the growing mechanism of tangled silver nanostructures,different products obtained from the same sam?ple after certain reaction time are shown in Fig.2.The probable formation mechanism can be described in Fig.3,path A.PAM plays the key role in the formation of such silver nanowires as the capping agent as well as the soft template.In the reaction process,the ascorbic acid acts as the reducing agent.Nucle?ation first occurs in aqueous solution and small particles are formed(Fig.2A).Then the amide groups of PAM molecules are adsorbed on the surfaces of silver nanoparticles simultane?ously.On the basis of Flory?Krigbaum′s theory of dilute solu?tion[15],PAM molecules dissolved in the aqueous solution are mainly in the form of the cloud of chain segments(see Fig.3). The nascent nuclei and small nanoparticles would be arranged side by side along the polymer chains due to the presence of numerous amide groups on PAM chain(Fig.2(B-F)).This is helpful to the anisotropic growth of silver particles and then tangled silver nanowires can be formed through particles at?taching with each other.This can further be verified by Fig. 1D,where it can be seen that some wires are formed through aggregating of some quasi?spherical particles and short wires (denoted by arrows in Fig.1D).Saha et al.[14]demonstrated that when reaction solution containing PAM and AgNO3was heat?ed at a temperature of about 237℃,thermal degradation of am?ide bonds of acryl amide to carboxylic acids occur,accompa?nied by the release of ammonia.Then ammonium ions got re?placed by silver ions and reduced the silver ions attached to the PAM to form a silver nanoparticles assembly along the PAM chain.After oriented attachment and Ostwald ripening,single crystalline micron?sized rectangular silver bars with smooth sur?face were produced.According to Saha,the Ostwald ripening was the key to produce the rectangular smooth silver bars,so the longer reaction time(7 d)was necessary and the yield was relatively lower.In our system,silver tangled nanowires in?stead of rectangular silver bars are the main products due to the fast reaction rate and oriented attachment with the shorted reac?tion time and higher yield.

    According to the mechanism,PAM is the key factor in the synthesis of the tangled silver nanowires.To test this,further experiments are done to study the effects of concentrations of different components and AM(monomer of PAM)as the cap?ping agent on the products.

    Fig.1 SEM(A,B)and TEM(C)images of silver tangled nanostructures from PAM(2 mmol·L-1)?Vc(1 mmol·L-1)?AgNO3(1 mmol·L-1)aqueous solution at 25℃B is a magnified image marked by a white rectangle in A.D represents a few products obtained from the same reaction system with the tendency of forming structures like C.

    With the concentration of ascorbic acid increasing to 10 mmol·L-1,dendritic silver structures are produced(Fig.4A).A higher reducing agent concentration enhances the reduction rate of silver nitrate and results in the fast formation of more sliver nuclei,and such effect is disadvantageous to the growing of sliver nanostructures.The result tells us that the concentra?tion of ascorbic acid has great influence on the silver morpholo?gy.A little lower concentration of ascorbic acid is helpful to the anisotropic growth of silver nanostructures.Therefore,it can be concluded that too fast reduction process is unfavorable to silver tangled nanowires.These obtained dendritic silver structures(Fig.4A)further support our mechanism.As shown in Fig.3,path B,small particles,inside of the cloud of chain segments,connect each other rapidly due to the faster growth rate and lead to formation of the core with the diameter range from 800 nm to 2 μm.Wang et al.[16]reported that dendritic sil?ver nanostructures were synthesized very easily by dropping a droplet of AgNO3?HF solution on silicon wafers without any capping agent and surfactant.They explained the structural evolution by the oriented attachment?based aggregation mecha?nism,which can also be used to explain the formation of den?dritic silver nanostructures in this work(insert in Fig.4A). With prolonging reaction duration,the concentrations of the sil?ver salt and reduction agent decrease,the reaction process is dominated by a non?equilibrium condition(under kinetic fac?tor)due to a high silver ion concentration[16],so silver dendrites (outside the core)are formed.And with increasing reaction time and the consumption of the silver ions,the reaction pro?cess was dominated by a quasi?equilibrium or equilibrium con?dition(thermodynamic factor)[16].The branches(denoted by ar?rows in insert Fig.4A)become less and shorter.

    Fig.2 TEM images of silver products obtained from the samples of Fig.1 for monitoring the tangled nanowires evolution over timet/min:(A)1,(B)60,(C)180,(D)300,(E)420,(F)540

    Fig.3 Schematic illustration of formation mechanism of tangled and dendritic silver nanostructures

    The growth mechanism of tangled nanowires is further certi?fied by the products from the AM?assistant method.AM(2 mmol·L-1)is introduced into the reaction system instead of PAM as the capping agent.Compared to the polyacrylamide, amide(the monomer of PAM)without the long carbon chain can not act as the template,so the silver products are dominat?ed by branched particles with long acuminate branches of more than 300 nm(Fig.4B).Increasing the ascorbic acid concentra?tion to 3 mmol·L-1,flower?like particles with short branches (about 50 nm)appear as the main products,as can be seen in Fig.4C.Moreover the number of the short branches on one sil?ver particle decreases and the central parts of the structures shrink.As we know,metals like Ag,Au,Pt,Pb,and Pd have a face?centered cubic(fcc)structure,which leads to no crystallograph?ic driving force for anisotropic growth[17].Indeed,atoms of these metals should assemble to form faceted spheres to mini?mize their surface energy[17].Therefore spherical core can be easily formed.Nevertheless the appearance of these branched structures demonstrates that amide group can adsorb on silver surface,which indirectly demonstrates the proposed mecha?nism mentioned above.

    Fig.4 TEM images of silver nanoproducts from different AgNO3(1 mmol·L-1)reaction systems at 25℃(A)PAM(2 mmol·L-1)-Vc(10 mmol/L);(B)AM(2 mmol·L-1)-Vc(1 mmol· L-1);(C)AM(2 mmol·L-1)-Vc(3 mmol/L);(D)Vc(1 mmol·L-1).The image inserted in A represents the magnified part of A.

    Additionally,the effect of PAM concentration on the prod?uct is also discussed.When PAM concentrations are changed from 0 to 0.05 mmol·L-1,the products are dendritic silver nanostructures.With PAM concentration increases from 0.1 to 2 mmol·L-1,the quantity of nanowires is also increased and fi?nally nanowires are the main product(Fig.1).Products of sys?tems with PAM concentration increasing to 8 mmol·L-1,are the same as those obtained from system containing PAM of 2 mmol·L-1.With the higher concentration of PAM,the PAM template dominates and directs the growth to form silver tan?gled nanostructures.These results are consistent with the mech?anism mentioned above.

    As can be seen from Fig.5,a large amount of long straight wires(the maximum length is about 7 μm)accompanied with tangled wires are obtained by stirring the reaction system.The stirring process makes the chains of PAM relatively extend, thus resulting to the formation of straight wires.

    Fig.6 shows the absorption spectra of the silver structures presented in Fig.1 and Fig.4A,respectively.It is well known that UV?Vis absorption spectra of silver nanostructures depend strongly on their shapes and sizes[18].The main optical response of spherical silver nanoparticles with diameters of 20-40 nm and 40-90 nm often exhibits a single absorption band around 410 and 480 nm attributed to the surface plasma resonance,re?spectively[19].While anisotropic metal particles could give rise to two or more surface plasmon resonance(SPR)bands[20].

    Fig.5 TEM image of silver nanoproducts from PAM(2 mmol·L-1)?Vc(1 mmol·L-1)?AgNO3(1 mmol·L-1)aqueous solution under stirring for 24 h at 25℃

    Fig.6 UV?Vis absorption spectra of tangled silver nanowires(a)and dendritic nanostructures(b)obtained from different AgNO3(1 mmol·L-1)reaction systems at 25℃(a)PAM(2 mmol·L-1)?Vc(1 mmol·L-1); (b)PAM(2 mmol·L-1)?Vc(10 mmol·L-1)

    The absorption spectrum(Fig.6a)of silver nanowires shows a shoulder peak at around 350 nm and an evident peak centered at 410 nm with a long tail extending to 800 nm.Gao et al.[21]syn?thesized uniform silver nanowires with an average length of 6 mm and diameter of 70 nm via PVP?assisted(polyvinylpyrrol?idone,PVP?K30)polyol reduction.They explained this tail band to the overlapping of the in?plane quadrupole and dipole resonance modes of nanowires with peaks at 445 and 514 nm, respectively[21].In our work,the peak(located at 410 nm)exhib?its a broad full?width at half?maximum of about 100 nm,which could be attributed to the existence of a broad distribution in size and morphology(as can be seen in Fig.1)for these silver structures.Moreover,the shoulder peak at about 350 nm which is attributed to the transversal modes could be considered as the optical signature of relatively long silver nanowires[22].And it is in good accordance with our TEM images.

    The spectrum in Fig.6b displays a broad plasmon band cen?tered at about 420 nm for sliver dendritic structures.The peak at 420 nm is attributed to the out?of?plane dipole resonance,but the expected longitudinal plasmon band does not appear,nei?ther.This may be explained by considering that the silver den?dritic structures do not adopt a uniform morphology(Fig.4A), which signifcantly can decrease the intensity of the longitudi?nal plasmon band,leading to the disappearance of the band[23].

    To investigate the SERS sensitivity of the silver nanowires substrates,the Raman spectra of the PATP molecules adsorbed on the surface of silver nanowires as well as silver dendritic structures are measured.All the obtained SERS spectra of PATP are in agreement with those in the literature[24].It should be noted that without silver colloids,no detectable spectrum could be obtained when the same amount of PATP is dropped on the glass slide(Fig.7a).And noticeable changes in the fre?quency shift and relative intensity of the bands can be ob?served from the SERS spectra on different silver substrates,in?dicating that the thiol group in PATP directly contacts with the silver surfaces.The SERS spectra obtained from the silver den?dritic structures(Fig.7b)and silver nanowires(Fig.7c)are dom?inated with theb2modes(in?plane,out of?phase modes)locat?ed at 1438,1389,1142,1189,and 1003 cm-1.Recent study has shown that the apparently selective enhancement of the non?to?lally symmetric b2modes could be ascribed to the surface cata?lytic reaction of adsorbed PATP molecules to form the aromat?ic azo compound[25].Moreover the enhancement of a1vibration?al modes(in?plane,in?phase modes),such as v(C—C)and v(C—S)at 1577 and 1077 cm-1,is also apparent.The apparent enhancement of a1modes in the SERS spectra may imply that the enhancement via an electromagnetic(EM)mechanism is significant.The better enhancement ability of sample is sup?posed to be closely related to its unique tangled structure be?cause the branches on the particles made the surface of them highly curved[26].In principle,high curvature features on the surface(lightening rod effect)could cause very large enhance?ment[24].In contrast with the silver dendritic structures,the SERS intensity of nanowires is stronger.According to Xia et al.[27],high surface areas and many sharp edges could serve as great substrates for SERS detection.From Fig.1A and Fig.4A, the tangled nanowires have larger surfaces areas than the den?dritic structures with the same amount of silver atoms,because the dendritic structures have relatively larger cores.Although it is difficult to calculate the enhancement factors from these data because of the complex particle shapes,the strong Raman sig?nals enabled by the particles indicate that these tangled silver structures are active SERS substrates.

    Fig.7 Comparison of normal Raman spectrum and SERS spectra of PATP(a)normal Raman spectrum of solid sample;(b)and(c)are SERS spectra of PATP(0.024 mol·L-1)on the dendritic structures and silver nanowires, respectively.

    3 Conclusions

    At mild conditions,a large yield of tangled silver nanowires and dendritic structures are synthesized from PAM aqueous solution under different concentrations of ascorbic acid.PAM provides a useful soft template for the growth of tangled silver nanowires.At the initial reaction stage,silver nuclei are formed and adsorbed by PAM with a tangled structure.As the reaction time is prolonged,the nanoparticles contact with each other and grow along the polymer chain,leading to the formation of tangled silver nanowires.When the reducer concentration become higher or small AM molecule is used to replace PAM as the capping agent,it is disadvantageous for silver particles to anisotropically grow along the soft template, so dendritic or branched nanostructures can be obtained. Raman measurements show silver nanowires and dendritic structures are active SERS substrates for probing PATP and probably other analytes.The tangled structures will provide new structural diversity for the applications in biological tagging,optoelectronics,SERS,and catalysis.

    1 Yao,H.J.;Liu,J.;Duan,J.L.;Hou,M.D.;Sun,Y.M.;Mo,D.; Chen,Y.F.;Xue,Z.H.Acta Phys.?Chim.Sin.,2007,23:489 [姚會軍,劉 杰,段敬來,侯明東,孫友梅,莫 丹,陳艷峰,薛智浩.物理化學(xué)學(xué)報,2007,23:489]

    2 Fu,X.F.;Zou,H.M.;Zhou,L.;Zhou,Z.K.;Yu,X.F.;Hao,Z. H.Acta Phys.?Chim.Sin.,2008,24:781 [付小鋒,鄒化民,周 利,周張凱,喻學(xué)峰,郝中華.物理化學(xué)學(xué)報,2008,24:781]

    3 Chi,G.J.;Yao,S.W.;Fan,J.;Zhang,W.G.;Wang,H.Z.Acta Phys.?Chim.Sin.,2002,18:532 [遲廣俊,姚素薇,范 君,張衛(wèi)國,王宏智.物理化學(xué)學(xué)報,2002,18:532]

    4 Xia,Y.;Yang,P.;Sun,Y.;Wu,Y.;Mayers,B.;Gates,B.;Yin, Y.;Kim,F.;Yan,H.Adv.Mater.,2003,15:353

    5 Sarkar,R.;Kumbhakar,P.;Mitra,A.K.;Ganeev,R.A.Curr. Appl.Phys.,2010,10:853

    6 Kostowskyj,M.A.;Gilliama,R.J.;Kirkb,D.W.;Thorpe,S.J. Int.J.Hydrog.Energy,2008,33:5773

    7 Gao,Y.;Jiang,P.;Liu,D.F.;Yuan,H.J.;Yan,X.Q.;Zhou,Z. P.;Wang,J.X.;Song,L.;Liu,L.F.;Zhou,W.Y.;Wang,G.; Wang,C.Y.;Xie,S.S.Chem.Phys.Lett.,2003,380:146

    8 Jiang,Z.Y.;Xie,Z.X.;Zhang,S.H.;Xie,S.Y.;Huang,R.B.; Zheng,L.S.Chem.Phys.Lett.,2003,374:645

    9 Chen,C.;Wang,L.;Yu,H.;Jiang,G.;Yang,Q.;Zhou,J.;Xiang W.;Zhang,J.Mater.Chem.Phys.,2008,107:13

    10 Kim,T.Y.;Kim,W.J.;Hong,S.H.;Kim,J.E.;Suh,K.S. Angew.Chem.Int.Edit.,2009,48:3806

    11 Sanders,A.W.;Routenberg,D.A.;Wiley,B.J.;Xia,Y.; Dufresne,E.R.;Reed,M.A.Nano Lett.,2006,6:1822

    12 Kang,T.;Yoon,I.;Jeon,K.S.;Choi,W.;Lee,Y.;Seo,K.;Yoo, Y.;Park,Q.H.;Ihee,H.;Suh,Y.D.;Kim,B.J.Phys.Chem.C, 2009,113:7492

    13 Tanga,X.;Tsuji,M.;Jiang,P.;Nishio,M.;Jang,S.M.;Yoon,S. H.Colloids and Surfaces A,2009,338:36

    14 Mondal,B.;Majumdar,D.;Saha,S.K.J.Mater.Res.,2010,25: 383

    15 Krigbaum,W.R.;Geyme,D.O.J.Am.Chem.Soc.,1959,81: 1859

    16 Ye,W.;Shen,C.;Tian,J.;Wang,C.;Hui,C.;Gao,H.Solid State Sci.,2009,11:1088.

    17 Chen,J.;Wiley,B.J.;Xia,Y.Langmuir,2007,23:4120

    18 Caswell,K.K.;Bender,C.M.;Murphy,C.J.Nano Lett.,2003, 3:667

    19 Mdluli,P.S.;Revaprasadu,N.Mater.Lett.,2009,63:447

    20 Brennan,M.E.;Whelan,A.M.;Kelly,J.M.;Blau,W.J.Synth. Met.,2005,154:205

    21 Gao,Y.;Jiang,P.;Song,L.;Liu,L.;Yan,X.;Zhou,Z.;Liu,D.; Wang,J.;Yuan,H.;Zhang,Z.;Zhao,X.;Dou,X.;Zhou,W.; Wang,G.;Xie,S.J.Phys.D?Appl.Phys.,2005,38:1061

    22 Sun,Y.;Yin,Y.;Mayers,B.T.;Herricks,T.;Xia,Y.Chem. Mater.,2002,14:4736

    23 Zhang,J.;Liu,K.;Dai,Z.;Feng,Y.;Bao,J.;Mo,X.Mater. Chem.Phys.,2006,100:313

    24 Zou,X.;Ying,E.;Dong,S.J.Colloid Interface Sci.,2007,306: 307

    25 Wu,D.Y.;Liu,X.M.;Huang,Y.F.;Ren,B.;Xu,X.;Tian,Z.Q. J.Phys.Chem.B,2009,113:18212

    26 Jana,N.R.;Pal,T.Adv.Mater.,2007,19:1761

    27 Wang,Y.;Camargo,P.H.C.;Skrabalak,S.E.;Gu,H.;Xia,Y. Langmuir,2008,24:12042

    猜你喜歡
    化工學(xué)院物理化學(xué)濟(jì)南
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Chemical Concepts from Density Functional Theory
    Paving Memory Lane
    濟(jì)南
    汽車與安全(2016年5期)2016-12-01 05:21:55
    《化工學(xué)報》贊助單位
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    特大巨黑吊av在线直播| 午夜福利在线观看吧| 自拍偷自拍亚洲精品老妇| 国产成人a区在线观看| 五月天丁香电影| 精品一区在线观看国产| 寂寞人妻少妇视频99o| 丝袜喷水一区| 国产精品熟女久久久久浪| 精品久久国产蜜桃| freevideosex欧美| 午夜视频国产福利| 国产精品一二三区在线看| 91在线精品国自产拍蜜月| 美女国产视频在线观看| 你懂的网址亚洲精品在线观看| 国产亚洲av片在线观看秒播厂 | 国产精品三级大全| ponron亚洲| 久久久久久久久久成人| 国产精品蜜桃在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲精品乱码久久久久久按摩| 亚洲无线观看免费| 狠狠精品人妻久久久久久综合| 视频中文字幕在线观看| 久久99热这里只有精品18| 亚洲欧美精品自产自拍| 久久久精品免费免费高清| 最近的中文字幕免费完整| 69人妻影院| 久久久久久伊人网av| 久久热精品热| 久久久欧美国产精品| 国产精品久久久久久精品电影小说 | 国产黄频视频在线观看| 国产单亲对白刺激| 国产伦精品一区二区三区视频9| 国产一级毛片在线| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 亚洲国产av新网站| 色尼玛亚洲综合影院| 五月玫瑰六月丁香| 国产午夜精品论理片| 免费av不卡在线播放| 精品一区二区三卡| 韩国高清视频一区二区三区| 一个人观看的视频www高清免费观看| 精品久久久久久久久av| 97人妻精品一区二区三区麻豆| 夫妻性生交免费视频一级片| 小蜜桃在线观看免费完整版高清| 成人亚洲精品av一区二区| 国语对白做爰xxxⅹ性视频网站| 夫妻午夜视频| 婷婷六月久久综合丁香| 亚洲av中文av极速乱| 精品酒店卫生间| 中文字幕久久专区| 18禁动态无遮挡网站| 高清欧美精品videossex| 中国国产av一级| 国产 亚洲一区二区三区 | 久久热精品热| 成人亚洲精品一区在线观看 | 看免费成人av毛片| 日韩一区二区视频免费看| 成年av动漫网址| 亚洲国产精品成人久久小说| 欧美激情在线99| 91久久精品国产一区二区三区| 少妇丰满av| 人妻夜夜爽99麻豆av| 欧美激情久久久久久爽电影| 联通29元200g的流量卡| 国产精品一二三区在线看| 午夜免费激情av| 日日干狠狠操夜夜爽| 国产国拍精品亚洲av在线观看| 国产 一区精品| 麻豆久久精品国产亚洲av| www.av在线官网国产| 精品久久久久久久人妻蜜臀av| 精品99又大又爽又粗少妇毛片| 欧美xxxx性猛交bbbb| 2021少妇久久久久久久久久久| 国产精品女同一区二区软件| av在线蜜桃| 国产精品不卡视频一区二区| 一级爰片在线观看| 日本爱情动作片www.在线观看| 成人国产麻豆网| 九草在线视频观看| 小蜜桃在线观看免费完整版高清| 九九爱精品视频在线观看| 亚洲欧美一区二区三区国产| 精品久久久精品久久久| 一个人观看的视频www高清免费观看| 亚洲欧美清纯卡通| 午夜久久久久精精品| 波多野结衣巨乳人妻| 亚洲在线观看片| 亚洲av电影不卡..在线观看| 99热全是精品| 好男人在线观看高清免费视频| 69人妻影院| 国产精品日韩av在线免费观看| 亚洲国产精品专区欧美| 亚洲精品日韩av片在线观看| 亚洲精品乱久久久久久| 久久精品久久久久久噜噜老黄| 午夜日本视频在线| 色网站视频免费| 在线播放无遮挡| 啦啦啦韩国在线观看视频| 国产在线一区二区三区精| 51国产日韩欧美| 久久久色成人| 天天躁日日操中文字幕| 亚洲最大成人av| 精品久久久久久久久av| 日韩欧美三级三区| 婷婷色综合大香蕉| 男人舔奶头视频| 一区二区三区高清视频在线| 波野结衣二区三区在线| 国产伦理片在线播放av一区| 久久精品熟女亚洲av麻豆精品 | 久久久欧美国产精品| av在线老鸭窝| 日本三级黄在线观看| 18禁动态无遮挡网站| 三级经典国产精品| 精品亚洲乱码少妇综合久久| 亚洲av电影不卡..在线观看| 97精品久久久久久久久久精品| 国产精品熟女久久久久浪| 午夜免费激情av| 91久久精品国产一区二区成人| 免费大片18禁| 欧美一区二区亚洲| 国产国拍精品亚洲av在线观看| 亚洲国产精品专区欧美| 精品一区二区免费观看| 国产黄频视频在线观看| 男女边摸边吃奶| 午夜福利高清视频| 九九在线视频观看精品| 十八禁网站网址无遮挡 | 国产一级毛片在线| 亚洲精品456在线播放app| 99热这里只有是精品在线观看| 午夜精品在线福利| 2021少妇久久久久久久久久久| 插阴视频在线观看视频| 国产免费视频播放在线视频 | 亚洲在线观看片| 免费观看精品视频网站| 最近最新中文字幕大全电影3| 亚洲国产成人一精品久久久| 国产精品久久久久久久久免| 91精品国产九色| 三级国产精品片| a级毛色黄片| 欧美丝袜亚洲另类| 最近的中文字幕免费完整| 亚洲人与动物交配视频| 狂野欧美白嫩少妇大欣赏| 亚洲国产色片| 简卡轻食公司| 亚洲成人久久爱视频| 麻豆成人午夜福利视频| 久久久色成人| 能在线免费观看的黄片| 午夜免费激情av| 大香蕉97超碰在线| 美女cb高潮喷水在线观看| av国产久精品久网站免费入址| 国模一区二区三区四区视频| 亚洲国产最新在线播放| 精品久久久久久久末码| 亚洲va在线va天堂va国产| 久久久久九九精品影院| 97热精品久久久久久| 一区二区三区免费毛片| 午夜福利在线观看吧| videossex国产| 国内精品宾馆在线| 精品欧美国产一区二区三| 久久国内精品自在自线图片| 国产片特级美女逼逼视频| 亚洲欧美一区二区三区国产| 亚洲人与动物交配视频| 麻豆精品久久久久久蜜桃| 女人被狂操c到高潮| 国产精品伦人一区二区| 九九爱精品视频在线观看| 中文在线观看免费www的网站| 免费黄网站久久成人精品| 国产精品麻豆人妻色哟哟久久 | 久久国产乱子免费精品| 全区人妻精品视频| 两个人的视频大全免费| 肉色欧美久久久久久久蜜桃 | www.av在线官网国产| 在线a可以看的网站| 老司机影院毛片| 亚洲av成人精品一区久久| 最近2019中文字幕mv第一页| 国产黄色小视频在线观看| 黄片wwwwww| 成年女人看的毛片在线观看| 亚洲人成网站在线观看播放| 三级国产精品片| 97热精品久久久久久| 久久久久久国产a免费观看| 国产黄色免费在线视频| 日韩,欧美,国产一区二区三区| 特大巨黑吊av在线直播| 免费观看的影片在线观看| 淫秽高清视频在线观看| 精品一区在线观看国产| 亚洲一级一片aⅴ在线观看| 午夜激情久久久久久久| 精品一区在线观看国产| 久久99热这里只频精品6学生| 最后的刺客免费高清国语| 亚洲国产色片| 亚洲精品456在线播放app| 最近最新中文字幕大全电影3| 成人欧美大片| 国产一区二区三区综合在线观看 | 亚洲,欧美,日韩| 免费av不卡在线播放| 国产高潮美女av| 欧美日韩在线观看h| 高清日韩中文字幕在线| 国产国拍精品亚洲av在线观看| 99九九线精品视频在线观看视频| 一二三四中文在线观看免费高清| 久久久久九九精品影院| 亚洲精品成人av观看孕妇| 久热久热在线精品观看| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| .国产精品久久| 久久热精品热| 久久精品久久久久久噜噜老黄| 亚洲av成人av| 日本爱情动作片www.在线观看| 最近手机中文字幕大全| 国产中年淑女户外野战色| 精品亚洲乱码少妇综合久久| 老女人水多毛片| 成人二区视频| 能在线免费观看的黄片| 大片免费播放器 马上看| or卡值多少钱| 我的女老师完整版在线观看| 亚洲国产精品sss在线观看| 亚洲精品aⅴ在线观看| 色综合色国产| 国产成人一区二区在线| 大又大粗又爽又黄少妇毛片口| 欧美高清性xxxxhd video| 亚洲精品第二区| 2021少妇久久久久久久久久久| 一个人免费在线观看电影| 亚洲内射少妇av| 精品一区二区免费观看| 国产极品天堂在线| 国产成人精品久久久久久| 日韩国内少妇激情av| 免费人成在线观看视频色| 丝瓜视频免费看黄片| 免费看av在线观看网站| 日本欧美国产在线视频| 精品欧美国产一区二区三| 国产精品伦人一区二区| 成人一区二区视频在线观看| 少妇高潮的动态图| 男的添女的下面高潮视频| 26uuu在线亚洲综合色| 午夜激情久久久久久久| 男女视频在线观看网站免费| 国产黄色视频一区二区在线观看| 亚洲精品乱码久久久v下载方式| 久久这里有精品视频免费| 国产白丝娇喘喷水9色精品| 国产乱人视频| 精品久久久久久电影网| 国产精品精品国产色婷婷| 亚洲四区av| 久久久久久久大尺度免费视频| 免费少妇av软件| 白带黄色成豆腐渣| 男女边摸边吃奶| 我的女老师完整版在线观看| 校园人妻丝袜中文字幕| 国产精品久久久久久精品电影小说 | 免费黄色在线免费观看| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 日韩欧美一区视频在线观看 | 在线播放无遮挡| 大话2 男鬼变身卡| 国产精品av视频在线免费观看| 欧美性猛交╳xxx乱大交人| 中文乱码字字幕精品一区二区三区 | 国产乱人偷精品视频| 麻豆成人av视频| 国产爱豆传媒在线观看| 亚洲av免费在线观看| 久久6这里有精品| 久久精品国产亚洲网站| 国产色婷婷99| 91在线精品国自产拍蜜月| 亚洲国产精品成人久久小说| 亚洲av在线观看美女高潮| 高清视频免费观看一区二区 | 丝袜美腿在线中文| 免费在线观看成人毛片| 亚洲av成人精品一区久久| 亚洲av二区三区四区| 亚洲国产精品sss在线观看| av一本久久久久| 最近手机中文字幕大全| 九九爱精品视频在线观看| 欧美+日韩+精品| 男女下面进入的视频免费午夜| 久久久色成人| 日本熟妇午夜| 国产黄a三级三级三级人| 午夜精品国产一区二区电影 | 欧美区成人在线视频| 日韩强制内射视频| 男女那种视频在线观看| 亚洲精品成人久久久久久| 亚洲欧美一区二区三区国产| 插逼视频在线观看| 69人妻影院| 亚洲人成网站在线观看播放| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 国产老妇女一区| 我要看日韩黄色一级片| 亚洲精品中文字幕在线视频 | 日本三级黄在线观看| 亚洲,欧美,日韩| 久久99蜜桃精品久久| av一本久久久久| 亚洲成人久久爱视频| 中文字幕久久专区| 午夜福利在线观看免费完整高清在| 看非洲黑人一级黄片| 69人妻影院| 国产精品蜜桃在线观看| 国产精品99久久久久久久久| 只有这里有精品99| 欧美激情在线99| 久久久久久久亚洲中文字幕| 欧美区成人在线视频| 亚洲怡红院男人天堂| 啦啦啦中文免费视频观看日本| 色视频www国产| 97超碰精品成人国产| 久久精品人妻少妇| 一级a做视频免费观看| 毛片女人毛片| 丝袜喷水一区| 国产精品久久久久久久电影| 国产成人91sexporn| 日日摸夜夜添夜夜爱| 91精品国产九色| 搞女人的毛片| 少妇人妻一区二区三区视频| 99九九线精品视频在线观看视频| 亚洲精品成人av观看孕妇| 午夜视频国产福利| 日韩av不卡免费在线播放| 国产一区二区亚洲精品在线观看| 精品一区二区三区视频在线| 精品一区二区三卡| 人妻夜夜爽99麻豆av| 亚洲自偷自拍三级| 99久国产av精品国产电影| 观看免费一级毛片| 免费观看av网站的网址| 日韩三级伦理在线观看| 亚洲av免费高清在线观看| 天堂网av新在线| 欧美三级亚洲精品| 国产成年人精品一区二区| 免费观看的影片在线观看| 亚洲av成人精品一区久久| 永久网站在线| 国产一区亚洲一区在线观看| 亚洲四区av| 国产探花在线观看一区二区| 纵有疾风起免费观看全集完整版 | 六月丁香七月| 又爽又黄a免费视频| 全区人妻精品视频| 亚洲18禁久久av| 精品一区二区三区视频在线| 午夜免费观看性视频| 日韩精品青青久久久久久| 国产成人a∨麻豆精品| 免费看不卡的av| 五月伊人婷婷丁香| 最近2019中文字幕mv第一页| 看免费成人av毛片| 国产欧美另类精品又又久久亚洲欧美| 两个人视频免费观看高清| 国产综合懂色| 人体艺术视频欧美日本| 国产成人福利小说| 麻豆精品久久久久久蜜桃| 久久这里有精品视频免费| 亚洲自拍偷在线| 一级毛片久久久久久久久女| 亚洲图色成人| 真实男女啪啪啪动态图| 熟妇人妻久久中文字幕3abv| 你懂的网址亚洲精品在线观看| 22中文网久久字幕| 日韩大片免费观看网站| 中文精品一卡2卡3卡4更新| 最近中文字幕高清免费大全6| 日本欧美国产在线视频| 三级国产精品片| 久久久精品免费免费高清| www.av在线官网国产| 九九在线视频观看精品| av播播在线观看一区| 久久久久久伊人网av| 亚洲欧洲日产国产| 丰满少妇做爰视频| 水蜜桃什么品种好| 青春草视频在线免费观看| 精品一区二区三区视频在线| 国产亚洲av片在线观看秒播厂 | 中文欧美无线码| 欧美激情在线99| 国产综合懂色| 日日啪夜夜撸| 69人妻影院| 啦啦啦韩国在线观看视频| 久久久亚洲精品成人影院| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| 人妻夜夜爽99麻豆av| 观看美女的网站| 亚洲精品乱码久久久v下载方式| 日韩av在线免费看完整版不卡| 乱人视频在线观看| 亚洲精品一区蜜桃| 国产女主播在线喷水免费视频网站 | 天美传媒精品一区二区| 亚洲精品一区蜜桃| 国内精品美女久久久久久| 69人妻影院| 极品少妇高潮喷水抽搐| 午夜日本视频在线| 啦啦啦中文免费视频观看日本| 伊人久久国产一区二区| 亚洲精品自拍成人| 亚洲精品日韩av片在线观看| 国产精品精品国产色婷婷| 成年av动漫网址| 国产女主播在线喷水免费视频网站 | 一个人免费在线观看电影| 国产在线一区二区三区精| 肉色欧美久久久久久久蜜桃 | 高清视频免费观看一区二区 | 精品久久国产蜜桃| 性色avwww在线观看| 嘟嘟电影网在线观看| 久久精品国产亚洲av涩爱| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 亚洲婷婷狠狠爱综合网| 欧美极品一区二区三区四区| 日韩成人伦理影院| 一区二区三区高清视频在线| 久久久国产一区二区| 好男人视频免费观看在线| 国产乱人偷精品视频| 国产午夜精品论理片| 2022亚洲国产成人精品| 2018国产大陆天天弄谢| 欧美成人a在线观看| 蜜桃久久精品国产亚洲av| 国产亚洲精品av在线| 街头女战士在线观看网站| 午夜激情久久久久久久| 午夜精品在线福利| 日日啪夜夜爽| 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 激情 狠狠 欧美| 国产单亲对白刺激| 欧美高清成人免费视频www| 国产精品国产三级国产av玫瑰| 三级毛片av免费| 老司机影院毛片| 亚洲av电影在线观看一区二区三区 | 国产精品av视频在线免费观看| 五月天丁香电影| 免费av不卡在线播放| 夫妻午夜视频| 久久久久久久亚洲中文字幕| 亚洲成人中文字幕在线播放| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放| 一级毛片电影观看| 国产久久久一区二区三区| 只有这里有精品99| 2021少妇久久久久久久久久久| 欧美人与善性xxx| 亚洲内射少妇av| 成年av动漫网址| 中文欧美无线码| 亚洲四区av| 美女脱内裤让男人舔精品视频| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看| 亚洲精品成人久久久久久| 韩国av在线不卡| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 国产欧美日韩精品一区二区| 99久久精品热视频| 欧美成人精品欧美一级黄| 成人毛片a级毛片在线播放| 性色avwww在线观看| 国产午夜精品论理片| 丰满乱子伦码专区| 久久精品国产鲁丝片午夜精品| 3wmmmm亚洲av在线观看| 国产人妻一区二区三区在| 寂寞人妻少妇视频99o| av在线播放精品| 日日摸夜夜添夜夜添av毛片| 亚洲一级一片aⅴ在线观看| 99热这里只有精品一区| 蜜臀久久99精品久久宅男| 国产精品熟女久久久久浪| 大陆偷拍与自拍| 搡老妇女老女人老熟妇| 国产精品不卡视频一区二区| 国产成年人精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 黄片无遮挡物在线观看| 久久精品国产亚洲网站| 免费观看在线日韩| av国产久精品久网站免费入址| 国产伦在线观看视频一区| 国产视频首页在线观看| 亚洲av成人精品一区久久| 美女黄网站色视频| 18禁动态无遮挡网站| 亚洲熟女精品中文字幕| 国产精品美女特级片免费视频播放器| 欧美zozozo另类| 一级毛片aaaaaa免费看小| 日韩av免费高清视频| 国产在线一区二区三区精| 久久这里只有精品中国| 麻豆av噜噜一区二区三区| 日产精品乱码卡一卡2卡三| 精品欧美国产一区二区三| 日本免费在线观看一区| 一二三四中文在线观看免费高清| 日韩国内少妇激情av| 日韩强制内射视频| 免费看不卡的av| 色综合站精品国产| a级一级毛片免费在线观看| 国产黄a三级三级三级人| 乱码一卡2卡4卡精品| 免费电影在线观看免费观看| 女的被弄到高潮叫床怎么办| 婷婷色综合大香蕉| 亚洲一区高清亚洲精品| 国产一区二区三区av在线| 午夜激情福利司机影院| 国产黄色免费在线视频| 亚洲国产色片| 久久精品人妻少妇| 成年人午夜在线观看视频 | 黄片无遮挡物在线观看| 少妇人妻精品综合一区二区| 中文字幕av成人在线电影| 麻豆成人午夜福利视频| 边亲边吃奶的免费视频| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 精品一区二区三区视频在线| 永久网站在线| 简卡轻食公司| 成人毛片60女人毛片免费| 亚洲欧美一区二区三区国产| 两个人的视频大全免费| 国产精品熟女久久久久浪| 精品国产一区二区三区久久久樱花 | 欧美日韩精品成人综合77777| 国产亚洲一区二区精品| 国产av在哪里看| 国产视频内射| 亚洲自拍偷在线| 欧美3d第一页| 男人舔女人下体高潮全视频| 国产精品伦人一区二区|