• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水穩(wěn)定的鎂摻雜ZnO量子點(diǎn):一鍋法合成及細(xì)胞成像應(yīng)用

    2015-12-05 10:25:20張立平吳山劉丹萬(wàn)永剛劉道森
    關(guān)鍵詞:吳山劉丹齊齊哈爾

    張立平 吳山 劉丹 萬(wàn)永剛 劉道森

    (1齊齊哈爾醫(yī)學(xué)院醫(yī)學(xué)技術(shù)學(xué)院,齊齊哈爾161006)

    (2齊齊哈爾醫(yī)學(xué)院醫(yī)藥研究中心,齊齊哈爾161006)

    (3齊齊哈爾大學(xué)通信與電子工程學(xué)院,齊齊哈爾161006)

    水穩(wěn)定的鎂摻雜ZnO量子點(diǎn):一鍋法合成及細(xì)胞成像應(yīng)用

    張立平*,1吳山2劉丹2萬(wàn)永剛1劉道森3

    (1齊齊哈爾醫(yī)學(xué)院醫(yī)學(xué)技術(shù)學(xué)院,齊齊哈爾161006)

    (2齊齊哈爾醫(yī)學(xué)院醫(yī)藥研究中心,齊齊哈爾161006)

    (3齊齊哈爾大學(xué)通信與電子工程學(xué)院,齊齊哈爾161006)

    一鍋法合成了鎂摻雜的ZnO量子點(diǎn),利用APTES對(duì)其進(jìn)行表面包覆,并采用XRD、TEM、UV-Vis、PL和FTIR等對(duì)材料進(jìn)行了表征。結(jié)果表明鎂摻雜能明顯增強(qiáng)熒光發(fā)光強(qiáng)度,在合適的摻雜濃度(30%)下其量子產(chǎn)率由11%增加到33%。通過(guò)APTES的表面包覆使鎂摻雜的ZnO量子點(diǎn)具有良好的水溶性和熒光穩(wěn)定性,可用于MCF-7細(xì)胞成像研究。

    ZnO量子點(diǎn);鎂摻雜;APTES包覆;水穩(wěn)定性

    Research onphotoluminescent semiconductor quantum dots(QDs)has received considerable attentions owing to their potential applications as biological labels during the past few decades[1-2].Relevant studies have been focused on“Cd element”containing QDs such as CdSe and CdTe QDs which have high quantum yield and relatively strong photoluminescence(PL)emission.However,such quantum dots are toxictobiologicalsystems.Althoughvarious protectionsemployingZnS,polymers,andothernontoxic shells have been developed,the leakage of Cd ions through the shell and the radicals derived from light irradiation could still be observed[3-8].

    Much attention has been paid to an alternative semiconductor for cell labeling applications since 1998[9].ZnO QDs are ideal candidates since they are nontoxic,less expensive,and chemically stable in air[10-11].However,colloidal ZnO QDs derived by traditional sol-gel routes tend to aggregate or grow due to their high surface energy,resulting in the disappearance of the visible emission[12].At the same time,the quantum yield(QY)of thus prepared ZnO QDs is usually below 10%[13-14].Moreover,conventional ZnO QDs are not stable in water.This instability is related to their surface luminescent mechanism,as water will exchange the organic protecting groups on the ZnO QDs surface attacking the luminescent centers and destroying the centers rapidly[15].Aqueous-stability is necessary for biomedical applications because the majority of bioanalyses require water-stable materials. Therefore,enhancement in stability and PL emission of ZnO QDs is a must for practical applications[11,16-17].

    In this work,a one-pot synthesis approach was developed to fabricate water-stable Magnesium-doped ZnO nanoparticles.The doped quantum dots give strong blue emissions centered on around 491 nm with a relatively high QY of 33%,which is significantly increased compared to the undoped ZnO QDs. In addition,aqueous-stability is achieved by capping the Mg-doped ZnO QDs with APTES.The obtained APTES-capped Mg-doped ZnO QDs exhibit excellent water stability,and the visible emissions are retained. The cell labeling applications are also demonstrated.

    1Experimental

    1.1 Reagents and instruments

    Lithiumhydroxidemonohydrate(LiOH·H2O, 95.0%),Zincacetatedihydrate(Zn(OAc)2·2H2O, 99.0%),Magnesium acetate tetrahydrate(Mg(OAc)2· 4H2O,99.0%),ethanol(absolute,99.7%)and nhexane(97.0%)were purchased from Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).(3-aminopropyl)triethoxysilane(APTES,98%pure,Sigma -Aldrich)and ultrapure water(Resistivity at 25℃∶18 MΩ·cm)were used without further purification.

    XRDdatawereobtainedonaBrukerD8 Advance X-ray diffractometer using Cu Kα irradiation at λ=0.154 18 nm.TEM images were recorded on a Hitachi HT 7700 electron instrument.FTIR spectra were recorded in 400~4 000 cm-1on a Nicollet 380 spectrophotometer using a KBr pellet.UV-Vis absorption spectra were obtained using a Shimadzu UV-2550 spectrometer.Photoluminescence(PL)measurements were carried out at room temperature with a Perkin-Elmer LS 55 spectrofluorometer.The cells were observed using a Nikon TI-S-130W inverted fluorescence microscope.The relative quantum yields(QYs) were measured using a solution of Rhodamine 6G in ethanol(QY 95%)as a reference material[18].

    1.2 Synthesis of undoped ZnO QDs

    ZnO QDs were prepared through a precipitation method by using LiOH as the precipitation agent in ethanol.In general,0.25 mmol of Zinc acetate was dissolved in 15 mL of ethanol.The mixture was refluxed at 40℃for 1 h under continuous stirring under atmospheric conditions.Meanwhile,0.5 mmol of LiOH was dissolved in 10 mL of ethanol for 20 min under ultrasonic vibration.Afterwards,the LiOH/ ethanol solution was then added to the zinc acetate/ ethanol solution.After the mixture was refluxed at 40℃for 1 h under continuous stirring under atmospheric conditions,stable ZnO QDs were formed in the solution(sample A).Then 40 mL APTES was added to the solution under magnetic stirring at room temperature for 1 h to ensure adequate dispersion. Subsequently,0.5 mL of ammonia was added slowly to the solution for 1 h with continuous stirring.Then APTES capped ZnO QDs were first washed using nhexane(1∶4,V/V)and then washed using ethanol three times to remove the unreacted molecules.The final particles were collected by centrifugation(5 000 r· min-1)for 5 min and re-dispersed in deion-ized water for further characterization.

    1.3 Synthesis of Mg-doped ZnO QDs

    To prepare Mg-doped ZnO QDs,a given amount of Magnesium acetate and Zinc acetate were refluxedat 40℃for 1 h under continuous stirring and atmospheric conditions,and the followed procedures were similar to the undoped ZnO QDs.The molar ratio of Magnesium and Zinc was from 10%to 40%,and the amount of LiOH remained unchanged.Finally,Mgdoped ZnO QDs with different molar ratios of Mg-10%,20%,30%,40%(denoted by B,C,D and E) were synthesized.Then,Mg-doped ZnO QDs(B~D) were capped by APTES,and the followed procedures were similar to the un-doped ZnO QDs.

    1.4 Cell labeling

    MCF-7 cells were placed in a 24-well plate and incubated at 37℃in 5%CO2in air.After 24 h,10 μL of APTES-capped Mg-doped ZnO QDs at 20 μg· mL-1was injected into each well.The particles were then incubated for 24 h at pH value of 7.4.After incubation,the cells were observed using a Nikon TIS-130W inverted fluorescence microscope[16].

    Fig.1 XRD patterns of un-doped ZnO QDs and Mg-doped ZnO QDs

    Table1 Comparison of parameters for different Mg-doped ZnO QDs

    2Results and discussion

    2.1 XRD analysis

    The XRD patterns of un-doped ZnO QDs and Mg-doped ZnO QDs with 10%,20%,30%and 40% are shown in Fig.1 .Meanwhile,inductively coupled plasma(ICP)results are shown in Table1 .The crystallographic phases of samples are all in good agreement with that in PDF No.36-1451,indicating the hexagonal wurtzite structure with space group P63mc.On the other hand,the XRD patterns of Mgdoped ZnO QDs with different molar ratios(B~E) show that there is no phase corresponding to MgO.We can thus preliminarily deduce that Mg2+ions have been incorporated into the ZnO system.Further,broad XRD peaks suggest formation of nanosized particles in all the samples.By using the Debey Scherrer formula, the average size of ZnO QDs is estimated to be around 2.7,2.5,2.4,2.2 and 2.1 nm for samples A~E,respectively.The XRD patterns reveal that the grainsizeisinverselypropor-tionaltotheMg concentration.Besides,the peaks of un-doped ZnO QDs are sharper than Mg-doped ZnO QDs,The incorporation of Mg deteriorates the crystallinity of ZnO QDs and reduces the size of ZnO QDs due to the difference in ion radius between Zn2+(0.074 nm)and Mg2+(0.072 nm).Literature results[19-20]suggest that the reduction of the ZnO particle size always is a good way for improvement of the quantum yield.One is the increaseoftherelativeconcentrationofsurface defects compared to bulk lattice sites,which thus increases the probability of trapping electrons or holes on the ZnO surface.The other is the reduction of the distance between shallow traps and deep traps,which thus facilitates electron or hole transfer.Hence,the reduction of the ZnO QDs particle size is achieved by themagnesiumdopingwhichcanalsoincreaseeffectively the quantum yield of ZnO QDs(Table1 ).

    2.2 FTIR spectra

    IR spectroscopy was employed to find the exact location of the Mg2+ions in the ZnO QDs.If Mg2+ions are outside the ZnO,the MgO hydrates should exhibit their characteristic Mg-OH IR vibrations at about 3 700 cm-1[21-22].As shown in Fig.2 (a),no bands at around 3 700 cm-1are observeed in the Mg-doped ZnO QDs.Therefore,the IR analysis rules out the presence of hydrated MgO in the final products.The most important information in Fig.2 (b)is found in the region below 1 100 cm-1,which is not affected by the water content and illustrates the presence of internal metal-oxygen interactions.The vibration of 1 049 cm-1indicates the formation of Zn-O-Si bond,and the vibration shifts to higher frequency at 1 024 cm-1after incorporation of Mg2+ions.In addition,the Zn-O vibration is located at 458 cm-1,and it shifts to lower frequency at 484 cm-1which is ascribed to the doping with Mg2+ions,because Mg atom is more active and easier to lose outer electrons than Zn atom.Thus,Mg serves as an electron donating group to ZnO,and makes Zn-O vibration shift to lower frequency in IR spectra.The above information indicates the formation of Mg-O-Zn bond.It can thus be deduced that at least a part of Mg2+ions have been incorporated into the ZnO lattice by substituting Zn2+ions.

    Fig.2 FTIR spectra of un-doped ZnO QDs and Mg-doped ZnO QDs(a),and FTIR spectra of partial enlargement(b)

    At the same time,IR results of APTES and APTES-capped Mg-doped ZnO QDs in Fig.3 clearly indicate the presence of APTES.The broad absorption band at about 3 410 cm-1could be attributed to the stretching vibration of N-H and O-H.The band at about 2 933 cm-1is typical of C-H stretching vibration. The bands at about 1 577 and 1 506 cm-1are attributed to the bending vibration of N-H,while the bands at about 1 387 and 1 330 cm-1are due to the bending vibration of C-H.As expected,the APTES-capped Mg-doped ZnO QDs are soluble in water.The solubility may be attributed to the exposed hydrophilic groups(-NH2,-OH)that make the surface of the nanocrystals hydrophilic.

    Fig.3 FTIR spectra of APTES and APTES-capped Mg-doped ZnO QDs

    2.3 UV-Vis spectra

    Fig.4 shows the normalized absorption spectra(a) and corresponding calculated band gap(b)of samples A~E,in which the band gap is estimated from the UV-Vis absorption spectra in Fig.S1.It can be clearly seen that the absorption edge exhibits a blue shift and the band gap increases with increasing in Mg doping.The average diameter of the ZnO nanoparticles can be calculated on the basis of absorption data by using Meulenkamp′s method,these results are in accordance with those obtained by employing the Debye-Scherer formula.The particle diameter decreases from 2.7 nm(0%)to 2.2 nm(40%)with increase in Mg doping,which can be ascribed to the strong interaction between the surface oxides of Zn2+and Mg2+and the quantum size effect.At the same time,Fig.4 shows that the presence of Mg2+ions plays two roles. One aspect is the control of the size of ZnO QDs,and another is the control of the number of surface defects. When the doping concentration is lower(〈20%),Mg2+ions serve to limit the growth of the size of ZnO QDs and increase the number of surface defects.But when the doping concentration is higher(〉20%),Mg2+ions serve to control the number of surface defects.

    Fig.4 (a)Normalized absorption spectra(path length 10 mm)and(b)corresponding calculated band gap of the samples A~E

    2.4 PL spectra

    Fig.5 shows the PL spectra and digital photographs of samples A~E.From the PL spectra(Fig.5 (a)),we can see that the emissions of A~E are 501, 495,492,491 and 491 nm,respectively.At the same time,the intensity of the maximum emission is enhanced remarkably,which may be attributed to the increasing concentration of defects.The quantum yields with different Mg contents are 11%,22%,28%, 33%and 29%,respectively(Table1 ).The QY of the quantum dots first increases and then decreases with increase in Mg loading.When the molar ratio of Mg is 30%,the QY value reaches the highest value.This trend agrees with the results of PL emissions.

    Fig.5 (a)PL spectra(excitation wavelengths of A~E are 336 nm,326 nm,323 nm,322 nm,321 nm,slit width 10 nm), (b)digital photographs of un-doped ZnO QDs and Mg-doped ZnO QDs under UV light(UV@302 nm)

    The PL spectra versus storage time under room temperature for unmodified and APTES-capped ZnO QDs are shown in Fig.6 .For unmodified ZnO QDs (sample A),the emission intensity is sharply decayed. In contrast,APTES-capped ZnO QDs(sample B~D), the emission intensity still remains unchanged after 14 days.These clearly indicate that capping of thesurface with APTES can effectively improve the water stability of ZnO QDs.

    Fig.6 PL spectra versus storage time under room temperature for unmodified ZnO QDs(A) (excitation wavelength of 328 nm)and APTES-capped ZnO QDs(B~D)(excitation wavelength of 338 nm)

    2.5 TEM analysis

    The TEM images(Fig.7 )illustrate that the diameters of undoped ZnO QDs and Mg-doped ZnO QDs are about 2.5 nm,which are in agreement with the diameters calculated from the UV/Vis data.As shown in Fig.7 ,the size of ZnO QDs becomes slightly smaller as the Mg2+doping amount increases.The decrease in the particle size is mainly attributed to the formation of Mg-O-Zn bonds on the surface of the doped samples.At the same time,Fig.7 (f)illustrate that the diameters of APTES-capped ZnO QDs(9.0 nm)much larger than those of ZnO QDs without APTES capping(2.5 nm).APTES has effectively capped on the surface of ZnO QDs and improves the stability of the fluorescence in aqueous solution.

    Fig.7 TEM images of(a)un-doped ZnO QDs and(b~e) Mg-doped ZnO QDs;Percentage of Mg(b) 10mol%,(c)20mol%(c)30mol%and(d) 40mol%;TEM images of(f)APTES-capped 30% Mg-doped ZnO QDs

    2.6 Cell labeling

    Fig.8 showsdifferentialinterferencecontrast (DIC)picture and fluorescent image of MCF-7 cells incubated with APTES-capped ZnO QDs.As shown in Fig.8 (b),the yellow emission from the cells is clearly observed under fluorecent micoscope,indicating that APTES-capped ZnO QDs have been successfully attached onto or penetrate into the cells.

    Fig.8 Differential interference contrast(DIC)picture(a) and the fluorescent image of cells labeled(b)

    3Conclusions

    Mg-doped ZnO QDs have been synthesized by a modified sol-gel method.The photoluminescence of Mg-dopedquantumdotshasbeensignificantly enhanced,andthequantumyieldofMg-doped quantum dots is dramatically increased from 11%for un-doped ZnO QDs to a high level of about 33%at Mg doping content of 30%.At the same time,watersolubleMg-dopedZnOQDswithstrongyellow emission may be obtained by capping with APTES. The photoluminescence is stable and strong during storage in water for extended periods of time.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Alivisatos A P.Science,1996,271:933-937

    [2]Peng X G,Manna L,Yang W D,et al.Nature,2000,404:59-61

    [3]Hines M A,Sionnest P J G.Phys.Chem.,1996,100:468-471

    [4]Wood A,Giersig M,Hilgendorff M,et al.Aust.J.Chem., 2003,56:1051-1057

    [5]Qu L H,Peng X G.J.Am.Chem.Soc.,2002,124:2049-2055

    [6]Derfus A M,Chan W C W,Bhatia S N.Nano Lett.,2004,4: 11-18

    [7]Jamieson T,Bakhshi R,Petrova D,et al.Biomaterials,2007, 28:4717-4732

    [8]Zhang P,Liu W G.Biomaterials,2010,31:3087-3094

    [9]Meulenkamp E A.J.Phys.Chem.B,1998,102:5566-5572

    [10]Xiong H M,Wang Z D,Liu D P,et al.Adv.Funct.Mater., 2005,15:1751-1756

    [11]Xiong H M,Xu Y,Ren Q G,et al.J.Am.Chem.Soc.,2008, 130:7522-7523

    [12]Rakshit S,Vasudevan S.ACS Nano,2008,2:1473-1479

    [13]Bera D,Qian L,Sabui S,et al.Opt.Mater.,2008,30:1233-1239

    [14]Xiong H M,Liu D P,Xia Y Y,et al.Chem.Mater.,2005, 17:3062-3064

    [15]Jana N R,Yu H,Ali E M,et al.Chem.Commun.,2007,14: 1406-1408

    [16]Tang X S,Choo E S G,Li L,et al.Chem.Mater.,2010,22: 3383-3388

    [17]Patra M K,Manoth M,Singh V K,et al.J.Lumin.,2009, 129:320-324

    [18]Xiong H M,Dmitry G S,Helmuth M,et al.Angew.Chem. Int.Ed.,2009,48:2727-2731

    [19]Liu D P,Li G D,Su Y,et al.Angew.Chem.Int.Ed.,2006, 45:7370-7373

    [20]Wang Y S,Thomas P J,Brien P O.J.Phys.Chem.B,2006, 110:4099-4101

    [21]Wang W,Qiao X,Chen J.J.Am.Ceram.Soc.,2008,91: 1697-1699

    [22]Kumar A,Kumar J.Solid State Commun.,2008,147:405-408

    Water-Stable Magnesium-Doped ZnO Quantum Dots: One-Pot Synthesis and Cell Labeling Applications

    ZHANG Li-Ping*,1WU Shan2LIU Dan2WAN Yong-Gang1LIU Dao-Sen3
    (1College of Medical Technology,Qiqihar Medical University,Qiqihar,Heilongjiang 161006,China)
    (2Research Institute of Medicine&Pharmacy,Qiqihar Medical University,Qiqihar,Heilongjiang 161006,China) (3Communication and Electronic Engineering Institute,Qiqihar University,Qiqihar,Heilongjiang 161006,China)

    A one-pot method was developed for synthesizing Magnesium-doped ZnO quantum dots(QDs)capped with(3-aminopropyl)triethoxysilane(APTES).The as-prepared quantum dots were characterized by XRD,TEM, UV-Vis,FL(fluorescent spectroscopy)and FTIR.The results show that the Mg-doped quantum dots exhibit greatly enhanced luminescent property and their quantum yield is increased from 11%for un-doped ZnO QDs to 33%for Mg-doped ZnO QDs at Mg-doping content of 30%.In addition,aqueous-stability is achieved by capping the Mg-doped ZnO QDs with APTES.The obtained APTES-capped Mg-doped ZnO QDs exhibit excellent water stability and retain visible emissions.The APTES-capped Mg-doped ZnO QDs demonstrate promising applications in MCF-7 cell labeling.

    ZnO quantum dots;magnesium-doped;APTES-capped;aqueous-stability

    O611.4

    A

    1001-4861(2015)08-1644-07

    10.11862/CJIC.2015.218

    2015-05-04。收修改稿日期:2015-07-01。

    黑龍江省教育廳科學(xué)技術(shù)研究基金(No.12541910)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:zhangliping@qmu.edu.cn,Tel:0452-2663153

    猜你喜歡
    吳山劉丹齊齊哈爾
    齊齊哈爾老年大學(xué)校歌
    齊齊哈爾地區(qū)一例鵝圓環(huán)病毒的PCR診斷
    離不開(kāi)的對(duì)手
    大漠三月
    金秋(2019年18期)2019-12-19 09:11:30
    The benefits and drawbacks of AI
    名落孫山
    A Study of Blended-teaching Model in Medical English
    高中數(shù)學(xué)新型課堂教學(xué)探析
    祖國(guó)(2017年19期)2017-11-23 22:19:02
    On Teaching Modes of English Reading for Higher Vocational Education
    煙 鬼
    欧美另类亚洲清纯唯美| 亚洲国产精品合色在线| 内射极品少妇av片p| 91久久精品国产一区二区三区| 欧美一级a爱片免费观看看| 在线观看美女被高潮喷水网站| 亚洲精品成人久久久久久| 97碰自拍视频| 成人综合一区亚洲| 99热这里只有是精品50| 日韩欧美在线乱码| 午夜免费男女啪啪视频观看 | 最新在线观看一区二区三区| 91精品国产九色| x7x7x7水蜜桃| 国产国拍精品亚洲av在线观看| 校园人妻丝袜中文字幕| 久久久久九九精品影院| 国产精品一区二区三区四区免费观看 | 国内精品宾馆在线| 无遮挡黄片免费观看| 变态另类丝袜制服| 婷婷丁香在线五月| 精品久久国产蜜桃| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 日韩欧美精品免费久久| 此物有八面人人有两片| 日韩欧美在线二视频| 少妇的逼好多水| 国产毛片a区久久久久| 久久午夜亚洲精品久久| 欧美日本亚洲视频在线播放| 国产成人福利小说| 狂野欧美白嫩少妇大欣赏| av中文乱码字幕在线| 人妻久久中文字幕网| 欧美高清性xxxxhd video| 99久久精品热视频| 在线播放无遮挡| 欧美色欧美亚洲另类二区| 国产私拍福利视频在线观看| 午夜免费成人在线视频| 韩国av一区二区三区四区| 在线播放国产精品三级| 亚洲va在线va天堂va国产| 久久久精品欧美日韩精品| 看十八女毛片水多多多| 成人三级黄色视频| 99在线人妻在线中文字幕| 97超级碰碰碰精品色视频在线观看| 亚洲精品国产成人久久av| 99久久精品一区二区三区| 久久国产精品人妻蜜桃| 日本免费a在线| 国产精品98久久久久久宅男小说| 在现免费观看毛片| av在线天堂中文字幕| 少妇的逼好多水| 看黄色毛片网站| 九九爱精品视频在线观看| 简卡轻食公司| 午夜福利在线观看吧| 最新中文字幕久久久久| 亚洲精华国产精华精| 亚州av有码| 午夜a级毛片| 婷婷精品国产亚洲av在线| 人妻夜夜爽99麻豆av| 中文字幕av在线有码专区| 97人妻精品一区二区三区麻豆| 午夜日韩欧美国产| 国产综合懂色| 五月伊人婷婷丁香| 黄色欧美视频在线观看| 高清毛片免费观看视频网站| 欧美日韩乱码在线| 久久久国产成人免费| 国产亚洲91精品色在线| 三级国产精品欧美在线观看| 欧美绝顶高潮抽搐喷水| 免费一级毛片在线播放高清视频| 国产又黄又爽又无遮挡在线| 在线国产一区二区在线| 熟女电影av网| 国产一区二区在线av高清观看| 国产高清有码在线观看视频| 久久午夜亚洲精品久久| 18+在线观看网站| 日本-黄色视频高清免费观看| 色综合亚洲欧美另类图片| 最近视频中文字幕2019在线8| 午夜免费激情av| 久久久国产成人免费| 可以在线观看毛片的网站| 一个人看的www免费观看视频| 国产精品一区二区性色av| 亚洲18禁久久av| 日本a在线网址| 一本一本综合久久| 亚洲一区高清亚洲精品| 国产激情偷乱视频一区二区| 国产乱人伦免费视频| 欧美日韩瑟瑟在线播放| 国产伦人伦偷精品视频| 国产真实伦视频高清在线观看 | 日韩欧美在线乱码| 联通29元200g的流量卡| www.色视频.com| 波多野结衣高清作品| 久久国内精品自在自线图片| 天堂影院成人在线观看| 亚洲国产精品合色在线| 亚洲精品色激情综合| 欧美成人性av电影在线观看| 又爽又黄无遮挡网站| 国内精品一区二区在线观看| 久久久午夜欧美精品| 日本黄色视频三级网站网址| 无人区码免费观看不卡| 亚洲18禁久久av| 亚洲一级一片aⅴ在线观看| 97超视频在线观看视频| 99久久精品一区二区三区| 内地一区二区视频在线| 少妇人妻精品综合一区二区 | 免费观看人在逋| 亚洲av美国av| 成人三级黄色视频| 欧美成人免费av一区二区三区| bbb黄色大片| 亚洲欧美日韩卡通动漫| 一进一出抽搐gif免费好疼| 国产久久久一区二区三区| 很黄的视频免费| 久9热在线精品视频| bbb黄色大片| 69av精品久久久久久| 18禁黄网站禁片午夜丰满| 中文字幕精品亚洲无线码一区| 日本黄色片子视频| 丝袜美腿在线中文| 亚洲avbb在线观看| 国产日本99.免费观看| 日本一二三区视频观看| 国产精品久久久久久av不卡| 国产不卡一卡二| 亚洲精品在线观看二区| 99视频精品全部免费 在线| 国产精品一区二区三区四区免费观看 | 国产女主播在线喷水免费视频网站 | 在线国产一区二区在线| a级一级毛片免费在线观看| 国产精品98久久久久久宅男小说| 国内精品一区二区在线观看| 91麻豆av在线| 亚洲图色成人| 国内久久婷婷六月综合欲色啪| 午夜久久久久精精品| 内地一区二区视频在线| 国产成人a区在线观看| 精品一区二区三区av网在线观看| 内射极品少妇av片p| 国产精品国产三级国产av玫瑰| 2021天堂中文幕一二区在线观| 身体一侧抽搐| 国产av在哪里看| 久久99热这里只有精品18| 国产亚洲精品久久久久久毛片| 久久午夜福利片| 女人十人毛片免费观看3o分钟| 丝袜美腿在线中文| 久久久久国内视频| 日日撸夜夜添| 色综合亚洲欧美另类图片| 国产精品精品国产色婷婷| 国国产精品蜜臀av免费| 极品教师在线免费播放| 成人午夜高清在线视频| 国产欧美日韩精品亚洲av| 亚洲一级一片aⅴ在线观看| avwww免费| 国内揄拍国产精品人妻在线| 香蕉av资源在线| 日韩精品有码人妻一区| 男女边吃奶边做爰视频| 国产精品国产三级国产av玫瑰| a级毛片免费高清观看在线播放| 一进一出好大好爽视频| 美女高潮喷水抽搐中文字幕| 长腿黑丝高跟| 88av欧美| 男女边吃奶边做爰视频| 舔av片在线| 久久人人爽人人爽人人片va| 色播亚洲综合网| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av天美| av女优亚洲男人天堂| 久久6这里有精品| 午夜老司机福利剧场| 禁无遮挡网站| 亚洲va在线va天堂va国产| 亚洲最大成人手机在线| 免费电影在线观看免费观看| 日日撸夜夜添| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| videossex国产| 久久久久久伊人网av| 精品一区二区三区视频在线观看免费| 欧美日韩综合久久久久久 | 亚洲精品乱码久久久v下载方式| 一进一出抽搐动态| bbb黄色大片| 久9热在线精品视频| 日韩亚洲欧美综合| 真人一进一出gif抽搐免费| 99热只有精品国产| 亚洲自拍偷在线| 一a级毛片在线观看| 老女人水多毛片| 老司机午夜福利在线观看视频| 久久久久国内视频| 男女那种视频在线观看| or卡值多少钱| 久久久久精品国产欧美久久久| 一级毛片久久久久久久久女| 91狼人影院| 国产亚洲欧美98| 美女高潮的动态| 最近最新中文字幕大全电影3| 联通29元200g的流量卡| 亚洲第一电影网av| 少妇裸体淫交视频免费看高清| 欧美不卡视频在线免费观看| 琪琪午夜伦伦电影理论片6080| 亚洲av免费在线观看| 国产欧美日韩精品亚洲av| 精品人妻偷拍中文字幕| 99热精品在线国产| 国产精品不卡视频一区二区| 小说图片视频综合网站| 国内精品美女久久久久久| 亚洲av中文av极速乱 | 亚洲自偷自拍三级| 天堂动漫精品| 成人三级黄色视频| 12—13女人毛片做爰片一| 成人国产综合亚洲| 大又大粗又爽又黄少妇毛片口| 午夜激情福利司机影院| 久久久久久久精品吃奶| 国产69精品久久久久777片| 91麻豆av在线| 久久久久精品国产欧美久久久| 美女高潮的动态| 精品人妻一区二区三区麻豆 | 精品福利观看| 99久久九九国产精品国产免费| 伦精品一区二区三区| 午夜日韩欧美国产| 18+在线观看网站| 99精品在免费线老司机午夜| 国产av麻豆久久久久久久| 国产av一区在线观看免费| 久久精品国产亚洲av天美| 日本一本二区三区精品| 日本-黄色视频高清免费观看| 久久久久久九九精品二区国产| 在线观看免费视频日本深夜| 99在线视频只有这里精品首页| 亚洲av第一区精品v没综合| 久久这里只有精品中国| 精品久久久久久久久亚洲 | АⅤ资源中文在线天堂| 亚洲精品色激情综合| 亚洲一级一片aⅴ在线观看| 亚洲自偷自拍三级| 久久精品影院6| 深夜精品福利| 99热只有精品国产| 国产精品,欧美在线| 久久这里只有精品中国| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看影片大全网站| 国产伦精品一区二区三区四那| 两人在一起打扑克的视频| 中出人妻视频一区二区| 一本久久中文字幕| 成人欧美大片| 波野结衣二区三区在线| 色尼玛亚洲综合影院| 欧美3d第一页| 桃色一区二区三区在线观看| 亚洲久久久久久中文字幕| 午夜a级毛片| 乱人视频在线观看| 给我免费播放毛片高清在线观看| 熟女人妻精品中文字幕| 亚洲天堂国产精品一区在线| 黄色欧美视频在线观看| 岛国在线免费视频观看| 免费人成视频x8x8入口观看| 亚洲精品影视一区二区三区av| 久久久久久国产a免费观看| 久久99热这里只有精品18| 欧美一区二区亚洲| 能在线免费观看的黄片| 成人美女网站在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 人妻夜夜爽99麻豆av| 少妇被粗大猛烈的视频| 观看美女的网站| 女人被狂操c到高潮| 欧美+日韩+精品| 国产精品福利在线免费观看| a级毛片a级免费在线| 在线免费十八禁| 久久久成人免费电影| 国产精品精品国产色婷婷| 熟女人妻精品中文字幕| 欧美在线一区亚洲| 久99久视频精品免费| 欧美日本视频| 成年女人看的毛片在线观看| 日韩欧美在线乱码| 高清在线国产一区| 99热这里只有是精品50| 成人永久免费在线观看视频| 色综合婷婷激情| 亚洲成a人片在线一区二区| 非洲黑人性xxxx精品又粗又长| 高清日韩中文字幕在线| 麻豆国产97在线/欧美| 少妇裸体淫交视频免费看高清| 欧美成人性av电影在线观看| 18禁裸乳无遮挡免费网站照片| 精品人妻熟女av久视频| 久久久国产成人精品二区| 色尼玛亚洲综合影院| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| 亚洲av成人av| 国产精华一区二区三区| 直男gayav资源| 欧美不卡视频在线免费观看| 国产不卡一卡二| 亚洲七黄色美女视频| 国产v大片淫在线免费观看| 亚洲无线观看免费| 国产精品福利在线免费观看| 欧美性猛交╳xxx乱大交人| 日韩 亚洲 欧美在线| 淫妇啪啪啪对白视频| 欧美日本视频| 国产老妇女一区| 午夜福利在线在线| 国产av在哪里看| 麻豆久久精品国产亚洲av| 久久国产乱子免费精品| 免费av毛片视频| av中文乱码字幕在线| 国内揄拍国产精品人妻在线| 久久人人爽人人爽人人片va| 精品久久国产蜜桃| 最近视频中文字幕2019在线8| 久久亚洲真实| 中文字幕精品亚洲无线码一区| 可以在线观看毛片的网站| 最近最新中文字幕大全电影3| 美女免费视频网站| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 中文字幕av在线有码专区| 99久久久亚洲精品蜜臀av| 亚洲18禁久久av| 国内精品宾馆在线| 国产在视频线在精品| 精品一区二区三区视频在线观看免费| 高清日韩中文字幕在线| 69人妻影院| 国内精品宾馆在线| 免费看日本二区| 真实男女啪啪啪动态图| 国产大屁股一区二区在线视频| 91狼人影院| 在线播放无遮挡| 欧美另类亚洲清纯唯美| 人妻丰满熟妇av一区二区三区| 久久久久久久久久成人| 欧美三级亚洲精品| 91av网一区二区| 国产精品无大码| 国产成年人精品一区二区| 日本免费a在线| 69av精品久久久久久| 午夜精品久久久久久毛片777| 夜夜夜夜夜久久久久| 免费黄网站久久成人精品| 91在线观看av| 日韩中文字幕欧美一区二区| 国产三级在线视频| 亚洲av美国av| 久久6这里有精品| 亚洲精品456在线播放app | 乱系列少妇在线播放| 色视频www国产| 可以在线观看的亚洲视频| a在线观看视频网站| 亚洲精品456在线播放app | 老熟妇仑乱视频hdxx| 久久精品人妻少妇| 精品乱码久久久久久99久播| 国产精品女同一区二区软件 | 91麻豆av在线| 国产在线精品亚洲第一网站| 久久精品国产亚洲av涩爱 | 在线看三级毛片| 啦啦啦观看免费观看视频高清| 亚洲最大成人中文| 动漫黄色视频在线观看| 午夜福利18| 亚洲精品色激情综合| 真人一进一出gif抽搐免费| 日本三级黄在线观看| 麻豆国产av国片精品| 亚洲图色成人| 男女那种视频在线观看| 欧美高清成人免费视频www| 国产极品精品免费视频能看的| 搡女人真爽免费视频火全软件 | av国产免费在线观看| 国产一区二区三区在线臀色熟女| 精品人妻熟女av久视频| 国产精品久久久久久久久免| 亚洲国产精品成人综合色| 最近在线观看免费完整版| 99在线人妻在线中文字幕| 欧美成人a在线观看| 久久久久性生活片| 人人妻人人看人人澡| 国产精品一区二区性色av| 99久久精品热视频| 69av精品久久久久久| 又爽又黄无遮挡网站| 国产激情偷乱视频一区二区| 九九在线视频观看精品| 五月伊人婷婷丁香| av在线天堂中文字幕| 1024手机看黄色片| 亚洲人成网站高清观看| 国产老妇女一区| 久久99热这里只有精品18| 日本免费a在线| 久久99热6这里只有精品| 日韩欧美在线乱码| 国产精品亚洲一级av第二区| 少妇丰满av| 久久6这里有精品| 亚洲精品456在线播放app | 欧美成人免费av一区二区三区| 午夜视频国产福利| 天天一区二区日本电影三级| 国产午夜精品久久久久久一区二区三区 | 一个人看视频在线观看www免费| 97碰自拍视频| 色综合站精品国产| 在线免费十八禁| 日韩欧美国产一区二区入口| 99久久久亚洲精品蜜臀av| 亚洲av第一区精品v没综合| 亚洲图色成人| 嫩草影视91久久| 国产精品久久视频播放| 色综合婷婷激情| 久久这里只有精品中国| 三级毛片av免费| 白带黄色成豆腐渣| 国产成人福利小说| 精品久久久久久成人av| 91午夜精品亚洲一区二区三区 | 联通29元200g的流量卡| 国产一区二区在线观看日韩| 在线免费十八禁| 精品福利观看| 亚洲狠狠婷婷综合久久图片| 亚洲第一电影网av| 久久欧美精品欧美久久欧美| 亚洲国产精品成人综合色| 亚洲中文日韩欧美视频| 国产精品一及| 久久草成人影院| 91久久精品电影网| 久久亚洲真实| 午夜免费男女啪啪视频观看 | 婷婷色综合大香蕉| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 长腿黑丝高跟| 亚洲图色成人| 深夜a级毛片| 日韩 亚洲 欧美在线| 九九在线视频观看精品| 日本爱情动作片www.在线观看 | 老女人水多毛片| 97人妻精品一区二区三区麻豆| 午夜精品在线福利| 亚洲色图av天堂| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看| 3wmmmm亚洲av在线观看| 能在线免费观看的黄片| 在线观看免费视频日本深夜| 欧美性猛交╳xxx乱大交人| 人妻丰满熟妇av一区二区三区| 国产高清激情床上av| 色视频www国产| 欧美一区二区精品小视频在线| 亚洲五月天丁香| 色5月婷婷丁香| 女生性感内裤真人,穿戴方法视频| 黄色丝袜av网址大全| 日本与韩国留学比较| 精品人妻熟女av久视频| 日韩中文字幕欧美一区二区| 欧美激情在线99| 91在线观看av| 有码 亚洲区| 精品久久久久久久久久免费视频| 日本 av在线| 久久99热6这里只有精品| 22中文网久久字幕| 亚洲四区av| 女同久久另类99精品国产91| 国产伦人伦偷精品视频| 午夜免费男女啪啪视频观看 | a级毛片免费高清观看在线播放| 久久久久久久久中文| 黄色视频,在线免费观看| 色5月婷婷丁香| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 精品免费久久久久久久清纯| 韩国av一区二区三区四区| 最近视频中文字幕2019在线8| netflix在线观看网站| 综合色av麻豆| 欧美日本视频| 欧美黑人欧美精品刺激| 99久久精品一区二区三区| 久久久久久大精品| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 又黄又爽又免费观看的视频| 欧美激情在线99| 三级男女做爰猛烈吃奶摸视频| 国产精品亚洲一级av第二区| 最近视频中文字幕2019在线8| 国产精品电影一区二区三区| 女生性感内裤真人,穿戴方法视频| 精品久久国产蜜桃| 日本在线视频免费播放| 久久精品夜夜夜夜夜久久蜜豆| 婷婷丁香在线五月| 亚洲自拍偷在线| 国产v大片淫在线免费观看| 国产精品一及| 国产综合懂色| 国产私拍福利视频在线观看| 九色国产91popny在线| 亚洲av.av天堂| 精品人妻一区二区三区麻豆 | 国产探花在线观看一区二区| 免费不卡的大黄色大毛片视频在线观看 | 午夜影院日韩av| 非洲黑人性xxxx精品又粗又长| 午夜福利在线观看免费完整高清在 | 天美传媒精品一区二区| 成人精品一区二区免费| 99久久中文字幕三级久久日本| 欧美另类亚洲清纯唯美| 午夜福利18| 国产成人av教育| 亚洲第一区二区三区不卡| 国产淫片久久久久久久久| av中文乱码字幕在线| 中文字幕免费在线视频6| 久久婷婷人人爽人人干人人爱| 国产av一区在线观看免费| 欧美黑人欧美精品刺激| 成人欧美大片| av视频在线观看入口| 国产精品久久久久久久电影| 欧美色视频一区免费| 99国产极品粉嫩在线观看| 成人亚洲精品av一区二区| 丰满的人妻完整版| 国产 一区 欧美 日韩| 丰满人妻一区二区三区视频av| 最近最新中文字幕大全电影3| 97超视频在线观看视频| 午夜久久久久精精品| 国产 一区精品| 中出人妻视频一区二区| 午夜福利18| 狂野欧美白嫩少妇大欣赏| 国产极品精品免费视频能看的| 久久久色成人| 久久精品91蜜桃| 毛片女人毛片| 亚洲欧美日韩东京热| 淫秽高清视频在线观看| 日日夜夜操网爽|